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Abstract: In this paper, uniaxial compressive strength (UCS) test and three-point bending (TPB)
test, together with an acoustic emission (AE) system, were performed to investigate the mechanical
properties and AE characteristic changes of concrete with different graphite powder (GP) content. The
results show that: (1) Poor adhesion and low interlocking of graphite with cement stone increase the
initial defects of concrete, reducing its elastic modulus and the cyclo-hoop effect, and thus weakening
the compressive strength. (2) For concrete with a low graphite content, the second sharp rise in
ringing counts or energy released during the compressive process can be regarded as a failure alarm.
However, as GP content increases, the second sharp rise fades away, while the first sharp rise becomes
more visible. At high GP content, the first sharp rise is better for predicting failure. (3) The initial
defects caused by GP significantly lower the initial fracture toughness, but its bridging effect greatly
increases the critical crack mouth opening displacement and thus significantly enhances the unstable
fracture toughness of concrete, by up to 9.9% at 9% GP content. (4) In contrast to compressive process,
the sharp increase in AE signals preceding failure during the fracture process cannot be used to
predict failure because it occurs too close to the ultimate load. However, as GP can significantly
increase the AE signals and damage value in the stable period, such failure precursor information
can provide a safety warning for damage development.

Keywords: graphite concrete; mechanical properties; acoustic emission; failure prediction

1. Introduction

Electrically conductive concrete (ECC) is a specialized category of concrete made
by adding electrically conductive components into conventional concrete. After adding
conductive components, the electrical conductivity of concrete can be increased to the
necessary level for various applications, such as melting snow [1], cathodic protection [2],
grounding electrodes [3], and electromagnetic interference shielding [4]. Moreover, owing
to the mechano-electric effect of ECC, it can be used in traffic monitoring [5] and health
monitoring for large structures [6]. When used in monitoring, the volume of ECC must
be large enough to provide adequate coverage; thus, it should be regarded as an essential
component of the bearing structure. Sometimes, a local failure may not lead to a significant
change in electrical characteristics of ECC, but will cause the collapse of the entire structure.
Thus, additional means, such as acoustic emission (AE), should be used to monitor potential
local damage.

Acoustic emissions are the elastic waves generated by microstructural damage within
a material. AE-based techniques utilize AE sensors to detect the released energy of local
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deformation and micro-crack development, and reflect the degree of damage to the ma-
terial [7]. By analyzing AE signals, the failure process of concrete can be quantified, thus
effectively describing the damage mechanism [8]. In recent years, based on time-domain
features and spectral characteristics [9], after studying the relationship between stress
release during failure stage and precursor information by AE parameters, Xiao et al. [10]
proposed a prediction method for the dynamic failure of rock. Lai et al. [11] found that a
low-frequency energy percentage above a certain threshold can be regarded as the dam-
age critical point, and that it can be used as the failure precursor criterion for stability
monitoring and early warning of concretes.

Generally, conductive fillers used in ECC include graphite powder, coke breeze, steel
shavings, and steel or carbon fibers. Graphite powder is one of the most commonly
used conductive fillers for ECC due to its low cost, excellent conductivity, and chemical
stability. However, due to its high specific surface area, flake shape, and poor adhesion with
cement stone, the mechanical properties and failure pattern of concrete are significantly
changed. Topolář et al. [12] compared the effect of carbon black and graphite powder on
the acoustic emission parameters during three-point bending tests, and it was found that
an acoustic emission method was able to detect failure at a very early stage, long before a
structure completely fails, and that the acoustic emission characteristics of concrete vary
with graphite powder dosage. However, there is a lack of extended research into the early
warning time and the trends in damage development at various filler dosages.

When used as conductive filler, graphite powder can be either used alone or in
combination with other conductive fillers. Because of the percolation threshold effect, when
graphite powder is used alone, a larger dosage is required to confer good conductivity to
the concrete. When graphite powder is combined with carbon fibers to form conductive
frameworks, the amount of graphite required is relatively low. Using these two dosages
of graphite powder as research objects, this paper aims to reveal the influence of graphite
powder on the mechanical and AE characteristics of concrete from the compression test
and three-point bending test, along with the AE test, to guide improvements in the ability
of AE detection systems to predict the failure of graphite concrete. The research results will
support the use of graphite powder in conductive concrete in important structures such as
dams and nuclear facilities.

2. Experimental Details
2.1. Materials

The cement used for testing was ordinary Portland cement P.O 42.5 produced by
Beijing JinYu Group Co., Ltd. The chemical components and physical properties are shown
in Tables 1 and 2. Natural flake graphite powder (grade 5000 mesh) purchased from Yanhai
Carbon Materials Co., Ltd. (Qingdao, China) was adopted, and its micromorphology is
shown in Figure 1.

Table 1. Cement chemical components/%.

CaO SiO2 Al2O3 MgO Fe2O3 SO3 Na2O K2O Loss

58.51 21.05 7.90 3.78 2.97 2.73 0.44 0.85 1.77

Table 2. Main physical properties of cement.

Density
(g/cm3)

Specific Surface Area
(m2/kg)

Setting Time
(min)

Flexural Strength
(MPa)

Compressive Strength
(MPa)

Initial Final 3 d 28 d 3 d 28 d

2.94 315 160 245 5.2 9.0 25.4 50.2
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ylic acid superplasticizer with a water reducing ratio of 30% was added to provide proper 
fluidity. Fine aggregates of river sand, with a fineness modulus of 2.8, and coarse aggre-
gates of crushed stone, with a grain size of 5-25 mm, were used. The strength grade of C1 
and B1 was C30. Previous studies have shown that while ensuring the mechanical and 
electrical properties of graphite concrete, the content of graphite should be less than 10% 
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universal testing machine, manufactured by Sansi Zongheng Machinery Manufacturing 
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Figure 1. SEM microtopography of graphite powder.

Two sizes of specimen were prepared, one was a cubic sample (100 × 100 × 100 mm3),
the other was a concrete beam (400 × 100 × 100 mm3) with a precast notch of 2 mm width
and 40 mm height in the middle of the sample (Figure 2). The mix proportions of the
concrete are shown in Table 3.
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Figure 2. Schematic diagram of the concrete beam with precast notch.

Table 3. Mix proportion of the concrete/kg/m3.

No.
Specimen

Shape Cement
Coarse

Aggregate

Fine Aggregate
WaterRiver

Sand
Graphite
Powder

C1
Cube

433 1127 708 0 185
C2 433 1127 686.76 21.24 185
C3 433 1127 644.28 63.27 185

B1
Beam

433 1127 708 0 185
B2 433 1127 686.76 21.24 185
B3 433 1127 644.28 63.27 185

As graphite powder can result in the poor workability of fresh concrete, polycarboxylic
acid superplasticizer with a water reducing ratio of 30% was added to provide proper
fluidity. Fine aggregates of river sand, with a fineness modulus of 2.8, and coarse aggregates
of crushed stone, with a grain size of 5–25 mm, were used. The strength grade of C1 and B1
was C30. Previous studies have shown that while ensuring the mechanical and electrical
properties of graphite concrete, the content of graphite should be less than 10% [13,14].
Therefore, in this study, the graphite powder content used was 3% and 9% respectively.
Graphite powder was regarded as part of the fine aggregate.

2.2. Test Procedure

The cube-shaped and beam-shaped concrete specimens were cured at a temperature
of about 20 ± 2 ◦C and >95% relative humidity for 28 days. The uniaxial compression tests
of cube-shaped specimens, conducted in accordance with Chinese standard GB/T 50081-
2019, were carried out on a WAW-1000 microcomputer-controlled electro-hydraulic servo
universal testing machine, manufactured by Sansi Zongheng Machinery Manufacturing
Co., Ltd., Shanghai, China, using a stress-controlled constant loading rate method with a
loading rate of 0.05 MPa/s [15], as shown in Figure 3. For each cube-shaped group, three
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cubic specimens were used and the mean value was reported as the compressive strength
result. The three-point bending tests of beam-shaped specimens, conducted in accordance
with DL/T 5332-2005, were performed under a constant loading rate of 10 N/s before
the ultimate load of 40%, and then loaded to failure at 3 N/s. The crack mouth opening
displacement (CMOD) corresponding to the applied load was measured by YYU-10/80
clamp extensometer, manufactured by NCS Testing Technology Co., Ltd., Beijing, China
as shown in Figure 4. On the opposite side, four strain gauges were spaced at equal
intervals on the specimen, as shown in Figure 5. There were also three specimens for each
beam-shaped group. When the loading stress–CMOD curve was compared with ultimate
load, initial fracture toughness, and unstable fracture toughness, if the differences between
different test blocks in the same group were significant, the specimen with the middle
performance value was used to represent this group.
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During the loading processes of uniaxial compressive test and three-point bending
test, DHDAS dynamic data acquisition and analysis system were used to collect the strain;
a DS5-8B acoustic emission detector with four RS-2A sensors (produced by Beijing Soft
Island Times Technology Co., Ltd., Beijing, China) was used to record acoustic emission
signals. The frequency range of RS-2A sensor is 50–400 kHz, and the resonance frequency is
150 kHz. The acoustic emission threshold of this experiment was set to 45 dB. The external
preamplifier and main amplifier gain were both set at a fixed level of 40 dB.

Generally, there are two ways to obtain the initiation time of a crack during the three-
point bending test: the F-CMOD curve turning point method [16] and the strain gauge
turning point method [17]. Because the precision of strain gauge turning point method is
better [17], the initial cracking load was determined by means of resistance strain gauge.

3. Results and Analysis
3.1. Mechanical Performance
3.1.1. Compressive Strength Performance

The 28 d compressive strength of concrete containing varying amounts of graphite
powder are shown in Figure 6. It can be seen that the compressive strength is inversely
related to graphite powder content, decreased by 10.70% when the graphite powder content
was raised from 0% to 3%, and decreased by 30.17% when raised to 9%. The compact
structure of the hydration products is an essential guarantee for the formation of high-
strength cement-based materials [18,19]. First, due to the poor hydrophilicity of graphite
powder [20], it is difficult for the hydration products of cement to adhere on its surface, and
the interfacial bonding between cement stone and graphite powder is weak [14]. Second,
graphite powder is composed of series of stacked parallel layer planes, and within each
layer plane, the carbon atom is bonded to three others, forming a series of continuous
hexagons in what can be considered as an essentially infinite two-dimensional molecule [21],
so its surface is extraordinary flat, resulting in a low interlocking force between cement
stone and graphite powder. Owing to the poor interfacial bonding, low interlocking force
and the flake shape, the distribution of graphite powder causes lots of initial defects to
concrete, and the strength of the specimen is reduced accordingly. To reduce or eradicate
the negative effects of graphite powder on compressive strength, polyvinyl alcohol (PVA)
fibers are one of the most economical and effective ways [22].
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The stress–strain curves of concrete with different content of graphite powder are
shown in Figure 7. The red arrow represents the reduction of compressive strength com-
pared with group C1. As shown, due to the insufficient stiffness of the loading machine,
the descending sections of the specimens are not obvious. When the loading stress reaches
the compressive strength of the specimen, the elastic strain energy gathered in the loading
machine is larger than the strain energy absorbed by the concrete, leading to a sudden
destruction of the specimen [23]. The stress–strain curve of the reference group C1, can
be divided into the elastic and plastic stages. However, as the graphite powder content
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increases, the elastic characteristics become less clear, implying that graphite powder may
cause a lot of plastic damage to concrete under low stress. During the loading process,
poor adhesion of the graphite and cement stone interface failed, lots of flake-shaped micro
cracks occurred, resulting in relative slip occurring between graphite powder and cement
stone. As a result, as the graphite powder content increases from 0% to 3% and 9%, the
elastic module decreases from 28.8 to 21.5 and 15.9 GPa.
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In addition, the initial defects caused by graphite powder also change the failure
pattern. As for C1, due to the cyclo-hoop effect, the surrounding concrete was crushed
and spalled after maximum stress, and the specimen was pyramidal, as shown in Figure 8.
However, the decrease in concrete elastic modulus and the increase in concrete initial
damage caused by graphite powder weakens the lateral restraint of the indenters to inner
concrete [24], resulting in a weakened cyclo-hoop effect, leading to sheet-shaped spalling
failure, as shown in Figure 9.
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3.1.2. Fracture Performance

As shown in Figure 10, although the shape of the loading stress-crack mouth opening
displacement (F-CMOD) curves of the specimens with a different content of graphite
powder makes a difference, the trends are similar. Each F-CMOD curve can be divided into
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three stages, which are the linear rising stage, the curve rising stage, and the curve falling
stage, usually representing the three periods of crack propagation: initial crack initiation,
stable crack propagation, and instability failure [25]. It can be seen that the initial cracking
load is more and more inversely related to graphite powder content, and was decreased
by 8.7% when its content was increased from to 0% to 3%, and decreased by 34.8% when
raised to 9%. Furthermore, compared to the reference group B1, group B2 and B3 exhibit a
decrease of 4.9% and 8.7% of the maximum load, but their critical crack mouth opening
displacement Vc are increased by 45.0% and 141.0%. This is largely due to the high stiffness
of graphite powder, so even its adhesion with cement paste is weak; graphite powder can
still play a significant role in limiting the expansion of cracks when it is not at a right angle
to the cracks, as shown in Figure 11.
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The double-K fracture criterion (including initial fracture toughness KQ
IC and unstable

fracture toughness KS
IC) proposed by Xu and Reinhardt [26,27] has been widely used to

judge the fracture characteristics of concrete. The initial fracture toughness KQ
IC (MP·m1/2),

corresponding to the initial cracking load FQ (kN) and precast notch length a0 (m), can be
calculated by Equation (1). The unstable fracture toughness KS

IC (MP·m1/2), corresponding
to maximum load Fmax (kN) and critical crack ac (m), can be calculated by Equation (2).

KQ
IC =

1.5(FQ + mg
2 × 10−2)× 10−3S

√
a0

th2 f (α) (1)

KS
IC =

1.5(Fmax +
mg
2 × 10−2)× 10−3S

√
αc

th2 f (β) (2)

f (α) =
1.99− β(1− β)(2.15− 3.93β + 2.7β2)

(1 + 2β)(1− β)3/2 , α =
a0

h
(3)

f (β) =
1.99− a(1− a)(2.15− 3.93a + 2.7a2)

(1 + 2a)(1− a)3/2 , β =
ac

h
(4)

ac =
2
π
(h + h0)arctan

√
tEVc

32.6Fmax
− 0.1135− h0 (5)
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E =
1

tci

[
3.70 + 32.6 tan2

(
π

2
a0 + h0

h + h0

)]
(6)

where t, h, and L(m) are the width, height, and span, respectively, of the precast notch
beam; m (kg) and S (m) are the weight and span between the two supports; g (9.81 m/s2) is
the gravitational acceleration; Vc (µm) is the critical crack mouth opening displacement;
h0 (m) is the thickness of the clip gauge holder; ci (µm/kN) is the initial compliance of the
F-CMOD curve; and E (GPa) is the elastic modulus predicted from the F-CMOD curve
calculated by Equation (6).

Due to the non-standard dimension of the specimens, based on Weibull′s statistical
theory of brittle failure, the fracture toughness of standard dimension specimens can be
obtained from Equation (7).

Kstandard
IC =

(
Vnon−standard

Vstandard

)1/α( hstandard
hnon−standard

)1/2
Knon−standard

IC (7)

where α is the Weibull coefficient, usually proposed between 7 and 13 (we used 10);
Vstandard and hstandard are the volume and height of a standard specimen, 0.024 m3 and
0.2 m, respectively. In this study, the specimen volume Vnon-standard and the specimen height
hnon-standard are 0.004 m3 and 0.1 m, respectively.

The calculation results of the initial fracture toughness, unstable fracture toughness,
and critical crack of the specimens with different content of graphite powder are shown
in Figure 12. It can be seen that the initial fracture toughness was reduced by 6.38% and
23.53%, basically in line with trend in the initial cracking load. On the contrary, under the
influence of graphite powder, although the positive effect of initial cracking displacement
on critical effective crack length was weakened by the significant decrease in elasticity
modulus, and the maximum load was also decreased by 4.9% and 8.7%; an increase in the
graphite powder content up to 3% resulted in an increase in the unstable fracture toughness
of concrete up to 1.60 MPa·m1/2 (by 1.7%); a further increase in the graphite powder
content up to 9% resulted in an increase in unstable fracture toughness to 1.73 MPa·m1/2,
of 9.9%. This indicates that as a result of graphite powder partly replacing fine aggregate,
the decreasing of initial fracture toughness and increasing of unstable fracture toughness
improve the safety redundancy of concrete to some extent.
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Figure 13. AE signal–time and stress–time curves of concrete with different graphite powder content 
during compressive tests. (a) C1; (b) C2; (c) C3. 

As seen in Figure 13, cumulative ringing counts curve and cumulative energy release 
curve variation tendencies are approximate and unanimous. Based on the cumulative 
ringing counts curve, the process of C1 comprises four stages: initial compaction stage 
(Stage I), stable crack growth stage (Stage II), pre-peak stage (Stage III), and post-peak 
stage (Stage IV) [28]. For C1 shown in Figure 13a, in Stage I (~18% of the peak load), the 
cumulative ringing counts curve is not completely linear, but exhibits a little concave 
downward form. During the early loading of Stage I, the increasing-growing cumulative 
ringing counts and cumulative energy are from the microcrack closure of the concrete, 
and afterward, when the micro-cracks are compacted, and the increasing-growing trend 
is restrained. AE signals then go a little gently before proceeding to the next stage. At 
Stage II (18~95% of the peak load), the cumulative ringing counts and cumulative energy 
increase linearly with time, indicating the crack propagation was relative stable. After 
that, at the pre-peak region of Stage III (~95% of the peak load), with rapid progress in 
cumulative ringing counts and cumulative energy, there was large propagation of mi-
crocracks in the concrete, but almost no appreciable macroscopic crack on the surface. At 
the post-peak region of Stage IV, with the stress decreasing with time, the cumulative 
ringing counts and cumulative energy remain at a high level until rapid macroscopic crack 
propagation occurs. Thus, for concrete specimen without graphite powder, the turning 
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3.2. Acoustic Emission Characteristic
3.2.1. Acoustic Emission Counts and Energy

(1) Uniaxial compressive strength test

The relationships of cumulative ringing counts, cumulative energy release, and loading
stress with time during the loading process of uniaxial compressive strength are present in
Figure 13. The red chain-dotted lines are used to identify the first and the second turning
points of AE signals, named as M and N, respectively.
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Figure 13. AE signal–time and stress–time curves of concrete with different graphite powder content 
during compressive tests. (a) C1; (b) C2; (c) C3. 
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As seen in Figure 13, cumulative ringing counts curve and cumulative energy release
curve variation tendencies are approximate and unanimous. Based on the cumulative
ringing counts curve, the process of C1 comprises four stages: initial compaction stage
(Stage I), stable crack growth stage (Stage II), pre-peak stage (Stage III), and post-peak
stage (Stage IV) [28]. For C1 shown in Figure 13a, in Stage I (~18% of the peak load),
the cumulative ringing counts curve is not completely linear, but exhibits a little concave
downward form. During the early loading of Stage I, the increasing-growing cumulative
ringing counts and cumulative energy are from the microcrack closure of the concrete,
and afterward, when the micro-cracks are compacted, and the increasing-growing trend is
restrained. AE signals then go a little gently before proceeding to the next stage. At Stage II
(18~95% of the peak load), the cumulative ringing counts and cumulative energy increase
linearly with time, indicating the crack propagation was relative stable. After that, at the
pre-peak region of Stage III (~95% of the peak load), with rapid progress in cumulative
ringing counts and cumulative energy, there was large propagation of microcracks in the
concrete, but almost no appreciable macroscopic crack on the surface. At the post-peak
region of Stage IV, with the stress decreasing with time, the cumulative ringing counts and
cumulative energy remain at a high level until rapid macroscopic crack propagation occurs.
Thus, for concrete specimen without graphite powder, the turning point between Stage II
and III (marked as Line #2) can be seen as a safety warning for concrete failure.

As shown in Figure 13b, when the graphite powder content was raised from 0% to 3%,
the turning angle of cumulative ringing counts curve near Line #2 decreases from 54◦ to
35◦ and the failure time reduces from 132.83 s to 106.15 s, but the prewarning time formed
by Line #2 increases significantly, from 5.34 s to 11.95 s. However, as shown in Figure 13c,
when graphite powder content is further increased to 9%, the turning angle nearby is hard
to be found, because there is no obvious boundary between Stage II and III. This suggests
that, under the action of uniaxial pressure, a low dosage of graphite powder can extend
the prewarning time of Line #2, but an excessively high content will reduce its significant
degree, making it no longer valid.

By comparing Figure 13a–c, it also can be found that with increasing graphite powder
content delaying the boundary between Stage I and Stage II (marked as Line #1)—up from
19.87 s in C1 to 34.95 s in C2, and after, 49.90 s in C3. The stress at Line #1 is increased from
6.23 MPa to 11.25 MPa, and then to 16.61 MPa, indicating that the microcracks caused by
graphite powder require more time and pressure to close. Furthermore, as the graphite
powder content increases, so does the turning angle of cumulative ringing counts curve
near Line #1, increasing from 17◦ to 26◦ and 30◦, making it easier to identify signal changes
around Line #1.

In summary, when the graphite powder content is low, there are two sharp raises on
the curve of cumulative ringing counts or cumulative energy release curve, and the second
sharp raise can be seen as the prewarning signal for concrete failure, whereas when the
graphite powder content is high and there is only one turning point on the curve, the only
sharp raise can be seen as the prewarning signal for concrete failure. Give that 3% graphite
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powder not only provides a reliable safety warning for compressive failure, but also has an
acceptable negative influence on strength, when used in conjunction with other conductive
filler, such dosage is suggested.

(2) Three-point bending test

The relationships of AE ringing count, energy release, and loading stress with time
during the loading process of three-point bending test are presented in Figure 14. The first
and the second turning points of AE signals are marked as K and L, respectively.
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Figure 14. AE signal–time and stress–time curves of concrete with different graphite powder content 
during three-point bending test. (a) B1; (b) B2; (c) B3. 
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As shown in Figure 14a, during three-point bending test, there are also two obvious
turning points on the AE curves; one representing initial cracking (marked as K), the other
representing unstable cracking (marked as L); hereby, the failure process during three-point
bending test can be roughly divided into three stages: the initial silent stage (Stage A), the
intermediate stable stage (Stage B), and the last peak stage (Stage C). While cumulative
ringing counts curve shows a similar trend as that for cumulative energy; it changes more
rapidly near turning points, suggesting that cumulative ringing counts curve is more
suitable for describing the failure process during three-point bending tests [29].

In the beginning of the initial silent period, only a few of AE signals are observed,
indicating that almost no cracks are generated, and the internal damage is extremely minor.
At the end of the first stage, the damage inside concrete is further increased with the
increase in of loading stress, and the first sharp rise of cumulative ringing counts appears,
suggesting a small number of discrete microcracks develops at the tip of the precast notch.
After entering the second stage (stable period), as a consequence of the stable expansion of
cracks, the activity of AE signals is reduced until another sharp rise in damage, where both
the ringing counts and the strain energy released by the fracture rise sharply. The second
turning point appears slightly earlier than the peak load, and the identification point of
failure precursor information can provide a safety warning for the development of concrete
fracture. During the last stage (peak period), the AE ringing counts and energy released
increase rapidly and reach an obvious peak value, and the crack enters a rapid expansion
period until failure.

As discussed before, in the tension zone, the initial defects caused by graphite powder
are partially offset by its bridging effect, thus the maximum load is just slightly reduced
by graphite powder. Due to the better performance of the graphite powder bridging
effect at large deformations, with graphite powder content increasing, although the initial
cracking time is advanced, the crack mouth opening displacement (CMOD) is larger under
the same load.

During the fracture process, the AE activity of concrete in the tensile zone is reduced
by the initial defects caused by graphite powder. Moreover, the bridging effect of graphite
powder is a result of its high stiffness, not its interfacial bonding with cement stone, so
the pulling process of graphite powder out of cement stone generates less AE signals. As
a result, the amount of AE activity during loading is significantly reduced by graphite
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powder, which is consistent with the findings of Ref. [12]. The AE signals around turning
point L and K in Figure 14b,c are obviously less active than Figure 14a. However, after
adding graphite powder, because of the enhancement of AE activity in the compressive
zone, the AE signals between L and K are significantly increased.

3.2.2. Damage Evolution

It is well known that acoustic emission signals are directly related to the damage
process, and can be used to characterize the damage evolution of materials [30,31]. Since the
developments of cracks in concrete are irregularly, based on continuum damage mechanics,
the meso micro unit strength of concrete is assumed to follow a Weibull distribution [32],
and its distribution density function can be calculated as follows:

ϕ(x) =
n
m

( x
m

)n−1
exp

[
−
( x

m

)n]
(8)

where x is the random variable (x≥ 0), m and n are the scale parameter and shape parameter
of the Weibull distribution.

According to damage mechanics theory, damage value D also represents the dam-
age degree of the materials; its relationship between distribution density function is as
follows [33]:

dD
dx

= ϕ(x) (9)

Thus,

D =
∫ x

0
ϕ(x)dx = 1− exp

[
−
( x

m

)n]
(10)

As ringing counts are highly associated with deterioration and directly reflect the
internal damage, their pattern will be inevitably consistent with the statistical distribution
of internal defects in the materials. By setting the total counts as RT when the specimen
was loaded to failure, the AE accumulative counts R can be expressed as follows:

R = RT

∫ x

0
ϕ(x)dx (11)

Combining Equation (8) with Equation (11), it can be found that:

R
RT

= 1− exp
[
−
( x

m

)n]
(12)

After comparing Equations (10) and (12), it was found that the damage value D can be
described as a function of ring counts:

D =
R

RT
(13)

Figure 15 plots the curves of damage value D with strain ε for the specimens with
different graphite powder content under the compression test. The red chain-dotted lines
are used to identify the turning points of damage value, named as O.

It can be seen from Figure 15a, because of the low density of original defects, D-ε
relation of C1 is almost linear before failure. At the beginning of loading, the damage value
D slowly increases with the increasing stress as the original cracks and pores compacts.
The damage value suddenly accelerates after strain has reached 97.7% of the peak strain
(marked as O). Afterwards, within only 2.3% of strain, the damage degree increased from
0.61 to 1.0, indicating typical brittle fracture behavior. As shown in Figure 15b,c, due to the
initial defects caused by graphite powder [12], although a high damage value of concrete
occurs at low strain levels, the strain between turning point O and peak load increases to
10.6% and 31.5%; the deformation is larger in failure, and the D–ε curve has a more linear
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relationship, so that the damage form is changed from a brittle fracture to ductile fracture,
and the failure of concrete under compression is more predictable.
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Figure 15. The curves of AE damage variable with strain under UCS test. (a) C1; (b) C2; (c) C3. 
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Figure 15. The curves of AE damage variable with strain under UCS test. (a) C1; (b) C2; (c) C3.

Figure 16 plots the curves of damage value D with crack mouth opening displacement
CMOD for the specimens with different content of graphite powder under three-point
bending test. The red chain-dotted lines are used to identify the turning points of damage
value, named as P.
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Figure 16. The curve of damage variable with load under TPB tests. (a) B1; (b) B2; (c) B3.

During the three-point bending test, the failure process of concrete without graphite
powder exhibits obvious step characteristics, as shown in Figure 16a. After a sharp increase
in damage between 7.91 µm and 15.39 µm, there was a long period of silence, with almost
no damage produced until failure. However, as shown in Figure 16b,c, after the addition
of graphite powder, damage value continues to grow during the whole fracture process,
making the process of damage development easier to detect.

4. Conclusions

(1) Graphite powder causes obvious initial defects to concrete, which not only leads
to a decrease in concrete integrity, but also reduces the elasticity modulus and the
restraining action of the indenter on the internal concrete, further resulting in a decrease
in compressive strength, reduced by 10.7% at a graphite powder dosage of 3%, and
by 30.17% at a graphite powder of 9%. In addition, with increasing graphite powder,
as a result of the increased initial defects to concrete and the decreasing cyclo-hoop
effect of the indenter on internal concrete, the failure pattern of specimens in uniaxial
compressive strength tests changed from block failure to a sheet-shaped spalling one,
making them easier to observe.

(2) During the compressive process, there are two sharp raises on the cumulative ringing
counts curve, or cumulative energy curve, of the specimen without graphite powder.
As the graphite powder content increases, the time of the second sharp raise advances
and its significance gradually decreases, whereas the time of the first sharp raise is
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delayed and its significance increases. As a result, if the graphite powder content
is low, the second sharp raise is more suitable for predicting failure, whereas if the
content is high, the first sharp raise is more suitable. Regarding the second sharp raise
as the failure alarm, 3% graphite powder can increase the warning time from 4.01%
ahead of failure to 12.24%. If the graphite powder content reaches 9% and the first
sharp raise is regarded as the failure alarm, the warning time will be further increased
to 45.71%.

(3) There are two main effects of graphite powder on concrete in the fracture process:
damaging and bridging. Because the bridging effect is stronger at large deformations,
graphite powder causes a significant reduction in initial cracking load, but not in
ultimate load. Furthermore, as the graphite powder content increases, the elasticity
modulus and ultimate load stress decreases, but the critical crack mouth opening
displacement grew significantly due to the bridging effect, leading to a slight rise in
unstable fracture toughness.

(4) As for specimens without graphite powder, there are also two sharp raises on AE
curves during the fracture process, similar to UCS tests. However, its AE signals cannot
be used as a safety alarm, because there is a long period of silence before the second
sharp raise, and the second sharp raise is too close to the ultimate load. In contrast, AE
signals from the concrete are continuously generated before failure when mixed with
graphite powder, allowing the development of the failure process to be identified.

(5) The damage value calculated by acoustic emission ringing counts shows that graphite
causes damage to concrete at low loads, both in compressive and flexural processes.
Therefore, the damage process of graphite concrete can be suitably described by
acoustic emission.
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