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Abstract: The column buckling problem was first investigated by Leonhard Euler in 1757. Since then,
numerous efforts have been made to enhance the buckling capacity of slender columns, because of
their importance in structural, mechanical, aeronautical, biomedical, and several other engineering
fields. Buckling analysis has become a critical aspect, especially in the safety engineering design since,
at the time of failure, the actual stress at the point of failure is significantly lower than the material
capability to withstand the imposed loads. With the recent advancement in materials and composites,
the load-carrying capacity of columns has been remarkably increased, without any significant increase
in their size, thus resulting in even more slender compressive members that can be susceptible to
buckling collapse. Thus, nonuniformity in columns can be achieved in two ways—either by varying
the material properties or by varying the cross section (i.e., shape and size). Both these methods
are preferred because they actually inherited the advantage of the reduction in the dead load of the
column. Hence, an attempt is made herein to present an abridged review on the buckling analysis of
the columns with major emphasis on the buckling of nonuniform and functionally graded columns.
Moreover, the paper provides a concise discussion on references that could be helpful for researchers
and designers to understand and address the relevant buckling parameters.

Keywords: buckling; compression members; Euler’s load; nonprismatic sections; imperfections;
slenderness

1. Introduction

Compression members are an integral part of the structures, and unlike other load-
bearing members, their capacity to carry loads is governed by the different sets of influ-
encing parameters. This difference in behaviour questions their structural integrity and
necessitates the analysis of compression members with numerical models that could offer a
minimum deviation from the reality and thus ensure a fairly close estimation of the actual
buckling load.

While the stability issue was first pointed out in 1675 by Hooke [1], several other
formulations followed especially during the 18th century, and even further important de-
velopments in the support of design have been obtained in the last few decades. Currently,
the development of novel design applications, materials, and composites solutions enforces
a further need for dedicated calculation tools. In the last decades, the column buckling
issue has become relevant for traditional constructional applications but especially for
innovative material solutions, as in Figure 1, in which selected examples can be seen for
FRP-reinforced concrete columns [2], repaired timber columns [3] and even hollow square
glass columns [4].
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of short columns, while slender columns are discussed in Section 4. Finally, Section 4.5 
presents a subdiscussion on compressed members with variable stiffness due to thermal 
gradients and constructional materials that can be remarkably sensitive to degradation 
and hence to the premature column buckling collapse. It is important to mention that this 
work is primarily focused on the global buckling of the compression member. 

   
(a) (b) (c) 

Figure 1. Examples of column buckling for constructional members: (a) FRP-reinforced concrete 
columns (reproduced from [2] with permission from Elsevier, license n. 5026030791841); (b) re-
paired timber columns (reproduced from [3] with permission from Elsevier, license n. 
5026030922470); and (c) hollow square glass columns (reproduced from [4] with permission from 
Elsevier, license n. 5026031011542). 

2. Basics 
The necessary preliminary analysis of the stability problem was proposed by Hooke 

in 1675, wherein it was shown that the displacement in any structural body is directly 
proportional to the load causing the displacement. This law can be applied to spring bod-
ies, stone, wood, metal, etc., and it is commonly known as Hooke’s law [1]. Further, Ber-
noulli studied the curvature and deflection of a cantilever beam using Hooke’s law in 
1705. It was Euler who was credited with the first systematic study of the stability problem 
in equilibrium. In his first publications, Euler investigated the stability of a hinged bar, 
having flexural rigidity (EI), in equilibrium, subjected to an axially compressive force (p) 
and uniformly distributed load (q) along the longitudinal axis (z) by two different ap-
proaches [5–8]. It is interesting to note that Euler has defined all his formulations in terms 
of Ek2 instead of EI, with E defined as strength property and k2 as a dimensional property 
of the column. Further, the transformation from Ek2 to EI requires the knowledge of 
Hooke’s law, and it was Coulomb, who, for the first time, applied Hooke’s law and equa-
tion of static equilibrium to develop the bending moment and normal stress due to the 
elastic bending in cantilever column as follows [9]: 𝐸𝐼 𝑑ଷ𝑣𝑑𝑧ଷ + 𝑞𝑧 𝑑𝑣𝑑𝑧 + 𝑝 𝑑𝑣𝑑𝑧 = 0 (1)

As is evident from Equation (1), its solution will contain only three constants, and the 
equation has failed to satisfy four boundary conditions. Euler identified this error and 
presented a corrected differential equation in his third paper by including the presence of 
a horizontal force N [5]. However, it is interesting to note that Euler did a numerical mis-
take, and calculated the second eigenvalue instead of the first, which was later corrected 

Figure 1. Examples of column buckling for constructional members: (a) FRP-reinforced concrete
columns (reproduced from [2] with permission from Elsevier®, license n. 5026030791841); (b) repaired
timber columns (reproduced from [3] with permission from Elsevier®, license n. 5026030922470);
and (c) hollow square glass columns (reproduced from [4] with permission from Elsevier®, license n.
5026031011542).

In Section 2, some basics concepts and background theories are first presented.
Section 3 provides a brief overview of the methods and critical issues on the buckling fail-
ure of short columns, while slender columns are discussed in Section 4. Finally, Section 4.5
presents a subdiscussion on compressed members with variable stiffness due to thermal
gradients and constructional materials that can be remarkably sensitive to degradation and
hence to the premature column buckling collapse. It is important to mention that this work
is primarily focused on the global buckling of the compression member.

2. Basics

The necessary preliminary analysis of the stability problem was proposed by Hooke
in 1675, wherein it was shown that the displacement in any structural body is directly
proportional to the load causing the displacement. This law can be applied to spring
bodies, stone, wood, metal, etc., and it is commonly known as Hooke’s law [1]. Further,
Bernoulli studied the curvature and deflection of a cantilever beam using Hooke’s law
in 1705. It was Euler who was credited with the first systematic study of the stability
problem in equilibrium. In his first publications, Euler investigated the stability of a hinged
bar, having flexural rigidity (EI), in equilibrium, subjected to an axially compressive force
(p) and uniformly distributed load (q) along the longitudinal axis (z) by two different
approaches [5–8]. It is interesting to note that Euler has defined all his formulations in
terms of Ek2 instead of EI, with E defined as strength property and k2 as a dimensional
property of the column. Further, the transformation from Ek2 to EI requires the knowledge
of Hooke’s law, and it was Coulomb, who, for the first time, applied Hooke’s law and
equation of static equilibrium to develop the bending moment and normal stress due to
the elastic bending in cantilever column as follows [9]:

EI
d3v
dz3 + qz

dv
dz

+ p
dv
dz

= 0 (1)

As is evident from Equation (1), its solution will contain only three constants, and
the equation has failed to satisfy four boundary conditions. Euler identified this error and
presented a corrected differential equation in his third paper by including the presence
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of a horizontal force N [5]. However, it is interesting to note that Euler did a numerical
mistake, and calculated the second eigenvalue instead of the first, which was later corrected
by [10–12]. Thus, the equation of static equilibrium (Equation (2)) to develop bending
moment and normal stress due to the elastic bending in a cantilever column is:

EI
d3v
dz3 + qz

dv
dz

+ p
dv
dz

= N (2)

Euler’s analytical conclusion supported the experimental results obtained by Muss-
chenbroek [13] for slender wooden columns. However, Coulomb discarded the result of
Musschenbroek and concluded that the breaking strength was independent of length, based
on experiments on masonry columns [9]. Duleau, Hodgkinson, Considère, and Engesser
discussed Euler’s formulation and its exclusive validity for “slender” columns [13–17].
Moreover, Hodgkinson proposed an empirical formula for the design of short columns
based on the experimental investigations on cast-iron columns. In the year 1845, Lamarle
proposed a critical load expression in terms of the critical stress and stated that Euler
formulation is applicable when the critical stress (σcr) is less than the elastic limit (σ0) for
the constructional material in use. In other words, it is applicable for the struts whose
slenderness ratio (l/h) is greater than the limit value given as follows i.e., Equation (3) [18]:(

l
r

)2
=

π2E
σ0

(3)

where r is the radius of gyration about the weaker axis of the column. Although there is
no record of whether Lamarle’s suggestion was used anywhere practically, the formula
suggested by Gordon provides the same result as Lamarle’s model, and this is verified
both for large and small slenderness ratios [19]. Figure 2 shows some typical design curves,
as conventionally obtained in terms of stress and slenderness ratio, based on Lamarle and
Gordon models.
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Johnson et al. [21] suggested using Euler’s formula by incorporating modifying constant, 
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It is to be noted that, despite considering all the assumptions to transform a real col-
umn into an ideal column, the existence of perfectly clamped or pinned boundary condi-
tions at either end and no demand of flexural strength from compression members are 
hard to achieve. In real problems, these assumptions rarely meet since columns in framed 
structures are supposed to have sufficient flexural rigidity and restrain. Due to this gap, 
the use of interaction equations is favoured which is based on Ayrton-Perry’s approach 
[22]. They first related the concept of the elastic critical stress to the failure stress, which 
was later simplified further in [23]. Herein, the average compressive stress (fc), the 

Figure 2. Comparison of design curves for compression members.

The proportionality between the stress and the strain was proposed by Young [20].
Johnson et al. [21] suggested using Euler’s formula by incorporating modifying constant,
which is similar to the use of equivalent length coefficient, k.

It is to be noted that, despite considering all the assumptions to transform a real
column into an ideal column, the existence of perfectly clamped or pinned boundary
conditions at either end and no demand of flexural strength from compression members
are hard to achieve. In real problems, these assumptions rarely meet since columns in
framed structures are supposed to have sufficient flexural rigidity and restrain. Due to
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this gap, the use of interaction equations is favoured which is based on Ayrton-Perry’s
approach [22]. They first related the concept of the elastic critical stress to the failure stress,
which was later simplified further in [23]. Herein, the average compressive stress (f c), the
allowable compressive stress in an axially loaded strut (pc), the resultant compressive
stress due to bending about the rectangular axis ( fbc), and the allowable compressive
stress for a member subjected to bending (pbc) are related as per Equation (4) using the
well-known beam-column interaction:

fc

pc
+

fbc
pbc

< 1 (4)

3. Buckling Failures
3.1. Self-Buckling

Self-buckling is a phenomenon wherein a column buckles under its own weight;
these columns are commonly known as heavy columns. Generally, self-buckling is not
considered since it is assumed that the weight of the column is small, compared to the
applied axial loads. However, there may be cases in which self-buckling may govern and
hence need attention. Self-buckling was first investigated in 1881 by Greenhill [24], and
based on his analysis, he proposed that a vertical column may buckle under its own weight
if its length exceeds, as given in the following (Equation (5)):

l ≈ 7.8373
(

EI
ρgA

)1/3
(5)

where ρ is the density of column material, E is Young’s modulus, I is the moment of inertia
of column, g is gravitational constant, and A is the cross-sectional area of the column.

Duan and Wang [25] considered buckling of heavy columns and presented an analyti-
cal solution in terms of hypergeometric function. They highlighted the fact that buckling
capacities were not only dependent on end support condition, shape, size, material but also
on the weight. They suggested using a fourth-order differential equation instead of second
order. Later on, Darbandi et al. [26] presented closed-form solutions for variable section
columns subjected to distributed axial force. Herein, the column was modelled using the
Euler’s-Bernoulli theory, and solutions were presented using the singular perturbation
method of Wentzel-Kramers-Berilloui (WKB), see [26].

In the year 2010, Wei et al. [27] outlined a procedure to compute the buckling load of
prismatic and nonprismatic columns under self-weight and tip force. This method did not
use Bessel’s function as others [25], which strongly depends on the form of an ordinary
differential equation with a variable coefficient [27]. Huang and Li [28] studied the column
with a nonuniform section using Fredholm’s integral equation and presented closed-form
solutions. Fredholm’s equation transformed the exercise of finding solutions of differential
equations to simple algebraic expressions [28]. Later on, Riahi et al. computed the buckling
capacity of columns with variable moment of inertia through the slope-deflection method,
and dimensionless charts were proposed [29]. On the same line of study, columns with
variable inertia (trigonometric-varied inertia column) iteration-perturbation method was
applied and obtained results were compared with the result obtained by modelling the
same column in ANSYS by Afsharfard and Farshidianfar [30]. Later on, detailed work
was reported by Nikolić and Šalinić [31], wherein they assumed that the column is doubly
symmetric to apply the method of rigid elements in order to perform buckling analysis
of columns with continuously varying cross section and multistepped columns under
different boundary conditions.

The described method removes the limitation of the existing rigid body element
approach. This method also serves an additional advantage that the boundary condition
can be introduced without any extra calculation. However, the limitation of this method
lies in the discretisation of elastic segments with rigid segments [31].
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3.2. Failure of Inelastic or Short Columns

Duleau, Hodgkinson, Considère, and Engesser, while working independently, sug-
gested that Euler’s formula is valid only for slender columns. It is to be noted here that
Hodgkinson had already suggested an empirical formula which was used for the design
of short columns. However, there was a need to develop a theory which can govern the
failure of short columns or columns with a smaller slenderness ratio [14–17]. Considering
this, Engesser suggested tangent modulus theory, wherein he assumed that axial load was
increasing during the transition from straight to the bent position and presented the value
of critical stress in terms of tangent modulus (Et) as follows as given by Equation (6):

σcr =
π2Et I

λ2 (6)

In the same year, Considère suggested that, if an ideal column is subjected to load
greater than the proportional load, the column begins to bend, and stresses on the concave
side increase according to tangent modulus theory, whereas, on the convex side, stress
peaks decrease according to Hooke’s law. He defined critical load by employing E, which
is a function of average stress in the column. He also suggested that the E value should
lie in between the modulus of elasticity and the tangent modulus. Later on, in 1995,
the error in tangent modulus theory was put forward by Jasinski, and he pointed out
that determination of function which describe E was impossible to find theoretically [32].
After this, a double modulus theory was developed by Karman and proposed the actual
evaluation of E for rectangular cross section and idealised H-section consisting of infinitely
thin flange and negligible web. The general expression for the critical stress σcr was thus
defined in terms of reduced modulus, Er [33] by Equations (7) and (8), respectively as:

σcr =
π2Er I

λ2 (7)

Er =
EI1 + EI2

I
(8)

where I1 and I2 are the moment of inertia of either side of the section about the neutral axis.
Since then, the value of E has been evaluated by several authors.

In 1947, using an imaginary column, Shanley concluded that there will be bending
once the tangent modulus load is exceeded following which axial load increases and reaches
a maximum value which lies in between the tangent modulus load and reduced modulus
load, and there will be stress reversal once the bending deformation becomes finite. In other
words, Shanley’s analysis clearly described that the first bifurcation will occur at tangent
load and a sequence of equilibrium can be constructed in between two limiting loads,
i.e., tangent load and double modulus load. Shanley thus proposed an interaction curve to
link eccentricities to the tangent modulus theory in order to apply his theory for practical
problem and design calculations [34,35]. In this regard, Figure 3 compares the average
stress for different slenderness ratios, as collected from the experimental investigation of a
specimen (aluminium solid round rod with 0.72 cm diameter having flat ends) discussed
in [36].

Later on, a model similar to Shanley was analysed by Johnston by replacing the two-
area element with a solid rectangular segment and determined the magnitude of stress
distribution for various loads above the tangent modulus load across the section [37].
With the advancement in computer technology, computer programs were written by
Batterman [38] to find the maximum load for aluminium alloy H-section with finite web
areas about weak as well as the strong axis of bending, in both initially straight position
and with initial curvature [38]. In 1987, Groper and Kenig proposed the inelastic stability
of stepped columns with the help of Newton’s method or bisection method [39]. In general,
the Engesser-Shanley definition for the critical load of a column in an inelastic range is
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widely acceptable. The same concept is extended for structural steel columns having initial
stress due to differential cooling, although the material is in an elastic range.
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3.3. Failure of Imperfect Long Columns

Long columns, more than short ones, are notoriously sensitive to initial imperfections,
defects, etc. Hence, they necessitate careful investigations since a minor change in the
loading and geometrical parameters may lead to their sudden failure. It is well accepted
that perfect columns are theoretical identities, and in practice, their behaviour is altogether
different. One of the important examples of such columns is a walking stick which is
subjected to a large amount of eccentricity.

There exists a wide scatter of results for long columns, due to many reasons, and some
of the motivations include nonideal supports, plastic behaviour, the interaction of buckling
modes (wherein local buckling of columns is more important), along with possible residual
stresses. Due to these imperfections, column behaviour is altogether different practically,
in comparison with its theoretical treatment, and the reason for this may be attributed
to the treatment of these imperfections. Thus, these columns primarily fail due to elastic
instability. Section 4 reports further details about the failure of imperfect long columns.

4. Imperfections in Long Columns
4.1. Imperfections Due to Large Deformations

It is well understood that Euler’s original formulation was based on some defined
assumptions, and hence, he modelled the behaviour of ideal columns which hardly exist
in the reality of the structures. In order to apply his theories to practical problems of
engineering, it becomes important to understand the difference in the behaviour of a real
and an ideal column. This result can be achieved by removing the various assumptions,
one by one, and then analysing the column response. One of the prominent assumptions in
Euler’s theory, for example, is that all deformations are considered as “small”. This results
in curvature (1/R) of deflected shape of a column of length (L) with flexural rigidity (EI),
subjected to axial load (P), with pinned boundary condition on either edge becomes equal
to double differentiation of deflection (y′′), thus neglecting (y′), as in the following [40]
given by Equations (9) and (10) as:

δ

L
=

2p

π
√

P
Pcr

(9)

p = sin(α/2) (10)

where α is the slope of deflected shape at support, and Equation (9) represents the solution
in terms of mid-height deflection, δ, applied load, P, and Euler load, Pcr.
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According to [40], Figure 4 shows the variation of P/Pcr with δ/L and highlights that
the estimation of the expected critical load by linear theory is valid for a considerable range
of deformations. The reason for such a behaviour is attributed to the fact that for most of
the columns, a combination of bending and axial stresses reaches the proportionality limit
long before the difference between linear and nonlinear theory becomes notable.
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4.2. Imperfections Due to Initial Curvature and Eccentric Loading

It was Young who, in 1807, tried to find out the effect of eccentricity (e) and initial cur-
vature on the load-carrying capacity of a given column [41]. However, his original research
results were not presented in usable form. Later on, during the year 1858, Scheffler [42]
presented the complete solution for eccentrically loaded columns, by taking into account
the effect of direct stress and bending stress. This solution is now commonly known as the
“Secant Formula” (SF).

It is important to highlight, in this context, that the SF is accurate until the predicted
stresses are within the elastic limit of the constructional material in use. The behaviour of a
column with a given initial curvature or a column subjected to eccentric load is more or
less the same, considering the fact that, in either case, the behaviour of the column is the
same. Further, if the initial imperfections are small, the original Euler’s formula results in a
fairly accurate estimation of the total compressive load which a straight slender member
can support.

P
Pcr

=

[
2
π

cos−1
{

1
1 + δ/e

}]2
(11)

P
Pcr

= 1− a
δ

(12)

Equations (11) and (12), in this regard, describe the correlation between the Euler’s
load for an ideal column (Pcr) and the critical load (P) for a column either having a certain
initial curvature (a) or subjected to eccentric loading (e). Figure 5 shows the graphical
interpretation of Equations (11) and (12) for different values of eccentricity and initial
curvature. The example calculations are carried out by taking into account Equations (11)
and (12) by assuming the different values of δ, along with a and e to consider the initial
curvature or eccentricity, respectively.

Along with that, the graph also shows that it does not matter how the initial imperfec-
tion is introduced in a perfect column, given that the critical load for an imperfect column
will always be smaller than the critical load of the perfect one.
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4.3. Imperfections Due to Variable Stiffness

Euler formula is derived for prismatic sections and in an attempt to increase the
buckling capacity of columns, the researcher focused on the use of nonprismatic sections.
This results in a variable moment of inertia (I) along the longitudinal axis. It is to be noted
that columns with nonprismatic sections can be studied in two ways, as shown in Figure 6.
Among these two major approaches, it can be noticed that several researchers employed a
continuum approach using different functions and variables to report closed-form solutions.
At the same time, other researchers employed numerical approaches/approximate methods
to arrive at acceptable solutions.
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Finally, it is also well accepted that a given uniform section column is overdesigned
everywhere, except the point at which the maximum bending moment occurs, and in need
to optimise the buckling capacity of the column, some material can be taken out from the
overdesigned section and placed at the point at which the maximum moment is occurring.
A number of scientists developed this idea as reported in Table 1. The overall research
efforts conducted by several researchers in understanding the behaviour of nonprismatic
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columns using the two major approaches from Figure 6 are summarised in Table 1, with
evidence of methods and outcomes.

Table 1. Summary of research on nonprismatic columns using continuum or numerical approaches.

Ref. Variable/Method Column Remarks/Findings

[12] Exponential variation of flexural rigidity
using power function Variable stiffness • First to try the solution with variable stiffness

[43] Exponential variation of flexural rigidity
using Bessel’s function Variable stiffness

• Solution based on exponential variation of flexural
stiffness using power function, as suggested by [12]

[44] Varying sectional dimension h(x) and second
moment of inertia i(x) Tapered

• Developed equations and design curves for calculating
the critical buckling

• Analysed columns with many different cross sections
• Four different fixity conditions, i.e., fixed-free,

pinned-pinned, fixed-pinned, and fixed-fixed
were analysed

[45] ODE approach Variable stiffness • Unsuccessful attempt to maximise the optimum shape

[46] ODE approach Variable stiffness

• Repeated the problem of Lagrange [45] for a
cantilever column

• Proposed the circular section as the optimum for
columns with pinned ends

[47] * Variational technique

Twisted;
arbitrary cross

section;
pinned ends

• Investigated the study by [46]
• Showed that the strongest column is characterised by

equilateral section and a tapered shape along the length
(thickest at mid-span and thinnest at ends)

• By changing the shape from circular to equilateral
triangle, the buckling capacity increases by +20.9%

• From equilateral triangular shape to tapered, the
buckling capacity show an increment of +61.2%, in
comparison to the circular column

• Proof regarding the number of buckled state
was missing

[48] Continuum approach Variable stiffness
• Determined the strongest shape for a given length and

volume for which Euler’s load was maximum

[49] Energy approach Variable stiffness
• Isoperimetric inequalities used to obtain the solution of

lower bound to maximum eigenvalue for the problem
of [48]

[50] Approximate method Uniform or
nonuniform shapes

• Buckling capacity of column with varying section
(either abrupt or gradual) by utilizing the input given
in [51]

• Method applicable to both symmetrical and
nonsymmetrical varying columns

• Method expedient in solving unsymmetrical
columns only

[52] Experimental verification
Uniform circular;
tapered circular;

triangular equilateral

• For uniform circular, tapered circular, and triangular
equilateral columns, the deviation between measured
predicted buckling load was −1.2, +3.1, and +10.6%,
respectively

• Suggested modifying the column near the ends to
prevent material yielding and potential
inelastic buckling
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Table 1. Cont.

Ref. Variable/Method Column Remarks/Findings

[53] Finite-difference approach Nonuniform

• Method to compute approximate lower bound
buckling load

• Recursion relations developed for the coefficient of
characteristic equation from which an approximate
lower bound buckling load was calculated

[54] Finite-difference method (FDM) through
matrix iteration approach

Nonuniform;
tapered

• Finite-difference form used to write the differential
equation for the equilibrium at a number of points with
small lateral deflection

• Set of homogeneous simultaneous linear equations and
the lowest value of eigenvalue gave the required
buckling load

• Simple model formulation and concise nature of
its solution

• The method is preferred over the Rayleigh-Ritz
energy approach

[55] Bessel’s function Tapered
• Computed the exact Bernoulli-Euler’s static load using

Bessel’s function

[39] Continuum approach Tapered
• Investigation on inelastic buckling of

nonprismatic columns

[44] ODE approach Tapered • Study limited to concentrated load

[56] Energy approach
Fixed-free;

square pyramid;
truncated cone

• Cross section written as function of axial coordinate by
assuming the deflected shape corresponding to the first
mode of buckling

• Analytical solutions were obtained
• The method can be also extended to other

boundary conditions

[57]

FEM approach
(i.e., power series solution of differential

equation with variable coefficients to
generate the stiffness matrix)

Variable stiffness

• Computed the stiffness of columns with varying
cross-sectional bending stiffness, as well as varying
axial load along their length, in the form of a
polynomial expression

• It can easily be incorporated into FEM software

[58] Semi-analytical approach Nonprismatic

• Step varying column which can be extended to
incorporate continuously varying column

• Step changes in the profile represented by distribution,
and finally solved by polynomial functions

• Accuracy of method dependent on the number of
assumed segments

• The method did not gain popularity due to the very
lengthy formulation, even for simple variations of the
basic cross section

[59] Four normalised fundamental equations

Constant width and
tapered depth;

constant depth and
tapered width;
double tapered

• Nonuniform column approximated as stepped uniform
column

• Normalised approximated fundamental solution found
using the recurrence formula

• Buckling load easily obtained after substituting the
fundamental solutions into the characteristic equations

• The significant advantage of this method was that it
does not require any computer-based technique, thus
saves computational time
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Table 1. Cont.

Ref. Variable/Method Column Remarks/Findings

[60]

New numerical method
(i.e., eigenvalue problem transformed
into a boundary value problem which

can be solved using the numerical
integration)

Nonprismatic;
self-weight

• The problem with consideration of distributed
axial force will leave the governing differential
equation with variable coefficient

• For column with variable distributed axial force
or varying cross section the governing
differential equation cannot be converted into
Bessel’s equation

• Numerical method such as energy method, FEM,
Finite Difference Method, etc. are required to
arrive at solutions

[61] Semi-analytical procedure Nonprismatic

• The method worked well with step discontinuity
but for continuously varying profile minimum 30
segments must be considered to obtain
correct solution

• The procedure can be used to generate geometric
stiffness matrix for variable beam-column
element which can be used in FEM

[62]

Power function or exponential function
and

distribution of flexural stiffness along
with Bessel’s function

Nonprismatic

• Obtained general solution using the mentioned
functions

• The general solution can be used to solve the
problem discussed by [32,61,63–65]

[66] ODE approach Variable moment
of inertia

• Predicted exact mode shape along with their
closed-form solution

• Since then, till 1999, no closed-form solutions
were reported for columns with variable moment
of inertia subjected to axial load (until [67])

[67] Fixed polynomial variation of flexural
rigidity

Variable moment
of inertia

• Solutions similar to [66] considering the fact that
buckling mode shape was employed as
polynomial function

• Method suggested to generalise solution by [66]

[68] Transcendental equations, Bessel’s or
Lommel’s function

Variable stiffness;
self-weight

• Exact closed-form solutions
• Results useful for columns wherein the variation

of elasticity can be constructed

[69] Continuum approach Variable stiffness

• exact solutions for the buckling analysis of
nonuniform columns subjected to concentrated
axial force at different point along the
longitudinal axis

• method exact, simple and efficient
• method limited only to very special buckling

mode, and thus not able to solve a column with
general heterogeneity
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Table 1. Cont.

Ref. Variable/Method Column Remarks/Findings

[70] Arbitrary distribution of flexural
stiffness

Variable stiffness;
axially

distributed load

• differential equation reduced to Bessel’s equation
• distribution of axial loading expressed as a

functional related with the distribution of
flexural stiffness

[71] Eigenvalue approach Variable stiffness • closed-form solutions for simple shapes only

[72] ODE approach

Tapered (parabolic
and sinusoidal);

polygonal
cross section

• In order to derive buckled shape of linear elastic
columns, relationship between buckled shape
and load in free vibration was utilised

• governing differential equations solved by
Runge-Kutta method and determinant search
method combined with Regula-Falsi method

[73] ODE approach
with Green’s function

• Differential equation whose solution was
obtained by Green’s Function to give buckling
load of heterogeneous column by Functional
Perturbation Method (FPM)

• In order to find the material around which
Optimised Differential Functional Perturbation
Method (ODFPM), solution more accurate

• Second-order Perturbation term in Frechet’s
series minimised, which yielded nonlinear
differential equation and related material
property to bending stiffness

[29]
Modified vibrational mode shape

(MVM)
and energy method

Multistep
• buckling capacity of multistep column using

modified vibrational mode

* Additionally, Weinberger (unpublished research).

4.4. Imperfections Due to Functionally Graded Material

From the basic equation of Euler’s [5] one can directly infer that the buckling capacity
of columns can also be varied by varying the modulus of elasticity. This method was not
preferred until the technology advances to a level that variation of modulus of elasticity
either in the axial or longitudinal direction was feasible. Based on the literature, it is
observed that it is still a relatively unexplored area. In order to increase the buckling
capacity of the column, it was suggested to vary the modulus of elasticity, but the solution
of instability becomes difficult to compute. Signer [74] investigated the buckling solution for
columns with continuous monotonic variations of flexural rigidity along the column. Fixing
the origin at one end and x coordinate running along the centre line, variation of modulus
of elasticity (E) and moment of inertia (I) were assumed as follows by Equation (13):

E(x)I(x)η(x) = E(0)I(0) = E◦ I◦, η(x) = 1 + β(x), β ∈ R (13)

It is to be noted that compressed members used in the civil structure are supported at
the intermediate point (bracing). Considering the importance of the intermediate restraints,
the study in [75] approximated a column with spatial variation of flexural stiffness due
to material gradation or nonisoperimetric shape by an equivalent column with piecewise
constant geometrical and material properties (Figure 7). This method uses a transcendental
function that results in a closed-form solution of uniform columns. The suggested method
was unique because the mathematical model preserves the properties of a continuous sys-
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tem by containing the infinite eigenvalues corresponding to all higher buckling modes [75].
The buckling analysis of axially graded columns was conducted by Huang and Li [28]. They
transformed the governing differential equation with variable coefficients to Fredholm’s
integral equation which were further reduced to a system of algebraic equations. The
accuracy of the suggested procedure was confirmed by comparing the obtained result with
the available closed-form and numerical solutions. The significant role of their work was
that, unlike other research, it was not restricted only to suitable buckling mode. Through
this method, one can successfully solve the problem of buckling, if the variation of flexural
rigidity was polynomial, trigonometric, or exponential function.
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Recently, Elishakoff [76] studied the buckling of columns made from functionally
graded material in an axial direction. The study was limited to find the polynomial variation
of modulus of elasticity, E such that the buckling value exceeds in case of cantilever
column whose cross-sectional area was kept constant. In another recent investigation,
Rychlewska [77] presented buckling solutions for a beam with clamped-clamped, hinged-
hinged, and hinged-clamped boundary conditions with an exponential variation of material
properties in the axial direction and subjected to distributed load in exponential form.

4.5. Imperfections Due to Elevated Temperature or Fire Exposure

Specific attention can be paid to the buckling analysis of columns with variable
stiffness, as in Section 4.3, but with a focus on stiffness variations due to the use of materials
that are remarkably sensitive to temperature variations, as well as for resisting cross
section that may suffer for long-term temperature exposure. This is the case of load-bearing
members that are susceptible to elevated temperature exposure, and even fire, or any
kind of phenomena that can be represented by a “thermal gradient” for the resisting cross
section to analyse.

Most of the research studies, in this regard, are relatively recent and specifically
focused on columns composed of steel [78–80], reinforced concrete [81–84], timber [85–87].

Developments in building technology and design strategies are even more frequently
focused on innovative laminated glass solutions that are bonded by thermoplastic lay-
ers [88–91] or even composite-laminated insulated panels in which both mechanical and
climatic loads can severely affect the overall column buckling performance. In this last
case, thermal exposure effects do necessarily coincide with extreme accidents since fire
loading can have marked effects on the overall mechanical performance, given the typically
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small thickness that is of common use in structural glass applications. Besides different
materials and characteristics that are used for these members, the common aspect of the
above documents is represented by the progressive bending weakness deriving from the
degradation of the constituent materials. Therefore, the total compressive load acts on a
resisting section and member that prematurely collapses due to its lack of load-bearing
capacity. From a practical point of view, the shared feature for the cited literature studies is
the basic trend to define standardised design buckling curves for columns made of mostly
different constructional materials and thus to collect, in a simplified and univocal formu-
lation, all the possible uncertainties and effects due to material behaviours, eccentricities,
imperfections [92].

Even more attention is indeed required for load-bearing members in general that
can be subjected to scattered thermal patterns and are thus potentially characterised by a
number of critical cross sections.

Additionally, in this latter case, the first efforts are certainly related to the classical
material for buildings, thus steel members. Alpsten [93] showed, for example, that residual
nonuniform thermal stresses can severely affect the column buckling performance of a
given member and result in even more pronounced degradation than geometrical initial
imperfections. Culver [94] also focused on the analysis of pinned columns with thermal ex-
posure. The study proved that severe thermal gradients in the mid-span region of columns
are typically associated with a remarkable loss of global buckling capacity. While such a
concept can be intuitive—due to stiffness reduction—this is in contrast with the discussion
by Hoffend [95]. The reason is in the idealisation of the thermal gradient profile. The gener-
ally recognised idea, finally, is that thermal gradient effects can be generally schematised in
the form of an equivalent initial imperfection. Therefore, the overall buckling performance
of an axially loaded member in compression can be severely compromised. On the other
hand, this issue can be efficiently addressed for safe design by means of conventional
calculation methods that include a given initial geometrical imperfection.

5. Conclusions

The problem investigated by Euler was much simpler since it did not involve finding
the solution of differential equation with varying coefficient because neither the material
properties nor the cross-sectional dimensions were changing. However, in an attempt to
maximise the buckling capacity of the column, modifications were performed in the column
due to which the differential equation governing the mathematical model is left with varying
coefficients. This review paper provides a complete synopsis of the development of various
theories related to column buckling. A significant number of methods were recalled to obtain
close-form solutions, but providing evidence for each one of them had certain intrinsic
restrictions—either the buckling shape was assumed to be governed by a specific function or
the distribution of flexural stiffness was not random. Moreover, all the discussed methods
in the literature showed rather good agreement with some experimental results available
in the literature. However, which one of them is more suitable to find the solution for a
given arbitrary variation of coefficients still remains an unanswered question. In the self-
buckling of columns, more research emphasis is required for the proper discretisation of elastic
segments with rigid segments. For short column analysis, detailed experiments with various
materials are one of the areas wherein research still needs to be carried out. In long columns
analysis, more emphasis shall be put on the development of closed-form solution with
variable moment of inertia with emphasis on varying material properties along the length
of the column. Further, different functions can be developed to investigate the variation
of modulus of elasticity and its effect on the buckling strength of columns. Furthermore,
attention is indeed required for load-bearing members in general that can be subjected to
scattered thermal patterns and are thus potentially characterised by a number of critical cross
sections. This can be achieved by incorporating the effect of thermal gradient in terms of
initial imperfections.
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