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Abstract: Due to negative environmental impacts caused by the building industry, sustainable
buildings have recently become one of the most investigated fields in research. As the design
technique itself is mainly responsible for building performance, building energy design optimization
is of particular interest. Several studies concentrate on systems, operation, and control optimization,
complemented by passive strategies, specifically related to the envelope. In building physics, different
architectural considerations, in particular, the building’s shape, are essential variables, as they greatly
influence the performance of a building. Most scientific work that takes into consideration building
geometry explores spaces without any energy optimization or calculates optimization processes of
a few basic variables of simplified space geometries. Review studies mainly discuss the historic
development of optimization algorithms, building domains, and the algorithm-system and software
framework performance with coupling issues. By providing a systemized clustering of different levels
of shape integration intensities, space creation principals, and algorithms, this review explores the
current status of sustainability related shape optimization. The review proves that geometry design
variable modifications and, specifically, shape generation techniques offer promising optimization
potential; however, the findings also indicate that building shape optimization is still in its infancy.

Keywords: building shape optimization; building geometry design variables; energy efficiency;
comfort performance; building physics simulation; optimization algorithm; design method

1. Introduction

The 2019 Global Status Report for Buildings and Construction warns that the building
sector is not on track to meet the United Nations (UN) Sustainable Development Goals
(SDGs), and that building stock is set to double by 2050. The energy efficiency improve-
ments in the building sector slowed to less than 50% of the average rate since 2010 [1].
Approximately 44% of the final energy use and 40% of the CO2 emissions are rooted in
the construction and operation of buildings [1,2], and approximately 50% of office and
residential buildings’ operation consumption is due to HVAC demand [3,4]. Due to a grow-
ing population, and more households and floor space, an increase by approximately 28%
is predicted by 2035. Although the design process and construction method is primarily
responsible for the sustainability performance of buildings constructed, the prevailing con-
ventional design method in industry relies almost completely on experience and includes
only a limited number of concepts.

Because architects focus primarily on the artistic side of design, they are not taught
how to handle engineering and mathematical calculations. The architect’s plan is created as
a first step, and engineers define and size the mechanical and electrical systems to supply
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the comfort and energy requirements for the building. Interaction between the disciplines
and the iterative design adjustments are reduced to as few as possible, which unfortunately
means that optimal design of form, materials, and systems is not ensured [5]. Typically, it is
the building services system engineer who is responsible for the energy performance of
a project, mainly through improving the HVAC systems. At the same time, they are not
trained with the necessary building design skills, even though it is the main determining
factor for all comfort and energy tasks. Even though an architect does not receive deep
training in building physics, they bring the greatest weight into energy efficiency and other
sustainable building performance of a project. As leader of the planning team, the architect
creates the DNA code of the building, the space organization and the buildings shape. These
fundamental design features have a major contribution to the energy performance [6,7],
while subsequent decisions at later further stages, which take into consideration the envelope,
structures, etc., also influence various factors of energy design. For this reason, it is imperative
that energy optimization should be mainly managed by architects.

In sustainable building design, multiple objectives, influencing variables, and con-
straints drive the problem-solving process, and these functions are often contradictory. To
handle this problem, various building design optimization methods have been developed.
‘Parametric simulation method’ is a common building energy, comfort, and environmental
design optimization (BECEDO) technique. It tries to optimize only one design variable at a
time by testing the effects of changing the variable, while the remaining variables are kept
constant. This time- and work-consuming method is only able to improve partially due to
non-linear interrelationships between variables and outputs. In architecture, a relatively
new, promising method is represented by ‘simulation-based or numerical optimization’ pro-
cesses: the automated coupling of numerical simulations and mathematical optimization
algorithms. Based on iterative, ‘infinite’ calculation sequences, more exact approximation
results are achieved to a solution or point at most possible proximity (near optimum) in the
search space, satisfying the objective function [8]. In order to achieve a level of BECEDO
(i.e., to reach the desired performance) finding the minimum or maximum value of a cost,
fitness or objective function is necessary, by choosing and modifying particular design
variables subject to different constraints [8].

According to estimations [9], optimization of the building envelope and the HVAC
system has a potential for 20–60% energy conservation. Improvements in artificial lighting
are predicted to reduce energy demand by 20–70%, which is also similar for refrigeration
and hot water generation optimization. Intelligent controlling of the systems and electric
equipment contributes to a further 10–20% efficiency [10]. Apparently, there are no existing
estimations in the literature about the energy saving potential of optimized space organiza-
tion and shape forming of buildings. In addition, only a few studies discuss how architects
consider the engineering optimization procedure and how the technique could be built in
the general planner’s (architect) design method [9].

The first BECEDO publication dates back to the beginning of the 1970s [11], but the
number of publications has grown considerably since 2000 [8,9,12]. Most of the in-depth
analysis of optimization algorithms is provided in non-architectural fields, such as IT,
mathematics, and operation technologies. BECEDO studies are significantly less than the
number of research in operation control optimization [13], and only approximately 30%
of the studies applied their technique on real-world buildings [9]. Furthermore, much of
the existing research focuses on the technique itself (e.g., developing and coupling algo-
rithms and calculation engines, integrating surrogate models, etc.) and its application to an
oversimplified building example to validate the functionality of the proposed method. In
recent years, remarkable improvements have been made in the automation of modelling,
co-simulation, evaluation, and coupling optimization algorithms with calculation engines
(interoperability). Utilizing hybrid algorithms, meta-models, parallel and cloud computing,
adaptive fitness coarseness, simplification of the building model, or assessment tools is effec-
tive in reducing computation time for faster convergence [12]. A number of review studies
systemize BECEDO research in terms of historic development of optimization algorithms,
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building domains, design variables, objective function and constraints, as well as analysis of
the algorithm-system performance and software framework with coupling issues [8,9,12,13].

In passive systems, studies specifically modify the main design variables of the opaque
and transparent envelope structures and materials, e.g., the thicknesses and thermal prop-
erties of the insulation and walls, as well as wall–window ratios (WWR), orientation,
materials, structures, and shading, for instance [14–21]. Another group of studies con-
centrates on the design variables of the HVAC and energy system and the combination
variables of active (mechanical) systems and passive (architectural) strategies, e.g., envelope
material properties, and operation and control [14,22–36]. In urban contexts, the optimiza-
tion of the façade PV-panel system density and arrangement is carried out for maximizing
solar energy usage and level of visual comfort (sDA) in a city district with diverse dense
and high building arrangement [37]. The focus in these studies is set on demonstrating
and validating the optimization model and the algorithms through a simplified example
with very specific results of particular case studies. The results are typically lacking in
terms of building physics. Although utilizing an increasing number of design variables,
they are limited to engineering systems, materials, and structures and leave out the space
organization and building shape variables.

At the same time, the building shape is an essential BECEDO performance affecting
design variable too [6,7,26,38–49]. A comprehensive review [12] on energy efficient build-
ing geometry and building envelope design concludes after analysis of around 400 related
publications, that building shape and envelope design substantially affect the energy per-
formance. A typical shortcoming in previous studies is that most of them focus on the
optimization technique itself, as well as quantifiable variables and objective functions, with-
out integrating other objectives of related building design disciplines. Building envelope
and shape are potentially variable groups for energy conservation through passive and
active strategies in general [12]. The motto of ‘Form follows energy’ and ‘Form follows
performance’ emphasize that building form is a decisive factor of energy efficiency and has
become a ‘dogma’ over the last decade. Implementation, however, remains a complex chal-
lenge. Although building form has significant impact on building operation maintenance
cost that exceeds in several orders the initial investment, there exist no generic guidelines
for architects about the relationship between shape and energy efficiency [50]. In [5], 64 di-
verse building geometries were investigated in their architectonical form-language and
solar gain in relation to maximized solar energy production surface vs. minimized heat
loss through the envelope (min–max antagonistic problem). A new factor of form efficiency
is proposed to quantify the concentration of solar energy on a building surface form in a
given climate. The author indicates that only a few investigations have been carried out
experimenting with formal design in architecture and urban planning, though over 100%
increase in solar gains are possible due to optimized geometry. A discussion [51] points
out the limited utilization of building geometry in research of energy-efficient design: it
emphasizes that while some optimization studies may go too far into formal investigation
by generating impractical complex forms [38], other studies adopt extremely simple shapes,
hardly touching the depth of potential [50]. It concludes that the omission of geometry from
the discussion of energy performance and the limited understanding of the energy relation
of formal design aspects represents a crucial research gap. Geometry not only influences
operation energy and energy production, but it also has a strong effect on structural design,
a crucial field in embedded energy demand. In [52], a knowledge gap is proposed through
documenting and codifying the implicit interpretations of architectural design models for
structural analysis models making efficient structural design (material demand) possible.
The proposed method reduces the dimensionality of geometries and structures and then
reconnects the elements to create geometrical interpretations. The data exchange can be
significantly simplified by automating the interpretations process, leaving some building
elements and geometries to structural engineers to deal with.

Previous work treats building shape in building energy, comfort, and environmental
design (BECED) research by demonstrating how building geometry measures modify and
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improve energy efficiency and how shape design variables are dependent on a variety of
climate conditions and the surrounding natural or urban context. A simplified analysis
method (correlation equation) is elaborated in [7] based on whole-year detailed simulations
to estimate how building geometry affects energy efficiency of office buildings in Kuwait.
The results underline the strong effect of geometry, WWR, and glazing type on energy
efficiency. Another study conducts a comprehensive sensitivity analysis that explores the
energy effects of basic building geometry, examining the aspect ratio, roof shape, building
height (stacking), WWR, orientation, eaves, and further thermal aspects of materials in four
climates [46]. It was concluded that aspect ratio and stacking fundamentally influence the
energy performance of residential buildings. The importance of the geometry (optimized
energy performance and creative nature of architectural design) is also underlined in a
further interesting study [39] by dividing the complete investigation into two consecutive
phases: firstly, geometry optimization, and thereafter passive and active system optimiza-
tion. The authors of [53] integrate urban block form, size and perimeter to area ratio, and
spacing between the residential blocks into an exergy load improving investigation, but a
reasonable description of the building geometry as a design variable (BGDV) consideration
is missing. Validated via laboratory measurements, [6] underlines the importance of ge-
ometry in 14 different building shapes, investigated in diverse climates. The results reveal
that compactness is important in cold climates and has less significance in mild/warm
climates. In multi-story building scenarios [48] intended to minimize heating demand,
the most advantageous SF is 1:1 (square), whereas for heating efficiency SF of 1:1 and 2:1
with S, ORI perform best, and the most appropriate ORI for SF of 1:2 is SW. A simplified
correlation (regression analysis) tool is proposed in [43] to assess the impact of building
shape on cooling and total annual energy use for office buildings. According to the results,
the higher the RC, the lower the cooling and total energy demand. Other research [47]
focuses on solar energy utilization by modifying simple shape, density, and site layout
parameters of two-story residential buildings in different neighborhoods. The active roof
surface is most influential as a consequence of ORI and the shape of facades, providing up
to 50% increase in electricity generation relative to rectangular layout. What is in common
with all these studies is that the geometry versions are created by modifying a base shape,
i.e., one or more dimensional parameters are changed in order to transform an initial shape
into new building body forms.

Another group of BECED studies produces building shape versions according to spe-
cific techniques and rules by generating diverse geometries from bottom up. A converted
shape grammar system [54] provides a generative design system with “if”/“then” rules
to produce building geometries by arranging rooms, corners, and porches together. After
presenting the method, relevant rules were disregarded (simplifications) in the proposed
application, demonstrating diverse family house forms and shape coefficients (surface
envelope to indoor volume ratio A/V) with largely differing floor areas. The study did not
reflect a regular architectural task that, in most cases, possesses a strictly predefined net
floor space size, determined by the client and/or by regulations. Additionally, the method
is limited in shape handling. In a further work, 96,000 family houses were generated [55] to
analyze the energetic relationship between six compactness and window-based variables
and the U-value of the envelope in eight European climates. The conclusion stated that
lowering U-values decreases the impact of geometry and WWR in colder climate zones,
and in warmer climates, overheating inverts this tendency. Though comprehensive, no
optimization is carried out here, and the impacts of geometry were not fully studied: shapes
and U-values were randomly generated in a large number to detect a general trend, rather
than to understand energy-based relationships to specific geometries. Moreover, increasing
the thermal properties of the envelope requires extra investment cost and LCA impact [22]
and neglects the significant energy intensity of the building shape [6,7,26,43–48]. Other
work investigates the impacts of urban neighbor building morphology on cooling load and
natural ventilation potential of a 12-story target building in a hot-arid climate [56]. A ‘Build-
ing Modular Cell’ (BMC) technique is introduced to generate urban structure, based on a
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5 × 5 grid raster with five different urban density (UD) building categories, three building
height classes, and five urban pattern ranges (street area between the building blocks) and a
form generation algorithm (including architecturally eligible form selection). This research
demonstrated that normal UD (50–60% site coverage) require low-rise neighbor buildings,
and high UD is required to decrease cooling demands. L-shape is preferred, and push-and
pull on the east side in the layout enables cooling reduction. It is recommended to have
a dense neighborhood with low street width, and the ratio of building height to street
width (H/W) should be 12 or higher, whereas for best natural ventilation potential, H/W
6–8 should be considered. Typically, these BECED investigations lack in mathematical
optimization methods; nevertheless, they often provide the automated creation of geometry
variants, combined with simulation-based evaluation; thus, they represent an important
step towards BGDV optimization.

The majority of real-world BECEDO cases focus on refurbishment projects, partly due
to the large scale of the existing built environment in developed countries, and due to the
fact that, in renovation tasks, the shape is typically fixed, making it unnecessary to deal
with issues resulting from complicated differences in form [9].

Regarding the spectrum of previous scientific work that integrates BGDV-s into opti-
mization containing BECEDO processes, a relatively large number of publications provide
promising article titles, including “shape optimization” and similar terms. However, after
analysis, it becomes clear that, in most of these investigations, the exact role, measurements,
and effect of geometrical aspects remain unclear (see Sections 3 and 4). The studies process
geometry-related issues in diverse levels of significance, whereas a complex picture evolves
only with a large diversity of the used objective functions such as building types and sizes,
climates, BGDV-s, algorithms, methods, and simulation and programming techniques.
Specifics about how the results can be practically incorporated into further design are not
clarified. Therefore, the current review intends to provide a clear overview of existing litera-
ture with a systemized classification of BGDV integration BECEDO research, including the
role and state-of-the-art performance of this complicated and important variable system in
building energy design optimization. After scanning the existing literature, and according
to the knowledge of the authors, no review analysis currently exists in this domain. The
main driving force of this particular analysis and discussion is to extract the status quo of
previous work by answering the following questions:

• What kind of BGDV-s exists in current BECEDO research?
• What are the roles and functions of the different BGDV-s in BECEDO investigations?
• What are the frequently applied simulation engines, optimization algorithms, and

software frameworks (including the diverse methods) in BECEDO?
• What kind of space organization and shape defining solutions exist, and what are the

pros and cons of each process?
• Which type of building performance is improved through BGDV-s, and how large is

the impact on the improvements?
• Is it possible to create a link between the concrete building form and its geometry

describing mathematical design variables? Where is the level of achievement in actual
research to replicate shape with the use of BGDV-s?

• What is the potential of building shape optimization?
• How can the achieved results and knowledge be applied in further design projects?
• What kind of limitations and/or shortcomings can be detected?

2. Geometry as a Design Variable in BECEDO
2.1. Building Geometry Variables on Basic Level of Complexity

For decades, studies have concentrated on automated building space and geometry
generation without considering building physics performance [57–60] or mathematical
optimization. However, there is available literature about BECEDO research work, consid-
ering energy related design variables of the building shape. To gain a clear overview of the
available studies, a chronological database was established (Table 1).
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Table 1. BECEDO research using basic building shape design variables.

Ref. No. Year Topic and Achievements Objective Function Building Geometry Design
Variables

(a) Algorithm
(b) Simulation Engine
(c) Framework/Method

Limitations

[50] 2019

MO optimization of office building energy
performance and daylight optimization against DOE
commercial reference building template. Climate
effect on daylight and energy performance in
early-stage design. Depth of the building is greatly
influenced by the climate. In hot and mixed climate,
larger aspect ratios (1.97) are better, while in cold
climates, lower aspect ratios (1–1.37) are
advantageous. Roof ridge should be located around
the center of the building. Most influencing design
variables on EUI and UDI are skylights and windows
and some shading properties. Building depth
strongly determines the energy demand.

• Max. useful daylight
Illuminance (UDI)

• Min. energy use intensity
(EUI)

• Depth of space/building
wing

• Roof slope/eave/ridge
location

• GR, ORI, STR, TM, SHADE

(a) MOGA
(b) EnergyPlus
(c) GH, Ladybug, Honeybee,

Octopus, R

Very limited
geometry-related design
variables. GA; hence, only
near-optimal solutions.
Conclusions about building
physics performance are not
new. Definition of
generation and population
sizes are not justified.

[61] 1987

Pioneer study from the 1st authors (1983)
investigating building energy optimization including
shape and envelope variables. Office (2000 m2).
Exemplary demonstration of the method.

• Min. thermal load
• Total capital cost
• Max. area ratio,

performing appropriate
illumination level

• Floor space
• Aspect ratio
• Significant geometry

modification
• Height/stacking
• GR, ORI, STR, TM, SHADE
• HVAC/energy system

(c) Pareto optimal dynamic
programming, FORTRAN

Without simulation and
advanced optimization
algorithm.

[62] 2001

Building envelope optimization in sketch plan stage
for family house in variable size—an interactive tool.
Multiple criteria decision aid procedure (MCDA),
integrating the client, design team, public authorities
and users preferences, requirements, and constraints
into the optimization process. (1) Definition of
constraints and objectives, (2) feasibility study, (3)
sketch design. Iterative intervention/optimization is
carried out considering all participants requirements,
performance results and design.

• Min. heating cost
• Min. AC cost
• Min. DHW cost
• Min. lighting cost
• Min. operation cost
• Min. construction

investments

• Aspect ratio
• Geometry generation with

energy evaluation
• Roof slope/eave/ridge

location
• GR, ORI, STR, TM, SHADE
• HVAC/energy system

(a) GA
(b) LEMA EsQUIsE module
(c) Aid to the multiple

criteria conception of the
building envelope
(AMCE)

GA; hence, only
near-optimal solutions.
Only theoretical proposal.
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Table 1. Cont.

Ref. No. Year Topic and Achievements Objective Function Building Geometry Design
Variables

(a) Algorithm
(b) Simulation Engine
(c) Framework/Method

Limitations

[63] 2002

Three studies about a multicriteria optimization of
building shape, internal wall partitions between
apartments, and heat source utilization in
multifamily housing (2133.3 m2). Decomposition in
part-problems: shape, internal partitions, heat
sources, and handling of global optimization
problem. The shape of the prismatic building was
determined in height, proportions of the sides, and
ORI. By replacing the rectangular form by a rectangle
and 2 trapezoids, an optimum shape was developed.

• Min. construction cost
• Min. heating demand
• Min. emissions from heat

sources

• Wall length/area
• Depth of space/building

wing
• Height/Stacking
• Angles of horizontal wall

inclination
• GR, ORI, STR, TM, SHADE
• HVAC/energy system

(b) CAMOS
(c) Analytic-numerical

Very limited geometry
related design variables.

[64] 2002

Low-energy building energy optimization of a
community hall, 1 zone (200 m2) based on combined
computer algorithm and human judgment. Finding
an extensive range of possible near-optimum designs.
Instead of the time-consuming process of classifying
the architectural appeal of each design case
generated by the GA (or to considerably reduce the
number of processed designs for time saving), a
histogram is proposed for each building variable.
Cases can be analyzed and worked up to
architectural sketches. Similar annual energy usage
performing models possess different designs. Models
with minimum heat losses apply insulation and
compact shape, while models with maximized solar
gains use more free form and greater windows. The
combination of the 2 strategies is problematic due to
summer overheating issues.

• Min. annual energy
consumption

• Max. thermal losses
• Max. thermal gains
• Max. architectural appeal

• Wall length/area
• Depth of space/building

wing
• Roof slope/eave/ridge

location
• GR, ORI, STR, TM, SHADE

(a) GA
(b) Simplified dynamic

thermal model,
EXCALIBUR.

(c) Custom calculation

Very limited geometry
related design variables.
Conclusions about building
physics performance are not
new. GA; hence, only
near-optimal solutions.
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Table 1. Cont.

Ref. No. Year Topic and Achievements Objective Function Building Geometry Design
Variables

(a) Algorithm
(b) Simulation Engine
(c) Framework/Method

Limitations

[65] 2003

Multi-objective optimization of schematic rectangle
office and apartment building by composition of
walls, generation of shapes and define HVAC
systems. Pareto experiments: size and roof of each
room are modified by the GA. A large diversity of
the Pareto front building cases was achieved.
Optimal solution for heating is obtained in a single,
compact large building body with all-glazed S and W
facade. In lighting demand, the optimum case
provides small spaces easily penetrated by daylight
with S facing large glazed facades.

• Min. lighting demand
• Min. heating thermal

energy demand
• Min. construction

investment expenses

• Geometry generation with
energy evaluation

• Wall length/area
• Depth of space/building

wing
• Roof slope/eave/ridge

location
• GR, ORI, STR, TM, SHADE
• HVAC/energy system

(a) GA
(b) DOE-2

No interdependencies and
energy related logic can be
detected in the random
generation of the building
form. Conclusions about
building physics
performance are not new.

[66] 2003

Office, 1092 m2, decision support system (DSS),
involving two architects, two structural engineers,
and one building services engineer in evaluation.
Presenting a mathematical method.

• Min. investment cost
• Max. clear span
• Max. use of natural

sources

• Floor space
• Depth of space/building

wing
• Height/stacking
• Net/gross floor ratio
• Wall-floor ratio
• Urban environment
• GR, ORI, STR, TM, SHADE

(a) GA
(c) BGRID, Microsoft Visual

Basic

Early stage optimization
framework, need further
development. Without
geometry generation (only
calculation).

[67] 2005

Proposed optimization method with multi-objective
genetic algorithms for early design stage,
demonstrated through an example (office, 1000 m2).
LCEI is 65% reduced and operations within LCEI
decrease by 20%. Aspect ratio 1 is preferred for cost
reduction, but rectangular shape with long side to
the south is better in energy efficiency. Trade-off
between optimum aspect ratio for environment or for
cost efficiency. Presenting and proofing a
mathematical method.

• Min. LCEI
• Min. LCCA (40 years)

• Aspect ratio
• GR, ORI, STR, TM, SHADE

(a) MOGA (Pareto)
(b) ASHRAE Toolkit
(c) Custom calculation,

ATHENA

Simple geometry, very
limited geometry related
variables.

[68] 2005

Proposing analytic target cascading (ATC), a
multidisciplinary hierarchical optimization method.
Presenting applicability via a pilot study
(office-workshop building 597 m2). Presenting and
proofing a mathematical method.

• Max. area
• Max. thermal comfort
• Min. heating need
• Min. cooling need

• Wall length/area
• GR, ORI, STR, TM, SHADE
• HVAC/energy system

(b) EnergyPlus
(c) Custom calculation,

superEGO, sequential
quadratic programming
(SQP)

Early-stage optimization
framework, need further
development.
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Table 1. Cont.

Ref. No. Year Topic and Achievements Objective Function Building Geometry Design
Variables

(a) Algorithm
(b) Simulation Engine
(c) Framework/Method

Limitations

[69] 2005

The proposed method allows the designer to explore
and visualize design evolution, form generation, and
to interact in the optimization process. Through a
GUI, the user selects an example from the shapes,
and thereafter, the GA continues to search for the
best solution. Automated mesh and CFD
calculations. Example (generic, simple 1-room) for a
continuous evolution of optimization by
automatically creating discrete design instances and
morphing them in between the process. Compared to
conventional design: saving significant computation
time, possibility to track relationship between
variables and performances, possibility to evaluate
trade-off between diverse solutions, possible novel
design solution-configurations, because it is not
biased by the designer’s view.

• Max. thermal comfort
• Max. ventilation

performance
• Min. temperature

differences from target
• Min. airflow velocity

differences from target

• Wall length/area
• Depth of space/building

wing
• Height/stacking
• GR, ORI, STR, TM, SHADE
• HVAC/energy system

(a) GA
(b) Gambit, Ansys Fluent

(CFD)
(c) GALib, C++, Java API

GA; hence, only
near-optimal solutions.
Taking designer’s
preferences into
consideration in the process
means that the selected
morph can be a promising
solution but may still not be
the guaranteed optimum.

[70] 2007

Optimization of the form of an office building on an
oval base. Presenting and proofing a mathematical
variational method. Heat losses and gains are
reduced by approx. 10%. Optimized oval form
performs better than circular or square base.

• Min. building cost
• Min. heating cost (1–100

years)
• Length of layout curves (c) Variational method;

custom calculation
Simple geometry, very
limited geometry-related
variables.

[71] 2009

Presentation of an MDO by breaking down the
system into building components (decomposition)
using CAD and IFC-codes. Interactive method
involving designer for quantitative and qualitative
analysis. Presenting and proofing a mathematical
method. Optimization of steel and wood frame load
bearing structures in an industry hall (1200 m2).

• Trade-off between
economic and
environmental user
preferences

• Load-bearing structure
• GR, ORI, STR, TM, SHADE

(a) MOGA
(c) N-Square diagram

(design structure matrix),
ModelCenter

Limited to variables of the
structure’s geometry.

[72] 2009

MDO of a classroom building. Customized factorial
design (DOE). Test application of the PIDO software
to an AEC task. Investment cost of the structure
decreases as the length of the space increases,
because beam span reduces and becomes cheaper.
Operation cost increases as the length increases due
to greater surface area (heat loss), greater WWR with
more solar gains and cooling demand.

• Min. investment expenses
of the steel frame load
bearing structure

• Min. LCC. of the steel
frame load bearing
structure

• Wall length/area
• GR, ORI, STR, TM, SHADE

(a) GA, gradient-based
algorithm

(b) EnergyPlus, process
integration and design
optimization (PIDO).

(c) ModelCenter, C++,
DesignExplorer, Darwin

Conclusions about building
physics performance are not
new. GA; hence, only
near-optimal solutions.
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Table 1. Cont.

Ref. No. Year Topic and Achievements Objective Function Building Geometry Design
Variables

(a) Algorithm
(b) Simulation Engine
(c) Framework/Method

Limitations

[73] 2013

Residential house, economic incentives of energy
cost optimal curves in net zero energy home (NZEH).
MO analysis to find Pareto curves for the objective
function. Net-zero energy performance is possible
using passive solar design, improved HVAC system
efficiency, and renewable sources (PV-panels). The
cost-optimal case has an energy performance of
approx. 10,000 kWh/a. A NZEH costs approx. the
same as the reference building (Building America
reference building DOE 2010) over a 30-year
life-cycle.

• Min. net-energy
consumption

• Min. LCC

• Aspect ratio
• Roof slope/eave/ridge

location
• GR, ORI, STR, TM, SHADE

(a) Multi-objective algorithm
(b) EnergyPlus, BEOpt

In terms of building physics,
the conclusion is not new
knowledge. No information
is available about the
building geometry, size, etc.

[74] 2014

Multi-objective optimization of low-cost residential
housing (LCH) in 3 different climates (China).
Exemplary demonstration of the method. Geometry
related conclusions as design aid: In tropical
monsoon climates, in buildings with NV and/or AC
E-W, elongated rectangular shape is recommended.
In sub-tropics, the square shape is recommended
when NV is operated. Climate has a decisive impact
on building operation (passive or active) type.

• Min. construction cost
• Min. LCC
• Max. thermal comfort

• Aspect ratio
• Wall length/area
• Depth of space/building

wing
• GR, ORI, STR, TM, SHADE
• HVAC/energy system

(a) Hybrid: PSO +
Hooke-Jeeves

(b) EnergyPlus
(c) GenOpt

Very limited geometry
related design variables.

[75] 2015

Office, 1 representative floor (1000–2000 m2).
Searching for the set of design variables to minimize
heating and cooling load. DOE produced possible
design variable configurations. The design variables
were obtained statistically in a polynomial equation
form to determine the Pareto front. The method uses
a subset of all possible combinations of design
variables to ease exhaustive full factorial design with
a large number of test runs. (1) A large number of
variables are modeled and assessed as a screening to
find the important ones. (2) Functional relations are
explored about the variables’ impact on objective
functions. (3) Optimization of the variables.
Variables of windows and air leakage affect energy
load significantly, while aspect ratio is ineffective.
HVAC system affect passive design.

• Min. heating load
• Min. cooling load

• Floor space
• Aspect ratio
• GR, ORI, STR, TM, SHADE
• HVAC/energy system

(a) NSGA-2, DOE
(b) TRNSYS, R,

NIST/SEMATECH

Very limited
geometry-related design
variables. Shape design
variables and enveloped
design variables (WWR,
materials) are
simultaneously examined;
hence, importance of
geometry as primary
architectural-functional
premise is overwritten by
design technologically
subsequent and more
expensive design steps.
Conclusions do not contain
new knowledge.
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Table 1. Cont.

Ref. No. Year Topic and Achievements Objective Function Building Geometry Design
Variables

(a) Algorithm
(b) Simulation Engine
(c) Framework/Method

Limitations

[76] 2015

MO optimization of thermal comfort and energy in
building design (multi-family house). GA optimizes
the back propagation (BP) ANN’s weight and
threshold. Simulation-based GA-BP network training
and result validation. Thereafter, NSGA-II
optimization: evaluation of the potential solutions.
Significant (approx. 50%) improvement in energy
and insignificant improvement in comfort.

• Min. annual energy
consumption

• Max. thermal comfort

• SF
• GR, ORI, STR, TM, SHADE

(a) NSGA-II. GA-back
propagation network
(GA-BP)

(b) EnergyPlus
(c) Matlab

Very limited
geometry-related design
variables. Limited to a
rectangular shape with a
known total floor area.
There is need for extensive
testing results for further
building geometry and type
training samples.

[77] 2019

MO BEO. Pareto optimization of geometry, envelope,
and energy systems. Proposed optimization
framework ’Harlequin’ (unevenness in the diversely
oriented facades, materials, colors, WWR,
thermal-radiative characteristics): (1) GA generates
optimal non dominated solutions; (2) Smart
exhaustive sampling of optimal (minimized) PEC,
global cost (GC) and investment cost (IC) scenarios.
Decision makers can choose the "best" solution
according to their needs. Example (office, 2700 m2)
modelling and calculations. Recommendations on
optimal geometry (aspect ratio 1) and WWR.

• Min. heating energy
demand

• Min. cooling energy
demand

• Min. lighting energy
demand

• Min. thermal discomfort
hours

• Aspect ratio
• GR, ORI, STR, TM, SHADE
• HVAC/energy system

(a) MOGA
(b) EnergyPlus
(c) MATLAB

Very limited
geometry-related design
variables. GA; hence, only
near-optimal solutions, ’ad
hoc’ randomly solution
generation. Conclusions
about building physics
performance are not new.
The method is not
user-friendly and requires
expertise in programming
and BEO. Definition of
generation and population
sizes are not justified.
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Table 1. Cont.

Ref. No. Year Topic and Achievements Objective Function Building Geometry Design
Variables

(a) Algorithm
(b) Simulation Engine
(c) Framework/Method

Limitations

[78] 2020

SO and MO environmental optimization of
apartment buildings (740 m2). Presented method
with LCEI example calculations. Approx. 4–6 story
compact, close-to-cube shape with somewhat larger S
facade, large WWR (approx. 60%) to the S and small
WWR to the N. In optimization of the trade-off
between embodied and operational impact, the
single objective optimization (SO) preferred compact
shape with fully glazed facades and the operational
impact optimization resulted in large southern
facade (max. solar gains) and extensive insulation
(loss reduction). In the case of the optimization of SO
+ MO: a nearly cubic shape with optimized WWR for
solar gains (double glazing) in the S facade and the
rest of the facades are optimized for low
transmission losses (triple glazing). 60–80%
environmental savings achieved in MO
environmental impact optimization. Similar results
are achieved with significantly diverse solutions.

• Min. LCEI (50 years, EN
15978)

• Min. operational and
• Min. embodied impact

based on non-renewable
cumulative energy
demand (CED).

• Aspect ratio
• GR, ORI, STR, TM, SHADE
• HVAC/energy system

(a) GA
(c) GH, Ladybug, Honeybee,

Octopus, Steady-state
model EN ISO 13790

GA; hence, only a range of
near-optimal solutions. GA
acts as a ’black box’; hence,
the designer cannot follow
what is exactly happening
in the calculations. Only
steady-state energy
calculations.

[79] 2021

MO optimization of a regular classroom space. ANN,
a popular type of surrogate models accelerates
regular simulation time by factor approx. 2570.
14.2–24.6% average performance improvement in the
3 objective function (integrated solution).

• Min. air-conditioning
• Min. lighting energy

consumption
• Min. hours of thermal

discomfort
• Max. average UDI

• Wall length/area
• Depth of space/building

wing
• Height/stacking
• GR, ORI, STR, TM, SHADE

(a) NSGA-II
(b) EnergyPlus, Radience
(c) GH, Python, Ladybug,

Colibri, Geatpy

Very limited
geometry-related design
variables. Randomly
generated design cases by
parametric tools for ANN
training dataset; hence, the
optimum may be missed.
Unclear distinctions in 3
different cases using
alternating geometry,
orientation, WWR, shading,
solar absorptance.
Conclusions about building
physics performance are not
new.
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Table 1. Cont.

Ref. No. Year Topic and Achievements Objective Function Building Geometry Design
Variables

(a) Algorithm
(b) Simulation Engine
(c) Framework/Method

Limitations

[80] 2021

Machine learning-based thermal optimization of
residential buildings (2000; 4000; 6000 m2). Latin
Hypercube sampling (LHS) generates building
configurations. Gradient boosting machine (GBM) is
trained by simulation-based dataset for target result
prediction. GA optimizes with the surrogate GBM
model. Optimal aspect ratio values were found in the
3 alternating locations (climates) and 3 different
building heights (5, 10 and 15) ranging 0.67–1.67.

• Min. heating load
• Min. cooling load under

investment cost
constraints.

• Aspect ratio
• Height/stacking
• GR, ORI, STR, TM, SHADE

(a) GA
(b) EnergyPlus, DEAP
(c) Gradient boosting

machine (GBM)

Very limited geometry
related design variables.
GA; hence, only
near-optimal solutions,
randomly generated.
Conclusions about building
physics performance are not
new. Definition of
generation and population
sizes are not justified.

[81] 2021

The position and the height of residential high-rise
buildings has a significant effect on internal and
external (urban spaces) visual and thermal comfort.
Top 10 optimized cases (urban configurations) were
selected.

• Max. DF
• Max. sky view ratio
• Max. window sunlight

hours
• Max. site sunlight hours
• Max. universal thermal

climate index

• Height/stacking
• Urban environment

(a) NSGA-II
(b) Radiance, Daysim
(c) Matlab, Grasshopper,

Ladybug

Limited geometry
optimization. Mainly visual
comfort optimization only.

[82] 2021

Geometry-related performance optimization using
an automatic recognition and conversion method
with a preference based optimization algorithm to
help the designers’ decision-making process. (1)
Preferences determination by the designer with
software assistance. (2) Preference based
optimization algorithm searches for optimum
solutions. (3) Designer selects the best solution.

• Customer,
designer-related
preferences

• Floor space
• Depth of space/building

wing

(a) 3D space recognition
algorithm

(b) Custom simulation
engine

(c) MOOSAS

Preliminary specific
preference model design is
required from the designer.
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Besides the main building envelope design variable (BEDV) features (e.g., structure
and material thermal properties, WWR, shading and orientation), aspect ratio, the ratio of
the two axes of a rectangular office building [67], appears as a form-related design variable
in the optimization procedure to minimize LCA and lifecycle environmental impact (LCEI).
The aspect ratio 1 was preferred for cost reduction, but a rectangular shape with a long
southern side performed better in energy efficiency. However, the considerations of BGDV
is limited to one value of the layout of a simple single-story cuboid block. In another limited
study, a single design variable was examined, and the results did not show any evidence
of a new methodology. A reduction in energy consumption by over 15% is possible in
many instances, compared to a building of a less efficient aspect ratio, such as 4.2:1 (x:y).
Philip McKeen and Alan S. Fung examined the energy consumption of varying aspect ratio
in multi-unit residential buildings in Canadian cities to identify energy-efficient designs
across Canada [83].

Another study of an oval-shaped office building [70] aimed to achieve minimum
construction costs and heating demand by manipulating the layout between circular and
oval shapes. Here, the heat losses and gains were only reduced by approximately 10%,
while the measure of shape modification takes place in a minimum range, making it
impractical even for early-stage design. In [66], collaboration between practicing designers
was integrated in the optimization of a simple office building with constraints of rectangular
shape, number of stories, and dimensions of layout (wall–floor ratio, depth of space), and
location of cores and atria to create large clear spans, minimize cost, and maximize daylight
and natural ventilation. Architects and structural engineers were consulted regarding the
objective functions; however, limitations of the variables and evaluations and the absence
of energy simulations require further development. According to Philipp Geyer [71], a
designer can interact with the automated optimization process of an industry hall by
breaking down the architectural design into different optimization models. Economic,
environmental, and user preference objectives were set by combining the load bearing
structure (a steel and wood framework) of a hall. The detailed load-bearing structure
optimization delivers innovative results, though the space geometry remains here almost
untouched. The authors of [68] propose hierarchical optimization of a small, simple cuboid
workshop and office building, seeking for optimum wall sizes, WWR, heating-cooling
setpoints, and mean air velocity to calculate optimum overall performance of thermal
comfort and energy load.

An optimization method is proposed in [67], with MOGA for the early design stage,
demonstrated through an example office of 1000 m2. LCEI could be reduced by 65%,
and the operation within LCEI decreased by 20%. Aspect ratio 1 was preferred for cost
reduction, but the rectangular shape with a long side to the south performed better in
energy efficiency. The trade-off between optimum aspect ratio for environment or for cost
efficiency aspects is defined; nevertheless, the paper dealt only with simple geometries
and variables and instead focused on presenting and proofing a mathematical method.
Active system variables are often manipulated together with the previously mentioned
main BEDV-s (e.g., WWR and window positions) and some typical BGDV-s; aspect ratio,
number of floors, roof slope, size and area of the space [61,64,73,75,76], or the length and
height of one wall of the simple box-shaped building or single-room [63,72,74,79]. These
variables are commonly used because they are easy to quantify for the algorithms.

Searching the set of design variables to minimize heating and cooling load, a study [75]
obtained design variables statistically in a polynomial equation form to determine of the
Pareto front. This method used a subset of all possible combinations of design variables
to calculate the full factorial design. The variables of windows and air leakage affected
energy load significantly, while aspect ratio turned out to be ineffective. Furthermore,
the HVAC system affected the passive design with very limited geometry related design
variables. The study did not deliver any new conclusions. Shape design variables and
envelope design variables (WWR, materials) are simultaneously examined; hence, the
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significance of geometry as a primary architectural-functional premise is overwritten by
design–technological premises and more expensive design steps.

Energy savings up to 50% are achieved in a multi-family house in [76], whereas the
objectives of thermal and visual comfort and energy consumption could be improved by
14.2–24.6% in [79]. By replacing the rectangular form by a rectangle and two trapezoids, an
optimum shape was developed in [63] for a residential building. An elongated rectangular
shape with E-W axis is recommended in tropical monsoon climates when natural ventilation
(NV) or air-conditioning (AC) is operated [74]. In sub-tropics, the square shape is preferable
when ventilated naturally. The width and height of the external walls of four building zones
orientated according to the cardinal points were manipulated along with different tilted
roof variations to develop an optimized trade-off between heating and lighting load in [65].
The best building geometries and WWR options for heating and the best solutions for
lighting demand are gained in a process, where no interdependencies and energy-related
logic can be detected in the random generation (genetic algorithm GA) of the form, since
the discussion of the study focusses mainly on the algorithm as a technique [84]. Novel
ideas relating to the building physics remain lacking.

Calculated by CFD, another project [69] optimizes the length, width, and height,
window, air in- and outlet dimensions, and positions of a box-shaped space to perform
as close as possible solutions to the specified air temperature and velocity goals. Using
a graphical user interface (GUI), the user is able to interact in the process and study the
thermal and fluid-flow performance of selected examples within the complete design space
and review trade-offs for different scenarios. The user chooses a point of interest, and
the algorithm looks for the optimum solutions around it. However, only a few small
geometry variations are considered, whereas factors regarding the shape of the space
remain practically untouched. An interactive optimization tool (AMCE) [62] is presented,
which takes into account building area, height, number of levels, roof form, and aspect ratio
for the sketch plan process including client, design team, and public authority interventions.
The study is limited to the introduction of the method and the software without examples
of application.

B. Kiss and Z. Szalay conducted single-objective optimization (SOO) in six LCA
environmental indices [78], operational and embodied impacts, as well as multi-objective
optimization (MOO) considering all LCA simultaneously or both operational and embodied
impacts together. The SOO resulted in a relatively compact shape with fully glazed facades;
the operational impact optimization resulted in a large southern facade (for improved
solar gain) and extensive insulation (to reduce energy transfer). By combining SOO and
MOO, a nearly cubic shape with a WWR southern facade optimized for solar gain (double
glazing) was reached with the rest of the facades aiming for low transmission losses (with
triple glazing). Thus, 60–80% environmental savings were achieved in the Pareto optimum
models in the environmental impact MOO. Nevertheless, spatial parameters are restricted
here to aspect ratio and number of floors, since more emphasis was put on the trade-off
between the LCA impact of variables related to embodied material and the operation of
HVAC systems. Using another approach [85], the building geometry and renewable energy
utilization are first optimized and adopted as the basis of the building model. In the second
stage, the trade-off between embodied and operational energy with alternative façades was
evaluated. In this way, optimal building designs can be ensured, which do not just rely on
operational energy.

Fabrizio Ascione et al. [77] propose a comprehensive optimization framework called
“Harlequin” by finding optimal aspect ratios among 1–8 in three climatic locations and
various building heights (5-, 10-, and 15-level). A compact aspect ratio of 1 was preferred.
In [50], the authors made an attempt to optimize the objectives of useful daylight illumi-
nance (UDI) and energy use intensity (EUI) in a rectangular building with a classic pitched
roof, giving a few recommendations about the application of BGDV-s, as building depth
(greatly influenced by the climate) and roof ridge location in three different climate zones.
Based on the results, the inductive building physics insights do not provide new relevance.
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Sadik Yigit established a gradient boosting machine learning (GBM)-based hybrid GA
optimization system that looked for optimal residential building block solutions with low
investment budgets and high energy efficiency by combining variables of floor numbers,
area, aspect ratio, orientation, and envelope thermal properties and WWR in the three
most crowded cities in Turkey [80]. Optimal aspect ratio values were found in the three
alternating locations (climates) and three various building heights (5, 10, and 15 stories)
ranging from 0.67–1.67, but the main focus is rather on the validation of the method rather
than on geometry related optimization. However, geometry-related design variables were
very limited and the conclusions about building physics performance are not new. A GA
ensured only near-optimal solutions due to randomly generated data, and the definition of
the population sizes are not justified.

Further research conducted geometry-related performance optimization using an au-
tomatic recognition and conversion method with a designer preference-based optimization
algorithm to help designers in the decision-making process [82]. The algorithm proposes
optimal building model versions to the designer, who should select the preferred one. The
algorithm requires a concrete, initial design case for further modifications, and in this way,
the results are limited to a specific case with only a few shapes.

In urban design, the position and the height of residential high rise buildings has a
significant effect on the internal (buildings) and external (urban spaces) comfort indices:
DF, sky view ratio, window sunlight hours, site sunlight hours, and universal thermal
climate index indicators were examined in a MOO study [81] by the modification of the
building blocks’ layout.

2.2. Building Geometry Variables to Elaborate the Level of Complexity

Additional emphasis on geometry modification is provided by further BECEDO
research activities (Table 2). A unique method is introduced in [38] to modify build-
ing shape by manipulating the corner points of the geometry in an ‘agent–child’ point
coordinate-system. With the objective function of minimizing energy flow on the sur-
faces, a cuboid building body was formed and optimized to a limited number of abstract
forms without windows or any additional building structures or systems. Reduction in
energy consumption was evaluated to find the optimal abstract geometries, while creating
impractical, formal results (with complicated surfaces) and neglecting that these forms
require higher construction and material expenses, combined with higher LCA impact.
A pentagon-shaped office layout was optimized to minimize LCC and LCEI by varying
WWR, structures’ materials, and shading as well as the dimensions of the layout and inter-
connecting angles [45]. Low LCC is performed by close to regular pentagon layout-forms,
and low LCEI is caused by wider south-facing shapes, which demonstrates that geom-
etry is integral to the relationship between balancing energy efficiency with investment
costs. However, the study primarily focuses on demonstrating the method with a simple
example. Shape grammar is used for the formal structure generation of patio houses in
the urban context [86] as well as for office building conversion into housing by deriving
layouts according to translated mathematical grammar-shape rules [87]. Although these
two previous studies offer the potential for energy optimization, they only address the
generation of layout designs.
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Table 2. BECEDO research using advanced building shape design variables.

Ref. No. Year Topic and Achievements Objective Function Building Geometry Design
Variables

(a) Algorithm
(b) Simulation Engine
(c) Framework/Method

Limitations

[38] 2009

Proposing an agent-based geometry generation
system based on hierarchical geometry relations.
Morphing geometries through agent and child
points as 3D corner points of geometries. A
cuboid reference building geometry (225 m2

redisential building) was modified to an optimal
shape with minimal heat loss. Unique geometry
generation approach (free forming) to handle
complete building geometries in free form. 12%
heat load by volume and 6% heat flow per
envelope area could be saved.

• Min. heat exchange
through the envelope

• Corner points of 3D
geometries

• Grid position of each room

(a) GA
(b) EnergyPlus,
(c) MATLAB, m-file

Simple example of a building with
limited geometry variables and
impractical and building envelope
surfaces, making construction
expensive.

[39] 2020

Multi-objective building shape and envelope
optimization of an apartment block (8000 m3,
4–8 levels; 2673 m2, 6 levels). Phase I: geometry
optimization of common linear (I), L- (L), court
(O), C- (C), T- (T), H- (H), cross (X), and Y-shaped
(Y) buildings (LOD 100) with WWR and ORI
options. O, T, H, X, and Y-shapes perform as
Pareto optimal solutions. Main reason for that is
the self-shading effect of these bodies and the
minimization of the SF. The optimal building
geometry as output from Phase I is input to
Phase II, applying passive and active strategies
(LOD 300) to further optimization.

• Min. heating demand
• Min. cooling demand
• Min. energy cost
• Min. investment cost
• Min. CO2 emissions

• Shape proportion (SP)
• Geometry generation with

energy evaluation
• GR, ORI, STR, TM,

SHADE

(a) Active-archive NSGA-II
(b) EnergyPlus
(c) Own developed

calculation platform

Definition of generation and
population sizes is not justified (only
according to the literature).
Geometry optimization of useful
floor space and volume, but missing
consideration of the different
envelope sizes of the diverse shapes
and their investment cost. Only
single-zone thermal simulation
models of multi-story blocks are
calculated. This simplification leads
to inaccurate or unrealistic results.
GA; hence, only near-optimal
solutions, randomly generated and
therefore hypothesized conclusions.
Conclusions about building physics
performance are not new.
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Table 2. Cont.

Ref. No. Year Topic and Achievements Objective Function Building Geometry Design
Variables

(a) Algorithm
(b) Simulation Engine
(c) Framework/Method

Limitations

[44] 2010

MO optimization of solar energy use (heating,
lighting) in an urban district with
18,000 evaluations. ’Terraces Flat Roofs’ (E-W
building axis), ’Slabs Sloped Roofs’ (N-S
building axis) and ’Terrace Courts’ (courtyards)
morphology versions were examined, and the
latter performed best in energy gains and losses
based on greatest collector surface while the
volume remain compact. Medieval settlement
morphology has more form-related (compact)
structure to minimize losses. Modern settlement
morphology requires new forms with less
density to utilize solar gain.

• Max. solar exposure
offset on envelope by
thermal losses in
heating season

• Max. solar exposure
offset on
envelope-by-envelope
heat losses and min.
volume.

• % of permitted urban
morphology volume

• ORI
• Height/Stacking
• Roof/Eave/Ridge

dimension, slope, location

(a) EA
(b) RADIANCE
(c) MOO, OSMOSE,

cumulative sky model,
Matlab

EA was used with Pareto
optimization to make up for the
missing convergence check. This
way, only a nearly optimal solution
is achievable.

[45] 2006

Pentagon-shaped office layout optimization. The
length-bearing method (polygon represented by
the bearing = angle between north and an edge,
ORI = 1st edge bearing) perform better than the
length–angle method (polygon represented by
length of the edges and the angle between two
adjacent edges, ORI = 1st edge angle to true
north) in the framework of MOGA. Low LCC is
performed by close to regular pentagons and low
LCEI is caused by larger (wider) south facing
facade-shapes.

• Min. LCC
• Min. LCEI

• Angle of horizontal wall
inclination

• Roof/Eave/Ridge
dimension, slope, location

• GR, ORI, STR

(a) MOGA
(b) RS Means, ATHENA

Demonstration of the method rather
than comprehensive geometry
generation and optimization. GA;
hence, only near-optimum search.
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Table 2. Cont.

Ref. No. Year Topic and Achievements Objective Function Building Geometry Design
Variables

(a) Algorithm
(b) Simulation Engine
(c) Framework/Method

Limitations

[49] 2019

Optimization of simple office building blocks’
geometry (energy demand) in an urban
environment coupled with renewable energy
potentials and concurrent decentralized
multi-energy systems (MES). Optimization of the
corner points horizontal and vertical positions.
In extreme carbon scenarios, the optimal forms
are regular, while in the in-between carbon
scenarios, the geometries become more irregular
(balancing solar and daylight harvesting with
available floor space and ORI). Consecutive
optimization: 1st geometry optimization, and
then energy system and solar potential
optimization. Nested optimization: geometry,
energy, and solar optimization takes place
simultaneously. The consecutive optimal shapes
have N-S ORI, while the nested ones have
isotropic bodies. Shape and energy systems are
mutually dependent and should be
simultaneously optimized.

• Min. investment cost
• Min. operational cost
• Min. operational carbon

emission

• Geometry generation with
energy evaluation

• Height/stacking
• Coordinates of the layout

corners

(b) EnergyPlus
(c) RBFOpt (Radial Basis

Function Optimization)

Black-box optimizer because
geometrical optimization problem is
difficult to solve in an analytical
form and simulation programs are
complex. Limited simplified
geometries. Since shape has a
decisive impact on energy demand,
system efficiencies and renewable
energy potential, as well as HVAC
systems may rapidly become
obselete compared to a building
geometry and structure, certain
preliminary choices on energy
systems should not influence
building densities, ORI and shapes
or should be carefully considered
with LCA in mind.

[88] 2010

Different letter-shaped, rectangle, and trapezoid
layouts are investigated in 2-story residential
homes. Rectangle and trapezoid shapes have
best performance. When only shape variable is
considered: S facing trapezoid in sunny heating
climates, and N facing trapezoid in cooling
climates are preferable due to solar gain through
windows. When geometry, WWR, and material
variables are considered in combination: little
difference occurs between the optimal shapes.
Lowering U-values decrease the impact of
geometry and WWR in colder climate zones, and
in warmer climates, overheating inverts this
tendency. Architects have great flexibility in
form design in cold climates. Results of building
shapes with max. LCC (max. surfaces, aspect
ratio) show large differentiations, indicating
building geometry’s decisive impact on energy
efficiency.

• Min. LCC

• Aspect ratio
• Depth of space/building

wing
• GR, ORI, STR, TM,

SHADE
• HVAC/energy system

(a) GA
(b) DOE-2
(c) MATLAB, Perl.

This study did not consider that
after optimization of the mass shape,
significant savings in further passive
and active improvements are
achievable: shape design
modifications have lower initial
costs compared to subsequent
investments into material and
HVAC systems (LCCA); hence,
building geometry is not
independent from energy design.
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Table 2. Cont.

Ref. No. Year Topic and Achievements Objective Function Building Geometry Design
Variables

(a) Algorithm
(b) Simulation Engine
(c) Framework/Method

Limitations

[89] 2011

Different letter-shaped, rectangle, and trapezoid
layouts are investigated in 2-storey residential
buildings. SO optimization of the HVAC systems,
simultaneous (full) optimization of building
envelope and HVAC system and in a sequential
manner (1st envelop then HVAC optimization).
According to different optimization domains
(envelope and HVAC) and constraints diverse
shapes perform better. In five US cities, the full
optimization rectangle shape (AR 1) performs
best, while in energy cost full optimization,
diverse forms deliver the best results.

• Min. LCC (30 years)
• Min. energy cost

• Aspect ratio Depth of
space/building wing

• GR, ORI, STR, TM,
SHADE

• HVAC/energy system

(a) Sequential search, PSO,
GA

(b) DOE-2

No interdependencies between
BGDV and optimization results
provided.

[90] 2013

Geometry optimization of a tunnel formed
greenhouse (1000 m3) and a 25,000 m2 spherical
city-hall inspired by the existing London
City-Hall (Arch.: Norman Foster): energy
savings roughly estimated. Axes ratio and arch
ratio of ellipsoid sphere geometry has greatest
effect on energy use, best axes ratio is 1.0–1.2
(almost rotationally symmetric cupola
geometries). Orientation does not significantly
influence the results.

• Max. energy efficiency

• Significant geometry
modification

• Ratio of sphere geometry
• Depth of space/building

wing
• Height/Stacking
• GR, ORI, STR, TM,

SHADE

(a) Parallel direct search
based on ES (GA)

(b) Autodesk Ecotect
(c) Modified differentiation

evolution method

Limited geometry related variables
and poor description of calculations,
modelling, and results.

[91] 2010

Hybrid evolutionary algorithm is applied with
constraint handling as a method for urban
building configuration optimization. Three
applications: cuboid buildings in an urban block;
complex extension building roof shapes adjacent
to an existing house; rectangular plan building’s
volume is parametrized by Fourier series.

• Max. solar energy use
• Height/stacking
• Roof geometry
• Volume

(a) CMA-ES (covariance
matrix adaptation
evolution strategy), HDE
(hybrid differential
evolution).

(b) RADIANCE

Interesting, diverse applications of
the method, but demonstrative
rather than systematic optimal
building generation procedure.
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Diversely shaped layouts are assessed in work [88] using trapezoid, rectangular, and
letter-shapes (T, L, U, +, H) of flat roofed detached houses in combination with several
thermal features of the building envelope, HVAC system variables, and operation setpoints
to compare energy and LCC performance. The form of the mass had a large impact on en-
ergy performance, while after the optimization of all variables, the effect of varying shapes
on the LCC was overwritten, allowing designers more freedom to select different forms.
Surprisingly, this study focused on the configuration of all design variants simultaneously
and did not take into consideration that, after previous optimization of the mass shape,
significant savings in subsequent passive and active improvements are achievable. This
consecutive optimization process (firstly, shape; secondly, the remaining passive variables;
and thirdly, the active measures) is proved to be effective in other literature [39].

Moncef Krarti et al. [89] incorporated the same building shapes in an envelope and
HVAC system optimization as in research [88]. SO optimization of the HVAC systems,
simultaneous (full) optimization of the building envelope and HVAC system and in a
sequential manner (1. envelop, 2. HVAC optimization) energy cost vs. LCC were carried
out. With numerous optimization domains, different shapes evolved as the best performing
versions. In five US cities, full optimization of the rectangle shape (AR 1) performs best, but
when prioritizing energy cost optimization, more diverse forms produce the best results.
Regrettably, the cause and effect interdependencies between shapes and results remained
unclear, and the focus is primarily on the objective functions and on the methodology.
Adriana Ciardiello et al. proposed eight shapes with four shape proportions each to reach
the optimal objective function of energy demand, energy and investment cost, and CO2
emissions using WWR variations [39]. The optimal case served as input for a second
optimization stage, using different envelope material thermal properties and brise soleil,
sun spaces, as well as courtyards/greenhouses. In the first phase, a six-story cross-shaped
building with 40% WWR to the south and 45% WWR for the west elevation was developed,
saving 60.6% total annual energy demand compared to a worst-case scenario. In the sec-
ond phase, the optimization of the envelope materials, sun spaces courtyard–greenhouse
morphology, and the active systems deliver lower improvements: the CO2 emissions and
energy cost was reduced by 23%, and primary energy usage was reduced by 9%. This also
reinforces that geometry contributes decisively to energy efficiency. The basic geometries
were selected due to simple observations of typical building shapes in Rome, and the
building physics analysis provides few new ideas. While the same useful floor space and
volume was considered, the dimensions of the envelopes of different shapes and their
corresponding investment cost was neglected. Only single-zone thermal simulation models
of multi-story blocks are calculated, which can lead to inaccurate or unrealistic results. Due
to the black box character of the genetic algorithm, there are multiple hypotheses possible
reasons for counterintuitive solutions. For instance, in the Mediterranean climate, high
solar reflectance (SR) values, and thin insulation layers are expected for envelope materi-
als; however, the algorithm choose low SR materials and thicker insulation to maximize
winter solar gain instead of summer overheating (cooling) strategies. This hypothesis is in
accordance with other literature [77].

Different variables for the width, height, and Bézier-curve of the roof gable of a
greenhouse are subject to parameter optimization with the objective functions of energy
consumption [90]. In the same study, a city hall’s ellipsoid shape was modified through
changes in the principal axes ratio of the ellipsoid, and a scaling factor was modified at
one-half of the base ellipsoid in each of the five levels of the building. The energy savings
were only roughly estimated. The axes ratio and arch ratio of the ellipsoid sphere geometry
had the greatest effect on energy use, and the best axes ratio is 1.0–1.2 (almost rotationally
symmetric cupola geometries). Orientation did not significantly influence the results.
This work shows the strong impact of formal design changes on the annual energy need;
however, the interdependencies were not described, making it difficult to see the processes
and relevance of calculations, optimization, or building physics.
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Besides building-related properties, urban design parameters such as block geometry
morphology, public spaces (sealed, water, or green areas), mixed use areas, etc. all have an
impact on energy efficiency [49]. In urban BECEDO, the focus is primarily on solar energy
efficiency of building surfaces [91] and the minimization of investment and operation costs
of the energy system and the operational carbon emissions [49] by modifying geometry and
setup of a block-arrangement in a city environment. Jérôme Henri Kämpf et al. [44] provides
three different urban shape morphologies to maximize irradiation offset by thermal losses
and to minimize built volume. The ’Terrace Courts’ (courtyards) morphology versions
performed best in energy gains and losses, due to greatest collector surfaces while the
volume remained compact. Without energy optimization, another process proposes shape
grammars to encode syntactic rules for morphology generation of a city quarter using GA
optimization in the solutions [92].

Further study [49] reports the optimization of the 3D corner point coordinates for four
simple office blocks in a city quarter. In extreme carbon scenarios, the geometries of the
optimal blocks are regular, while in the in-between carbon scenarios, the geometries become
more irregular (balancing solar and daylight harvesting with available floor space and
orientation). Using consecutive optimization, first geometry (energy demand) optimization
takes place, which is followed by the calculation of the energy system and solar potential
optimization. In a “nested” optimization: geometry (energy demand) optimization takes
place simultaneously with the energy system and solar potential optimization. The consec-
utive optimal geometries have N-S orientation, while the nested ones have more isotropic
bodies. Due to these conclusions, building geometry and energy systems are mutually
dependent and should be simultaneously optimized. Nevertheless, only basic block shapes
were investigated in a black-box optimizer; furthermore, it is stated that certain active
systems influence building shape, densities, and orientation. It is important to note here
that a building design that is based on a services system choice can lead to solutions which
may appear momentarily reasonable but can become obsolete due to the appearance of
newer technology. Hence, the impact of active systems on a building’s passive qualities
should be carefully considered. J. H. Kämpf in another study optimizes urban building
block configurations in three applications: cuboid buildings in an urban setting; complex
building shapes adjacent to an existing house and a rectangular plan building volume
(parametrized by Fourier series) [91]. The interesting and diverse applications are rather
demonstrative to show the methodology.

The automated generation of optimized multi-family house layouts for minimized
heating, cooling, and lighting costs and maximized living space [93] searches for the best
layout and dimensions of interrelated rectangular spaces. A 2D-layout topology is gener-
ated, but the energy considerations are more or less ignored. A newly proposed energy
efficient form-finder (EEF) optimization framework [40] generates 1998 optimal solutions
for a multi-story office building design to reduce heating–cooling demand and thermal
discomfort by generating different urban density ranges and the number of floors according
to cell (space units) arranging rules, the “building modular cells” (BMC) form finding script.
ORI and WWR were coupled with shape combinations. Solutions are recommended in
different urban density environments for shape, set-back on site, orientation, and court-
yard allocation. The results reveal that geometry significantly affects energy efficiency
(7.2–37.3 kWh/m2 a savings) and thermal discomfort reduction (12.2%). A layout opti-
mization of high-rise residential buildings was carried out to minimize air-conditioning
and lighting energy demand [41]. T- and I-shaped buildings were generated depending on
different orientation, site constraints, number and type of flats, arrangement of flats along
corridors, rotation angle of wings, and accessibility (fire exits). Here, 13–33% electricity sav-
ings were achieved due to geometry optimization of the flat and building wing (high-rise
layout and hence shape) configurations, orientation, and natural ventilation.
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3. Algorithms in BGDV including BECEDO

The type of problem and the mathematical description required fundamentally influ-
ence the performance of optimization algorithm(s). This has led to a large number of meth-
ods being developed over the last two decades in BECEDO projects. With whole-building
simulations, algorithms require significant processing resources (time and hardware). It
makes sense to simplify the problem of a large search space and to execute sensitivity and
uncertainty analysis first, and later switch to the optimization procedure [13].

Most of the applied algorithms in BECEDO can be put into three groups: evolutionary
algorithms (EA), derivate-free algorithms, and hybrid algorithms (which are a combination
of the first two) [9]. Evolutionary algorithms (EA) were present in more than 66% of
the evaluated literature and were dominated by genetic algorithms (GA) and hybrid
GA [8,12,18,27,29,31,36,38,40,46,66,89] (Figure 1). GA is mostly used for global searching
and is suitable to find the optimum of non-linear problems with discontinuities (discrete
values) [12] and many local minima. It requires significant sample data, which will be
rejected later, since they are not near-optimal or non-dominated solutions. Significant
simulation resources are required due to the high number of cases.
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Morris Global Sensitivity Analysis (GSA) Sequential Quadratic Programming (SQP) superEGO

Variational method Pareto optimal dynamic programming

Hybrid PSO + HJ SA

PSO Paralell direct search based on ES (GA)
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Design of Experiments (DOE) NSGA-2
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Hybrid ES + SHC ES

GA (MOGA, etc.)

Figure 1. Number of applied optimization algorithms in BECEDO studies in chronological sequence.

To solve this problem, often, simplifications (reduction in populations) are deployed
(with having the thread to lead to non-optimal solutions) or modifications in multimodal
functions, transformation of fitness function, effective selection mechanisms, ranking,
partitioned GA, and niching are used. The divided populations and runs are promising,
but there is a thread of too similar convergences, and the optimum may be missed. The
random character of the GA search process cannot guarantee finding the optimum solution
after a finite number of iterations [8]. Further, GA provides only a near-optimal solution,
and in many cases, it does not even reach near-optimum [94].

The random initial population and the stochastic operators cannot guarantee better
solutions than common design practice. While the local optimizer is generally efficient, it
is unable to manage discrete variables; hence, good custom solutions should be assumed
by experience-based design practitioners at the starting point, or a run of previous global
search is recommended [13]. Another limitation is that the final solution may still not be the
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optimum, since it is difficult to prove the optimality due to the integral properties of GAs.
The GA optimization approach acts like a black box, and the designers cannot monitor the
background processes [78].

Current trends shift from GA to non-dominant sorting genetic algorithms II (NSGA-
II) [6–9,11–13,23,31–33] or multi-objective genetic algorithms (MOGA and MOGA-II), be-
cause they are more suitable for MO search problems, typical in building design [8,9,11,95–98].
Ghada Elshafei et al. [84] looked for the optimal green arrangement’s models, procedures,
and parameters utilizing GA innovations. The GA-NSGA-II along with integrated GA was
also considered to be more accurate at predictions. Further approaches were incorporated
as well, e.g., neural network (NN), simulated annealing (SA), fuzzy set theory, decision-
making multicriteria, and multi-objective programming. The author states that the GA
combined schemes can fulfill all the requirements for finding optimality for multi-objective
problem-solving.

The rest of the non-genetic algorithms consists mostly of a low number of particle
swarm optimizations (PSO) [95] as part of the EA domain, and derivate-free, direct search al-
gorithms (e.g., hill climbing method, Hooke-Jeeves HJ) and hybrid combinations (Figure 1).
Direct search algorithms search the solution space using heuristic rules, needing continuous
objective function without derivate calculation. They are more robust against noisy func-
tions and can deliver good solutions in the case of small cost function discontinuities and
when small local optimum is handled. Hybrid algorithms can reach better optimization
performance compared to single algorithms, but the advantages depend strongly on the
combination of the algorithms, objective function, constraints, control parameters, etc. of
the particular problem [9,95], making it difficult to categorize them. The regular process
applies an EA as the global search algorithm to detect a nearly optimal solution; thereafter,
this serves as the initial point for a direct search local optimizer. The effectiveness of this
combination is high.

Regrettably, algorithms are mostly carried out without thoroughly considering their
effectivity and efficiency performance. Farshad Kheiri provided a comprehensive review
about the performance of diverse optimization algorithms in the building energy do-
main [12]. It is difficult to derive generic recommendations about the performance of each
optimization algorithm, since the performance of the algorithms differ from task to task,
depending on the characteristic of the problem. Modifying the number of variables or the
coarseness of the objective function, for instance, can cause outperforming of particular
methods with each other and vice versa. However, eight criteria were considered when
deploying an optimization method. Robustness in finding the optimum as in [95], and
additional robustness in the assessment; efficiency including computation time and memory;
accuracy; single or multi-variable containing low (one or a few variables) or high-dimensional
(high number of variables) tasks; single or multi-objective nature of a problem; local or global
optimization nature of problem; discrete or continuous variables as building parameters can be
both discrete (e.g., number of floors, walls, shadings, etc.) and continuous (e.g., geometry
metrics as length, area, volume, etc.). Continuous values can be derived by systemizing
according to concrete steps, for example, size. In the work of Binghui Si et al. [95], six
performance indices were defined through equations to benchmark MOGA-II, HJ and
MOPSO: stability (consistently finding the optimal solution in the same test repeatedly),
robustness (find the optimal solution even when control settings change), validity (finding
the true optimal solution within a limited amount of objective function evaluation), speed
(convergence rate to the optimal solution), coverage (ability to search in the entire feasible
solution space), locality (ability to fine-tune around the near optimum to reach true opti-
mum). In a DOE medium office building test window positions, orientation and thermal
properties of the opaque envelope were optimized, revealing that MOGA-II and MOPSO
were generally better performing despite the locality [95]. Attention and proper knowledge
are required to carefully choose the appropriate optimization method based on the nature
of the problem and the features of the method (pros and cons of performance indices) so as
to not search for a local rather than global optimum.
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The performance of the algorithms is also dependent on the simulation software.
The smoothness of the cost function in simulations enable the application of numerous
more efficient algorithms [13]. As in building performance simulation, the properties
and conditions are often non-linear and discontinuous [8], so the available algorithms are
not able to guarantee true optimum solutions, since most of them require cost function
smoothness. Therefore, the desired algorithms should not need to calculate derivatives
such as the probabilistic evolutionary and deterministic direct searches.

4. Discussion
4.1. Prevailing Trends in Building Shape Optimization

The present optimization studies that contain BGDVs represent an important first
step towards the introduction of the building shape as an optimizing factor. Many of the
investigations reinforce that geometry does contribute decisively to energy efficiency, and
therefore, geometry-related design changes have strong influence on the annual energy
demand.

Nevertheless, after analysis of the previously presented literature (Sections 2 and 3),
the current status quo reflects a series of shortcomings, regarding how the BGDVs are
considered in the optimization process. As the complete energy, comfort, and environmen-
tal criteria are still not integrated and analyzed in a comprehensive manner in BECEDO
models, there is a trend towards integrating all these fields into diverse engineering and
mathematical methods [32]. Since the calculation models and their interoperability are
complicated, BGDVs remain relatively oversimplified. Architectural design involves pa-
rameters that cannot be easily quantified; hence, it is an ill-defined problem [12]. To enable
algorithmic optimization of mass and form, all necessary variables should be described
mathematically, which is a challenging task: a rectangular cuboid body needs more than
10 variables and more complex shapes increase the amount of variables significantly [9].
This is reflected in the previous literature analysis: building form is more or less neglected,
i.e., only taken into account at rudimentary level.

The studies are commonly restricted a limited number of easy-to-calculate BGDVs
as simple sizes: wall dimensions, spaces or wing depth, roof sizes, height, floor stacking,
as well as ratios of geometry dimensions, e.g., aspect ratios, A/V ratio, or relative com-
pactness. All these variables describe the dimensional properties of the shape, but they
lack information about the concrete form of the geometry, i.e., the position of the surfaces,
corners, edges, or the location of the room units relative to each other and relative to a
reference space (e.g., coordinates). The typical chosen shapes are simplified rectangle and
cuboid geometries.

Mostly, the focus is on the demonstration and validation of the proposed technique,
methodology, algorithm, or software, as well as the tradeoff between diverse targeted
results. Characteristically, most of these papers demonstrate their proposed method and
apply it using a simple example. This is undoubtedly crucial; however, this means that
geometry remains in the background most investigations [51,95]. Additionally, the focus is
set on some certain BEDV and HVAC system parameters instead of addressing the whole
design process of a building, specifically the shape optimization. Therefore, the role of
BGDVs in BECEDOs fades into the background.

It is also common that only basic simplified shapes are calculated in oversimplified
simulation models, leading to possible inaccurate results. Another typical phenomenon
is the lack of information on the relationship between geometry properties of the tested
building designs and their building physics effects or how they influence the results. The
shapes are frequently gained by random changes and a combination of geometry-size
values by the GA. Due to the black box character of GA, counterintuitive solutions are
made by the algorithms, which are justified only by probable hypotheses. In addition,
due to intense building simplifications and the fact that the studies mainly focus on the
optimization technique, most of the results are already well known by an experienced
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building energy designer, making the conclusions of the building physics and building
design rather questionable.

Besides the above general trends, the reviewed research work that employs simple
geometry modeling (Section 2.1) has further specific characteristics. Most of the cases are
made using simple base shapes and/or small-scaled building examples. Different versions
of the building shapes are created by modifying the initial building model and manipulation
of the dimensional properties. However, the range of changes in the experiments are very
limited to minor numerical modifications without exploitation of the full parameters. The
concluded recommendations for BGDVs are mostly proposed dependent on various climate
zones, for instance, advantages and disadvantages of different depth, roof properties, and
aspect ratio in heating or cooling climates. Furthermore, the results are limited to a specific
initial framework of one or a limited number of input geometries.

Characteristically, the research results are still complicated and ambiguous for design
teams, which are usually led by architects and urban designers. Most of these studies
have developed analytical forecasting frameworks to predict and evaluate building perfor-
mances, which are not based on real constraints and not applicable in practice for designers.
The results of the optimizer algorithms are mathematically sound (e.g., Pareto frontier
methods, interrelationship-ratios, etc.); however, they are not easy to interpret into actual
building design tasks. Although easier for scientists, most of the mathematically sound
results are difficult or impossible to retrace and understand for design professionals, and
thus, results remain impractical for further design steps.

Choosing the appropriate objective function and design variable plays a key role
in optimization projects [13]. Regardless of the advancements of the optimization tech-
niques, the output and success of the overall optimization process strongly depends on the
designer/developer/researcher-defined input parameters, design variables, constraints,
objective functions, etc., as well as the designers expertise with fine-tuning the optimization
parameters [12]. However, the selection of options, constraints, and design variables in
literature—often with help of sensitivity and uncertainty analyses—shows a greater diver-
sity compared to real-world boundaries. Without neglecting the probability of exploring
new, innovative design supporting interdependencies, a great number of the solutions does
not seem to meet the needs of industry design practice appropriately. Numerous options
can be limited due to building codes, local site-specific boundaries, and the requirements
client. The available studies are mostly based only on literature sources, and they are not
able to propose comprehensive rules on the selection of design variables and objective
function.

The examined literature that applies advanced building shape modeling (Section 2.2)
represents a predictable development stage in BGDV-considerations, trying to reach the
objective functions using more elaborate and complex shape variations. However, some
investigations tend to create complicated, abstract shapes, and do not take into consider-
ation that these impractical forms require significantly higher construction and material
costs, combined with a higher LCA impact. Some effort is now being made to create rule
systems for code building geometry generation by arranging space unit cells or building
parts to assemble complete building shapes. This represents the most fundamental step in
the implementation of building geometry into BECEDO.

A prevalent tendency emphasizes that the building envelope and/or services systems
would ‘overwrite’ the importance of the shape regarding energy and comfort performance;
however, that is only true when the configuration of more passive and active design vari-
ables (shape, envelope, and HVAC system parameters) are simultaneously taken into
account during the optimization process. Thus, numerous studies address the mutual de-
pendency of shape and further building systems and simultaneous optimization. However,
this consideration fails to recognize that the mass shape is not only the most essential and
inherent outcome of the desired space organization, but it is also the first and inevitable
‘product’ during the early sketch plan stage for the creation of a building. If the energy and
comfort optimization of the building body already takes place during this initial phase,
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significantly less effort is required in subsequent design steps to improve further passive
and active variables. Initial shape optimization (geometry design modifications during
planning) requires considerably less expenses compared to later material and HVAC in-
vestments in construction and operation (LCCA); therefore, building geometry directly
influences energy design. As a first step, through optimization of the form, significant
energy and comfort improvements can be achieved, enabling significantly lower efforts on
subsequent development of the thermal properties of the envelope, HVAC and lighting
systems, automation of operations, etc. A shape with lower energy demand can allow
higher thermal transmittance envelope structures and less mechanical systems, for in-
stance. Therefore, the design and implementation of more expensive technological systems,
in terms of LCA and LCEI impact, should not overwrite the geometry, as the primary
architectural-functional premise. This consecutive optimization process is supported by
other literature [39].

The perception that certain active systems influence the effect of, for example, building
shape, densities, and orientation is only true if it is considered together with the following
observation. A building shape and passive design that relies heavily on engineering service
systems can lead to solutions, which may appear reasonable at the time but can easily
become obsolete with the emergence of new technology. Regarding the building life cycle
(approximately 100 years) versus a HVAC system (depending on the system approximately
15–25 years) the active systems impact on a buildings passive measures should be carefully
considered and evaluated for optimal design decisions.

It is also important to note that the translation of a real-world architectural design
problem into a mathematical domain comes with several limitations and the application of
commonly used optimization algorithms in building design problems can only provide
advanced combined solutions but will be unable to guarantee the optimal solution. The
stochastic behavior of the most frequently applied evolutionary technique in BECEDO, the
plethora of the configurations, and the numerous building related design problems make it
difficult to draw definite conclusions about the performance of these algorithms [12,13].

No standards exist to prove of reliability or robustness of the optimization results. For
instance, a brute force exhaustive search is applied to check the validity of the optimum
solutions (Genopt [99]) or detailed EnergyPlus model comparison to surrogate models [100].
The application of BECEDO in real-world design tasks is still at an early stage [8].

4.2. Frequently Applied BGDVs in BECEDO

Figure 2 categorizes studies from 1987 to 2021 into research utilizing different BGDVs.
Overall, 30 BGDVs could be diversified (orange and red colored), and two further classes
are assessed additionally, representing BEDVs (light grey colored) and ADVs (dark grey
colored) as well. All variables are simple sizes and dimension properties, together with
some basic ratio values. The red bar, showing the most frequently used BGDVs (which
are applied more than 5 times), mainly in the last two decades, incorporate aspect ratios,
height/stacking, depth of space or wing, wall and floor sizes, and roof parameters. Among
the applied BGDVs, this group of six variables are most capable of describing the build-
ing shape effectively—an obvious reason for their popularity in the investigations. The
variables of shape factor and relative compactness describe the energy performance (heat
loss) of the geometries. The remaining 22 BGDVs are strongly related parameters to the
specific research they belong to or support a few first urban scale BECEDO experiments
(e.g., perimeter to urban area ratio, spacing between blocks, building height to street ratio).
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The BGDVs are combined with BEDVs in almost all publications, thus the high number
of BEDV applications.

The most frequent used BGDVs (red bar in Figure 2) together with the energy efficiency
related BGDVs (shape factor and relative compactness) are assessed in chronological order
in Figure 3 and Table 3 to display trends in the application frequency of the shape variables
in BECEDO-s. From 2020, the number of BGDV applications is growing again (first peak
application in 2002), with the characteristic use of roof dimensions, height/stacking, depth
of space, façade sizes, and aspect ratio variables in the investigations. From the beginning of
the last decade, an increasing trend utilizes these BGDVs. The assessed BGDV distribution
clearly shows that the variables only give information about the dimensions of the shapes,
and there is a lack of variables, which would be able to describe a specific building form
in terms of exact location or coordinates of spaces and building parts, corners, and edges,
respectively.



Buildings 2022, 12, 69 29 of 42

Table 3. Research focusing on frequent and significant energy performance related BGDVs in chronological order.

Shape Significantly
Describing BGDVs 1987 1990 2001 2002 2003 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Floor space [61] [57] [58] [66] [75] [60] [41] [82]

Aspect ratio [61] [62] [67] [88] [89] [73] [74] [46,75] [60] [77] [78] [80]

Shape factor [6] [42] [48] [76] [55]

Relative compactnes [43] [7] [55]

Wall length/area [57] [58,63,
64] [65] [68,69] [7,72] [54] [74] [60] [41] [79]

Depth of space/building wing [57] [58,63,
64]

[42,65,
66] [69] [7] [88] [54,90] [74] [60] [41,50] [79,82]

Height/Stacking [61] [63] [66] [69] [70] [44,91] [90] [46] [53] [60] [56] [40,41,
49]

[37,79–
81]

Roof slope/Eave/Ridge
location [62] [64] [65] [45] [44,91] [73] [46] [50]
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4.3. Principles of Building Geometry Modeling in BECEDO Processes

After evaluation of the BECEDO literature (Section 2), flow charts were created to
visualize the different shape modeling methodologies used. Upon final analysis, all ap-
plied and/or developed geometry modeling techniques could be according to two main
modelling principles: shape modification and the shape generation. Figures 4 and 5 display
schematics showing the generic modeling techniques. Most of the studies employ shape mod-
ification, using BGDVs at a basic level of complexity [1,7,37–39,44,49,50,61–65,67,68,70,72–
82,88,90,91]. The remaining investigations introduce shape generation, using BGDVs at an
advanced level of complexity [40,41,93].
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Shape modification can be characteristically broken down according to methodology
used (Figure 4): Depending on the particular design task, one or more initial building
designs is proposed by the planner. Spaces are elaborated by selecting a limited number
of mostly oversimplified, basic BGDVs, which are easy to assess and apply in simplified
building shapes (e.g., aspect ratio), complicated algorithms, and calculation models. These
shapes are predefined, based on statistics, codes, standards, and guidelines, as well as
own concepts, rules of thumb, or passive design principles. They are often common
shapes, but sometimes, unusual geometries are deployed as well to widen the sample
range. Depending on the type of research, these BGDVs are combined with BEDV, passive
and active design variables (PDV, ADV), as well as with urban design variables (UDV), and
in this way, input data are produced allowing the modification of these parameters. After
modification, the changed variables enable different examples with new shape versions
(and further passive and HVAC system combinations). Next, building physics and LCA
performance values are assessed via thermal, daylight, and in some cases, CFD simulation
engines or surrogate prediction models (e.g., ANN, regression models, etc.). The calculation
results serve as input for the evaluation (by the computer) whether the predefined objective
functions are approximated or met. If yes, the optimal design is created; if not (i.e., the
result values still do not reach the optimum target sufficiently), an optimization engine
(algorithm) is responsible for modifying and combining variables for new design variants
until the objective functions are met. Additionally, sensitivity analyses are carried out at
a different level of resolution, partly to support the optimization engine (give feedback
about the design variables’ impact on the objective function) and partly to gain insights
and conclusions for design guides/recommendations.

Shape generation is similarly based on a relatively common methodology, as demon-
strated in Figure 5’s flowchart. In principle, a constraint or rule system is achieved first to
combine and arrange diverse space units, rooms, apartments, or wings of a building (or
urban design) and, as a result, to generate a diversity of building shapes. Thereafter, the
building geometries will be combined with PDVs, ADVs, and in some cases, with UDVs,
creating complete building cases for the subsequent building physics and environmental
calculations (simulation engines, meta-models, surrogate predictions). From this stage on,
the steps are basically identical with the geometry modifying method (Figure 4).
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4.4. Categorization of Building Geometry Modeling in BECEDO

From 2000 onwards, there has been a gradual tendency of BGDV including BECEDO
investigations where building shapes are linked to the energy, comfort, and environmental
performance feedback during the optimization process (Figure 6). Overall, 90.6% of the
BECEDO studies belong to the shape modification modeling category, deploying simple
levels of BGDV-complexity (yellow bar) advanced level of BGDV optimization (light brown
red bar) by modification. Within the shape modification category, most research (72.4%)
considers geometry at a on basic level of complexity with a limited number of variables
with simple geometries, etc. (see Section 4.1). These studies are 65.6% of the total studies,
and they modify one or more (i.e., a limited number) of the base building geometries in
order to handle ‘building shaping’. New shape variants are generated by the modification
of some numerical parameters of the already existing geometry properties of the reference
model(s) as dimensions and ratios for instance and further passive (e.g., BEDV) and active
(e.g., HVAC) system parameters.
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Figure 6. Studies with geometry modification and geometry generation with and without energy
evaluation and optimization in chronological order.

Within the shape modification category, 27.6% of the studies address geometry consid-
erations on a detailed level. This modeling category is 25% of the total shape optimization
including BECEDO studies.

Overall, 9.4% of all screened BGDV including BECEDO studies represent the modeling
category of shape generation, expanding to complete, more or less comprehensive geometry
creation during the optimization process. These allow the initial efforts to generate a series
of new geometries; then, after calculating the performances re-generation of the shapes
and/or modification of the shape properties (and other passive and active systems), it is
possible to find the optimum solution. This latter group (a total of three studies) represent
the most developed BGDV based optimization. Figure 6 and Table 4 clearly show the lack
of research, which implements architectural space organization and shape into BECEDO.

After evaluation of the literature, a series of building geometry modeling categories
can be defined, providing various approaches for how geometry is treated and the level of
complexity. The following geometry modeling categories propose diverse building space
organization and shape defining solutions. Besides modeling techniques in BECEDO work
(see also Section 4.3), further modeling categories were established, which do not include
optimization; nevertheless, they represent important development stages in the evolution
of BGDVs in research related to sustainability.
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Table 4. Research focusing on studies with geometry modification and geometry generation with and without energy evaluation and optimization in chronological
order.

1987 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Geometry generation + energy
evaluation + optimization [93] [40,41]

Geometry modification (advanced) +
energy evaluation + optimization [1] [38] [44,88,91] [90] [49] [39]

Geometry modification (basic) +
energy evaluation + optimization [61] [62] [63,64] [65] [67,68] [70] [7] [73] [74] [75,76] [50,77] [78] [37,79–82]
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Shape generation without energy evaluation and optimization.

• An agent-based topology finding system creates layouts as a topology finding process,
generating sphere and capsule bubble agents. Interaction rules as attraction, repulsion,
swap, and compression help to generate multi-agent systems as layout schemes.
The developed software allows connected rooms (agents) to be dragged closer and
unconnected rooms push each other away if close enough. A 3D grid-system based on
rectangular cells converts the multi-agent layout into a space model [60].

Shape modification with energy evaluation.

• Changing of diverse BGDVs.
• Modification of geometry and setup arrangement for urban blocks. Four- and eight-

story simple prismatic building block morphology versions [63].

Shape generation with energy evaluation.

• Shape grammar (converted into a parametric system). Variants programming: trans-
lating shape transformations (scale, reflection, translation, rotation) into equations and
variables. Every room is modeled as a block with changeable aspects ratio, length,
width, shape, size, and location. Automated energy evaluation of created forms [54].

• Generation of a large number of building geometry alternatives using “Evolutionary
Program for Space Allocation Program” (EPSAP), including GA. A floor plan repre-
sentation scheme, including total area for each story, construction area, circulation
space area, and openings is randomly generated, and then the energy performance is
calculated [55].

• “Building Modular Cells” (BMC) geometry generation technique is introduced to
generate urban morphology based on a grid raster with various urban density build-
ing categories, building height classes, and urban patterns (street area between the
building blocks) and a form generating algorithm, including architecturally eligible
form selection. Space-units (modular cells) are arranged due to the form generation
rules [56].

Geometry modification with energy evaluation and optimization—simple complexity.

• Changing of diverse BGDVs.

Geometry modification with energy evaluation and optimization—elaborate complexity.

• Changing of diverse BGDV-s
• Automated generation of 2D-layout and topology. Finding the best location and size

of interrelated rectangular spaces. (1) Swapping the positions of two space units,
(2) reallocation of positions, and (3) reducing the size of a space unit. Constraining
overlapping, regulating connections of spaces, paths and access ways and the building
envelope [93].

• Settlement scaled building block morphology optimization for solar energy use (heat-
ing, lighting). Diversely oriented building rows and courtyard block arrangements
tested [44].

• A hybrid evolutionary algorithm is applied with constraint handling as an optimiza-
tion method for urban building configurations. Urban block grid density (no. of
blocks) and height optimization. Complex extension building and roof shapes adja-
cent to an existing house); rectangular, planned building’s volume, parametrized by
Fourier series [91].

• Optimization of the geometry of simple office building blocks (energy demand) in a
city quarter. Optimization of the horizontal and vertical positions of corner points [49].

• Geometry optimization of common linear (I), L- (L), court (O), C- (C), T- (T), H-
(H), cross (X), and Y-shaped (Y) buildings (LOD 100). Multiple geometries with
shape proportion (depth of the space/wings) modification as a ’gene’ under the same
volume [39].
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Geometry generation with energy evaluation and optimization.

• “Building modular cells” (BMC), custom developed geometry generation technique
based on a 4 × 4 grid raster to search for optimum solutions in five high-rise of-
fice buildings in five urban density (UD) areas. Space-units arranged according to
combination rules [40].

• GA generates layouts in two phases: combination of different wings (rotation angle)
to form the shape and arrangements of flats into the wings [41].

The diversity found in these modeling techniques demonstrates that the treatment
of building geometry in scholarly work is still in its beginning stages, with the various
modeling techniques resulting in different prototypes, making it difficult to see any trends
in the methodology. Unfortunately, the most promising studies, which use BGDVs, which
facilitate automated energy and comfort simulations and evaluate results, do not carry out
optimization. Within BECEDO research, the last two examples of geometry generation
with energy evaluation and optimization are the most advanced examples. These studies
rely on arranging space units into complete buildings, which feedback from BECEDO that
directs the space generation process.

4.5. Optimization Result Improvements in BGDVs Containing BECEDO

Figure 7 shows the percentage of improvements in the reviewed work according to
the different objective functions. It is worth mentioning that not only BECEDO but also
BECED studies were evaluated, since they provide valuable insight into geometry related
environmental savings. Unfortunately, the number of BECEDO works, which provide well
defined improvements in the results is very low. Among 45 evaluated BECED and BECEDO
studies, only 17 papers contained content related to quantified effects (improvements)
related to the initial case. Most studies assess energy-related improvements, while comfort
and environmental progressions are less frequently quantified as a metric of a research’s
success. The major part of the BECEDO efforts deal with the impact of design variables on
the objective function as a kind of SA or only indicate a general, approximate effect or trend
of their optimization or SA framework. The highest energy related improvement (over 60%)
is achieved by the optimization of the building geometry (shape proportion) in combination
with BEDV (WWR, ORI). A high degree of improvement (80%) in environmental savings
was also possible including non-renewable cumulative energy demand due to aspect
ratio, BEDV, and active system optimization. Comfort as a targeted optimization objective
is hardly touched, and further research is necessary. The improvements in the three
objective functions are, in all the studies, a result of simultaneous optimization changes
in the geometry as well as additional passive and active systems; therefore, it is not
possible to evaluate the exact effect of geometry optimization (or other design variables).
Instead, Figure 7 gives information about the status of development improvements, where
BGDVs contributed to the optimization procedure. The energy and environment related
improvement values are significant in more than 50% of the assessed studies, making
BGDV a promising contributor in BECEDO.

The available studies carried out investigations in multiple locations, covering a wide
range of different climate conditions. Though building shape performs differently in
different climate zones [83], it has significant effect on the BECE performance for all climate
territories, from cold to warm climates. Since geometry generally plays a key role in all
climatic circumstances, the current review did not separately assess the criteria of climate
but focused more on the role of geometry and its variables in the optimization process.

It is important to mention that validation of the calculated results against mea-
surements, reference data, literature, etc. is only found in four of the studies evalu-
ated [6,40,56,76].
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Figure 7. Improvements (%) in energy, comfort, and environmental performance, due to BGDV,
BEDV and HVAC system variations in the reviewed studies.

5. Conclusions

The investigated literature reveals that in the BECEDO process the space organization
and forming of masses is still in its infancy. On one hand, a limited number of stud-
ies explore approaches in building geometry generation without any calculating ‘green
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performance’ goals. On the other hand, the most advanced research using BGDV that
facilitates automated energy, comfort, and environment assessment does not integrate
any optimization. Among previous BECEDO work that includes BGVD optimization,
approximately two-thirds of the studies employ simple shapes with a limited number of
shape variables, while the remaining literature considers more sophisticated methods to
modify or create building geometries during the optimization process. Efforts concentrate
mostly on the performance of algorithms and methods while missing the utilization of one
of the most effective architectural design factors, the space organization-based building
geometry shaping to reduce energy consumption.

The BGDV’s effect on energy performance is highlighted in particular review, ensuring
considerable energy conservation (up to approximately 60% in combination with WWR
and ORI) and further LCA savings (up to approximately 80% in combination with build-
ing envelope and active system optimization). However, in most cases, shape variables
are combined with BEDVs and HVAC system variables; hence, the direct improvement
potential of BGDV optimization is often difficult to determine.

In summary, a comprehensive, back and forth loop containing optimization framework
that considers all the influencing parameters, objectives, and constraints in the form-finding
procedure is still missing in the available literature. The outcomes of these optimization
frameworks are mostly limited non-geometrical variables, complex multi-facades, oversim-
plified or non-constructible shapes, or confined to only a few cases and/or small buildings,
which cannot effectively handle the form-finding process for designers. Due to very limited
results in the BECEDO literature in terms of the variety and complexity of BGDVs, a robust
quantification of these parameters needs further investigations.

It is predictable that the building geometry creation efforts of the first few studies
represent a promising potential for future research. Developing strict and appropriate rules
allows more comprehensive modelling of only the relevant cases, and therefore, the total
search space can be ‘scanned’, increasing the probability of finding an optimal solution.
This is important for the selected optimization method as well, since the enumerative,
exhaustive brute force technique, which is the most widespread GA technology, handles all
possible random points in a search space and only delivers near optimal results. Another
important issue is that experienced architects, engineers, and designers who work in the
building industry are currently able to deliver reasonable solutions to meet different design
requirements without the need to turn to optimization tools. The knowledge of these
experts has great potential in future building optimization, for instance, in defining rules to
limit the search space requirements or when selecting the appropriate boundary conditions,
objectives, constraints, variables, etc.

Further research is needed in the appropriate quantification of the BGDVs impact on
the BECE-performance of the optimized buildings, urban districts. Additionally, future
effort can invent new trend in the comprehensive and systematic generation of complete
building geometry systems with involved space organization. A key feature here is the
development of shape describing BGDVs, which not only determine the physical properties
(mainly sizes, ratios) of the building geometry, but also provide information about the
shape of the geometry in form of location parameters of the space units or coordinates of
various parts of the geometry (corners, edges, etc.). This would create a link between the
building shape and its geometry describing mathematical design variables to replicate the
complete form of the shape with the use of BGDVs.

It is important to note that any architectural, building-related research should consider
that quantifying functions or the design process would take architecture to the level of an
engineering science, but architecture is more than that. The comprehensive integration
of building geometry into BECEDO research offers a key step in introducing the creative,
intuitive part of design into scholarly work.
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Nomenclature

AC Air-Conditioning
ACH Air Change
ADV Active Design Variable
AEC Architecture, Engineering and Construction
ANN Artificial Neural Network
ANOVA Analysis of Variance
AR Aspect Ratio
BECED Building Energy, Comfort and Environmeltal Design
BECEDO Building Energy, Comfort and Environmeltal Design Optimization
BEDV Building Envelope Design Variable
BEO Buiding Energy Optimization
BGDV Building Geomtery Design Variables
BIPV Building Integrated Photovoltaic
BMC Building Modular Cell
BOP Building Optimization Problem
CFD Computational Fluid Dynamics
CMA-ES Covariance Matrix Adaptation Evolution Strategy
DAE Differential-Algebraic Equation
DF Daylight Factor
DHW Domestic Hot Water
DOE Design Of Experiments
EA Evolutionary Algorithm
EEF Efficient Form-finder
EPSAP Evolutionary Program for Space Allocation Program
ES Evolution Strategy
EUI Energy Use Intensity
GA Genetic Algorithm
GBM Gradient Boosting Machine learning
GH GrassHopper
GR Glazing Ratio (e.g., wall-window ratio)
GSA Global Sensitivity Analysis
GUI Graphic User Interface
HDE Hybrid Differential Evolution
HJ Hooke-Jeeves
HVAC Heating, Ventillation, and Air Conditioning
LCC Life Cycle Cost
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LCCA Life Cycle Cost Assessment
LCEI Life Cycle Energy Impact
MDO Multidisciplinary Design Optimization
MO Multi-Objective
MOGA Multi-Objective Genetic Algorithm
MOO Multi-Objective Optimization
N, NE, E, SE,
E, SW, W, NW

North, North-East, East, South-East South, South-West, West, North-West

NSGA Non-dominated Sorting Genetic Algorithm
NV Natural Ventilation
ORI ORIentation
PDV Passive Design Variable
PEC Primary Energy Consumption
PSO Particle Swarm Optimization
RC Relative Compactness
SA Simulated Annealing
sDA spacial Daylight Autonomy
SF Shape Factor
SHADE shading
SHC Stochastic Hill Climbing
SHGC Solar Heat Gain Coefficient
SO Single-Objective
STR Structures, materials
TDT Thermal Discomfort Time
TM Thernal Mass
UDI Useful Daylight Illuminance
UDV Urban Design Varible
WWR Window to Wall Ratio
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