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Abstract: Deep Reinforcement Learning (DRL) proved to be successful for solving complex control
problems and has become a hot topic in the field of energy systems control, but for the particular
case of thermal energy storage (TES) systems, only a few studies have been reported, all of them with
a complexity degree of the TES system far below the one of this study. In this paper, we step forward
through a DRL architecture able to deal with the complexity of an innovative hybrid energy storage
system, devising appropriate high-level control operations (or policies) over its subsystems that
result optimal from an energy or monetary point of view. The results show that a DRL policy in the
system control can reduce the system operating costs by more than 50%, as compared to a rule-based
control (RBC) policy, for cooling supply to a reference residential building in Mediterranean climate
during a period of 18 days. Moreover, a robustness analysis was carried out, which showed that,
even for large errors in the parameters of the system simulation models corresponding to an error
multiplying factors up to 2, the average cost obtained with the original model deviates from the
optimum value by less than 3%, demonstrating the robustness of the solution over a wide range of
model errors.

Keywords: deep reinforcement learning; optimal control; optimization; HYBUILD; thermal energy
storage; residential buildings

1. Introduction

As building energy consumption accounts for a large percentage of the total energy
consumption, an extensive work on new methods and strategies for more efficient control
systems has been done. In this sense, many approaches have been proposed, from classical
control theory to reinforcement learning, particularly related to heating, ventilation and
air conditioning (HVAC) systems. The availability, ubiquity and performance of current
digital systems, as well as their reduced cost, allow to devise control scenarios where many
parameters can be easily monitored (i.e., batteries state, instant photovoltaic production,
current consumption demand, etc.) and take real-time decisions according to different
control techniques, always pursuing some predefined objectives such as lowest operating
costs or better efficiencies, among others.

Even though the use of machine learning techniques is relatively recent, model predic-
tive control (MPC) and all its flavors, produced a large number of publications in the field
of optimal control for energy storage systems. A complete review on control of storage
systems can be found in [1–4] with particular reference to MPC approaches. Even though
MPC is able to reach optimal or quasi-optimal solutions, its implementation for complex
systems is challenging. Aside from its computational requirements that can difficult a
real-time control, MPC optimization problems usually require to be formulated as mixed
integer non-linear programming (MINLP) problems [5,6], requiring specialized solvers to
find optimal solutions as SCIP [7,8]. Current state-of-the-art solvers only deal with certain
type of non-linearities, making it sometimes hard or impossible to express a complex
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system as a quasi-linear system. Not to mention its difficulty to adapting under uncertainty
scenarios, especially arising from model inaccuracies.

In recent years, reinforcement learning (RL) has emerged as an efficient alternative
to MPC. RL is based on a mathematical framework for experience-driven autonomous
learning [9]. In essence, the learning process is established on a trial-and-error basis,
interacting with either the real system or its model. Early RL algorithms, back to the 1980s,
proved to solve a wide range of problems in different areas. Q-Learning was one of the
most often recurred [10], being firstly used in the field of thermal storage control by Liu
and Henze [11,12], and proving experimentally its feasibility. It was in that work where
the RL drawbacks for optimal control were mentioned. An inaccurate model may lead to
unexpected behavior and, as in all the RL approaches, the curse of dimensionality of the
actions-state space arose, putting difficulties in future approaches for complex systems.
It was at this point that neural networks came to the rescue, by substituting the time and
memory consuming value tables in classical RL schemes and becoming deep reinforcement
learning (DRL).

Since its appearance in 2013 [13], DRL has been applied successfully to many complex
control problems and, particularly, was first used in HVAC control in [14]. A good review
of RL for energy management can be found in [15–17], while [18] made an exhaustive
analysis of DRL applications for HVAC systems. For the particular case of thermal energy
storage (TES) systems, only a few studies were reported in [15,17]. Actually, [17] only
identifies 6 publications related to the control of TES systems, all of them with a complexity
degree of the TES system far below the one of this study. The study and experimentation by
Liu and Henze [19] were the cornerstones of the application of RL to active and passive TES
systems, proving the advantages of hybrid approaches that allow accelerating the learning
phase by simulation. Later and distinct uses of RL are found in [20,21] describing the first
use, to the authors knowledge, of RL techniques to phase change materials (PCM) storage.

The main contribution in this study is twofold. First, the use of DRL for optimal
control under demand response in a complex and innovative system to reduce the energy
demand for heating, cooling and domestic hot water of a standard single-family residential
building is presented in detail. The system, proposed and developed within the H2020
research project, HYBUILD [22], integrates different subsystems such as photovoltaic (PV)
panels, Fresnel solar thermal collector, a sorption chiller connected with a reversible heat
pump and electrical and thermal energy storages. The application of DRL for optimal
control of such a complex system is the first to the best of the authors knowledge. Second,
a robustness analysis of the learning process was performed, showing that the learned
model results are useful and accurate even for large deviations between the real and the
simulated system, answering one of the open questions reported in [17] and proving that
the model presented in this study and evaluated under a simulated scenario may fit the
control requirements for the real test pilot plant.

2. Methodology

This section explains the details of the system and the approach used for system
modelling and optimization.

2.1. System Description

The system considered in this study (Figure 1) was designed to ensure comfort indoor
conditions and domestic hot water (DHW) in residential buildings, and specifically to
reduce primary energy consumption of single-family houses located in Mediterranean
climate regions. Therefore, the different system components were chosen and sized with
the main purpose to meet most of the cooling demand using solar energy. To enhance
the energy efficiency of the system and the share of renewable energy, it incorporates
four different energy storage technologies: an electric battery connected to PV panels, a
low-temperature phase change material (PCM) storage unit connected to the low-pressure
side of the heat pump, a sorption chiller connected to the high-pressure side of the heat



Buildings 2021, 11, 194 3 of 31

pump and a buffer water tank that stores the heat produced by the Fresnel solar collectors.
The hot water stored in the buffer tank is used to drive the sorption chiller and also to
contribute to heating and DHW supply.

Figure 1. Schematic of the system and its main components.

The heat pump is fed with DC current by means of a DC-bus, which interconnects the
PV panels, electric battery, heat pump and (by means of an AC/DC inverter) the power
grid. Even though this type of connection enhances the complexity of the system, it also
gives a high flexibility and improves the efficiency of the system by reducing the number
of multiple stages of conversions from DC to AC and vice-versa.

To obtain the energy demand of the building, a single-family residential building
located in Athens was considered as a reference building for Mediterranean climate regions.
The building has a total surface of 100 m2 distributed in two floors, each having a living
surface area of 50 m2, and it was assumed to be inhabited by four people. The ceiling/floor
heights considered were 2.5 m/3.0 m, while the building width/depth were 6.5 m/8.0 m.
The glazing ratio considered was of 20% on the south side, 10% on the north side and 12%
on the east and west sides. The energy demand profile for cooling, heating and DHW of
the building were obtained within the HYBUILD project [23] activities and it is out of the
scope of this paper to present the details of energy demand calculations.

2.2. Components Models and Operating Modes Description

This subsection presents the main system components mathematical models along
with the associated operating modes, which were implemented in the control strategies
developed for the system.

2.2.1. Fresnel Collectors

The Fresnel collectors consist of flat mirrors that can rotate around a fixed horizontal
axis oriented along the north-south direction. There are only two possible operating modes
of this component: mode 1 (on) and mode 2 (off). In mode 1, the orientation of the mirrors
is set by a controller in such a way that they focus the incident solar radiation to the receiver
that is located on top of the mirrors to heat the water in the primary circuit up to 100 ◦C.
The heat is transferred to the buffer tank by means of a heat exchanger (HEX1) and two
circulation pumps (P1 and P2) installed in the primary and secondary circuits, respectively.
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No heat losses were considered in HEX1 for simplicity. In mode 2, no heat is harvested by
the solar collectors and pumps P1 and P2 are switched off.

When operating in mode 1, the thermal power generated by the Fresnel collectors
(

.
Qsolar, in kW) is given by Equation (1), otherwise

.
Qsolar = 0.

.
Qsolar =

[
ηopt·ηclean·DNI −

(
4.8703− 0.0981·Tm + 9·10−4·T2

m
)
−(

(Tm−Tamb)−80
4 + 29.043 + 1.0983·vw + 0.4188·v2

w + 4·10−5·v3
w

)]
·

AFres/1000,

(1)

where ηopt is the optical efficiency of the receiver, ηclean = 1 is the mirror cleanness factor,
DNI (in W/m2) is the direct normal irradiance at the specified location [24], Tm = 95 ◦C is
the mean receiver temperature, Tamb (in ◦C) is the ambient air temperature [24], vw (in m/s)
is the wind speed [24] and AFres = 60 m2 is the total surface area of the solar collectors.

The values for the optical efficiency of the receiver (ηopt) depend on the month of
the year and on the geographic coordinates of the location, and were provided by the
manufacturer within HYBUILD activities [22].

The overall electricity consumption of Fresnel collectors is the sum of the consumption
of the circulation pumps P1 (34 W) and P2 (34 W), when the Fresnel collectors operate in
mode 1, otherwise the electricity consumption of this component is zero.

2.2.2. PV Panels

The PV panels were assumed to face south and have a tilt angle of 30◦ with respect to
the horizontal plane. The net power generated by the PV panels (PV, in kW) is given by
Equation (2):

PV = ηPV ·EPOA·APV , (2)

where ηPV = 0.16 [25] is the efficiency of the PV system, EPOA (in W/m2) is the plan of
array (POA) irradiance at the specified location and APV = 20.9 m2 is the PV panels surface
area. The efficiency of auxiliary components related to the PV system (DC/DC converter,
connections, etc.) was assumed to be accounted for in ηPV .

The value of the solar irradiance incident to the PV surface (EPOA, in W/m2) is the
sum of three contributions, as shown in Equation (3):

EPOA = Eb + Eg + Ed, (3)

where Eb (in W/m2) is the POA beam component, Eg (in W/m2) is the POA ground-
reflected component and Ed (in W/m2) is the POA sky-diffuse component.

The three contributions shown in the right-hand member of Equation (3) were obtained
using Pysolar library [26] and Reindl model [27–29], and assuming an albedo of 0.2.

2.2.3. Heat Pump and PCM Tank

The heat pump (HP) is one of the core components of the system and it is mainly used
to provide space cooling, although it can also provide space heating. On the one hand, the
low-pressure circuit of the HP is connected to an innovative type of PCM tank, which can
at the same time act as the evaporator of the heat pump. The main purpose of the PCM
tank is to store the surplus of coolness produced by the HP during periods of low cooling
demand and high PV production, when the electric battery is already completely charged.
On the other hand, the high-pressure circuit of the HP (condenser) is connected, by means
of a hydraulic loop, to the evaporator of a sorption chiller, so that the heat rejected by the
HP condenser is absorbed by the evaporator of the sorption chiller. The objective of this
connection is to increase the efficiency (EER) of the HP and reduce therefore the overall
electricity consumption of the heat pump.

As shown in Figure 1, the hydraulic connections allow the HP and PCM tank to
operate in different modes, either for cooling or heating purposes, as summarized in
Table 1.
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Table 1. Operating modes of the HP and PCM tank.

Mode Description Active Pumps Dry Cooler Fan-Coils

Cooling 1
PCM tank is charged by the heat
pump, no cooling is provided to

the building

P5–P8 (if sorption is on)
P7 and P8 (if sorption is off) On Off

Cooling 2 PCM tank is discharging to
provide cooling to the building P9 and P10 Off On

Cooling 3 Cooling is provided by the HP
through the PCM tank

P5–P10 (if sorption is on)
P7–P10 (if sorption is off) On On

Cooling 4 Cooling is provided by the HP
through the standard evaporator

P5–P10 (if sorption is on)
P7–P10 (if sorption is off) On On

Heating Heating is provided by the HP P7 and P10 On On
0 No cooling or heating is provided None Off Off

The PCM tank consists of a compact three-fluids (refrigerant-PCM-water) heat ex-
changer, in which PCM is placed in an array of parallel channels containing aluminum fins,
sandwiched between refrigerant and water channels in an alternating sequence. This con-
figuration allows for efficient heat transfer between the three fluids in the same container,
also made of aluminum, which allows for easy charging and discharging of the PCM, as
well as direct heat transfer between the supply and demand circuits. An amount of 160 kg
of the commercial RT4 PCM, which is a paraffin that melts around 5 ◦C, was considered in
the PCM tank. A complete description of the HP and PCM tank model can be found in [30].
A slightly improved model for the PCM tank was used in this study to also consider the
sensible contribution to the overall energy stored in the PCM tank, as well as energy losses
to the ambient. The updated relation between the charging level of the PCM tank (EPCM,t,
in kJ) and the PCM temperature (TPCM,t, in ◦C) at time t is shown in Equation (4):

EPCM,t =


43186.8, i f TPCM,t < −2 ◦C

−211.75·TPCM,t
2 − 2110.7·TPCM,t + 39812, i f − 2 ◦C ≤ TPCM,t ≤ 3 ◦C

−1270.5·TPCM,t
2 + 3183·TPCM,t + 33460, i f 3 ◦C < TPCM,t < 6 ◦C

−1136.7·TPCM,t + 13640, i f 6 ◦C& ≤ TPCM,t ≤ 12 ◦C
0, i f TPCM,t > 12 ◦C

, (4)

Regardless the operating mode, the change in the energy stored in the PCM tank at
time t is calculated from the charging level at the previous time slot (EPCM,t−1, in kJ) and
the net rate of coolness transfer to the PCM in the time interval ∆t (in seconds), as shown
in Equation (5):

EPCM,t = EPCM,t−∆t +
( .

QPCM −
.

Qlosses

)
·∆t, (5)

where
.

QPCM (in kW) is the rate of coolness transfer to the PCM and
.

Qlosses = (Tamb,t−
TPCM,t−1)/RPCM (in kW) are the coolness losses from the PCM tank to the ambient air at
temperature Tamb,t (in ◦C). The thermal resistance of the PCM tank (RPCM) was estimated
to be equal to 424.5 K/kW.

The rate of coolness transfer to the PCM (
.

QPCM) depends on the operating mode.
When operating in cooling mode 1, the entire energy (coolness) generated by the HP (

.
Qevap,

in kW) [30] is transferred to the PCM, so that
.

QPCM =
.

Qevap. In cooling mode 2, the PCM
is discharged by the heat transfer fluid (HTF) of the building cooling circuit, and it was
assumed to be equal (in absolute value) to the cooling demand, i.e.,

.
QPCM = −

.
Qcool,demand.

In cooling mode 3, an energy balance is needed to determine the net rate of coolness
transferred to the PCM because, on the one hand, the PCM is cooled down by the refrigerant
and, on the other hand, it is heated up by the HTF. Therefore, in cooling mode 3, the PCM
tank can actually be charging or discharging, depending on the charge level and the cooling
demand. In cooling mode 4, the heat pump operates with the standard evaporator and the
PCM tank is by-passed, and the same occurs when the heat pump operates in the heating
mode. Therefore,

.
QPCM = 0 in cooling mode 4 and in heating mode.
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When the heat pump operates in heating mode, the sorption chiller is always off.
The heat required by the building is taken from the ambient air through the dry cooler by
activating pump P7 and by-passing HEX2, and it is delivered to the building heating loop
connected to the condenser of the heat pump by activating P10 and by-passing HEX3.

Once the charging level of the PCM tank at time slot t (EPCM,t) is calculated, the
PCM temperature and the water temperature at condenser outlet (Twc,out,t) can be updated.
Moreover, the electricity consumption of the compressor of the heat pump (

.
Qcomp), as well

as the electricity consumption of all auxiliary equipment (pumps, dry cooler, fan-coils), can
be calculated by taking into account what components are active in each operating mode
according to Table 1. Only the compressor of the heat pump is driven by the DC-bus, while
all other equipment uses electricity directly from the grid.

2.2.4. Sorption Chiller

The sorption chiller consists of two adsorbers based on a silica gel/water system,
which switch periodically between adsorption and desorption operation in counter phase,
a condenser and an evaporator. There are only two possible operating modes for the
sorption chiller: mode 1 in which the sorption chiller is on and mode 2 in which it is off. In
mode 1, the adsorption cycle is activated thanks to the hot water provided by the buffer
tank. To work properly, the temperature of the hot water provided by the buffer tank
(THT,in) should lie between 65 ◦C and 95 ◦C. At the evaporator side of the sorption chiller,
heat is taken from the condenser of the HP. The waste heat produced by the sorption chiller
is drained by the dry cooler to the ambient air at temperature Tamb.

The thermal coefficient of performance (COPth) of the sorption chiller is defined
as COPth =

.
QLT/

.
QHT , where

.
QLT (in kW) is the cooling power (heat taken from the

condenser of the HP) and
.

QHT (in kW) is the thermal power extracted from the buffer tank.
Experimental tests performed in the lab showed that COPth can be considered constant
and equal to 0.55 for a large range of operating conditions.

The cooling power of the sorption module (
.

QLT) is a function of the water temperature
at the evaporator inlet (TLT,in, in ◦C), the water temperature that returns from the dry
cooler (TMT,in, in ◦C) and the water temperature that returns from the buffer tank (THT,in,
in ◦C) [31], as shown in Equation (6):

.
QLT = 4.559 + 1.36245·TLT,in − 1.64553·TMT,in + 0.47773·THT,in, (6)

The return water temperature from the dry cooler (TMT,in) was assumed to be 5 K
above the ambient temperature, i.e., TMT,in = Tamb + 5. The water temperature at the
evaporator inlet (TLT,in) was assumed to be equal to the water temperature at the outlet of
the condenser of the HP evaluated at the previous time slot, i.e., TLT,in,t = Twc,out,t−1.

Therefore, the thermal power extracted from the buffer tank (
.

QHT) can be calculated
according to Equation (7) [31]:

.
QHT =

.
QLT

COPth
=

.
QLT
0.55

, (7)

Water temperature at the outlet of the adsorption module (THT,out,t, in ◦C) can be
obtained using an energy balance as shown in Equation (8):

THT,out,t = THT,in,t −
.

QHT
.

mad·cp,w
, (8)

where
.

mad = 0.694 kg/s is the mass flow rate of the water in the loop that connects the
buffer tank with the sorption chiller and cp,w = 4.18 kJ/(kg·K) is the specific heat capacity
of the water.
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Finally, the water temperature at the evaporator outlet (TLT,out,t, in ◦C) can be obtained
using an energy balance as shown in Equation (9):

TLT,out,t = TLT,in,t −
.

QLT
.

mwc·cp,w
, (9)

where
.

mwc = 1.417 kg/s is the mass flow rate of the water in the loop that connects the
condenser of the HP with the evaporator of the sorption chiller.

In mode 2, the sorption chiller is off and the following values were assumed for the
main variables related to the sorption chiller:

.
mad =

.
QHT =

.
QLT = 0, THT,out,t = THT,in,t =

Tbu f f er,top,t−1, TLT,in,t = Tamb + 5 and TLT,out,t = TLT,in,t, where Tbu f f er,top,t−1 (in ◦C) is the
temperature of the water at the top part of the buffer tank at the previous time slot.

The overall electricity consumption of the sorption chiller in mode 1 is the sum of the
electricity consumption of the dry cooler, pumps P5–P8 and the actuators of the hydraulic
system and controller (around 200 W). In mode 2, the electricity consumption of the
sorption chiller is zero. The electricity needed to feed the sorption module is taken from
the grid.

2.2.5. Dry Cooler

The dry cooler switches on whenever there is a need to reject heat from the system to
the ambient air, i.e., when the sorption chiller and/or the heat pump are on. The electricity
consumption of the dry cooler (

.
Wdc, in kW) depends on the part load of the dry cooler

(PLdc) and it is given in Equation (10) [32]:

.
Wdc = 0.0176− 0.1622·PLdc + 0.8781·PL2

dc, (10)

The part load (PLdc) is defined as the actual thermal power to be rejected or absorbed
by the dry cooler divided by its nominal thermal power (40 kW), i.e., PLdc =

.
Qdry cooler/40.

The actual thermal power (
.

Qdry cooler, in kW) depends on the operating modes of both the
sorption chiller and the HP, as shown in Equation (11):

.
Qdry cooler =


.

QHT +
.

QLT , if sorption chiller is on
.

Qcond, if sorption chiller is off and HP operates in cooling mode
.

Qevap, if HP operates in heating mode

, (11)

where
.

Qcond (in kW) is the rate of heat rejected by the HP condenser and
.

Qevap (in kW) is
the heat absorbed by the dry cooler from the ambient air.

2.2.6. DHW Tank

The DHW tank is used in the system to store a sufficient amount of hot water able to
meet the DHW demand of the building at any moment. Therefore, the water stored in the
tank should always be kept above a minimum temperature level. To achieve it, the DHW
tank should be heated with hot water from the buffer tank. An electric heater can also be
used as a backup in case the temperature in the buffer tank is not high enough to be able to
charge the DHW tank. In case the water temperature inside the DHW tank lies within the
required temperature range, no heat is provided to the DHW tank. This means that there
are three possible operating modes for the DHW tank: mode 1, in which the DHW tank is
heated by the buffer tank, mode 2, in which it is heated by the electric heater and mode 3,
when no heat is provided to the DHW tank.

In mode 1, pump P3 is activated to circulate hot water from the top part of the buffer
tank to heat the DHW tank. This mode can be activated whenever the temperature inside
the DHW tank (TDHW , in ◦C) is below a lower threshold (TDHW < Tset,DHW − 5) and the
temperature of the water at the top part of the buffer tank (Tbu f f er,top, in ◦C) is above a
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given threshold (Tbu f f er,top ≥ Tset,DHW + 10). The DHW tank is heated by the water from
the buffer tank until the water temperature inside the DHW reaches the upper threshold of
the set-point temperature (TDHW ≥ Tset,DHW + 5) or the buffer tank temperature is lower
than the required threshold (Tbu f f er,top < Tset,DHW + 10), whichever occurs first. The value
considered for the set-point temperature of the DHW tank is Tset,DHW = 50 ◦C.

Mode 2 is activated when the temperature inside the DHW tank is below the set-
point range (TDHW < Tset,DHW − 5) and the DHW tank is heated by the electric heater
(instead of the buffer tank). Similar to mode 1, the electric heater is switched off when
the water temperature reaches the upper threshold of the set-point temperature (TDHW ≥
Tset,DHW + 5). In mode 3, water temperature inside the DHW tank lies within the required
temperature range (Tset,DHW − 5 < TDHW < Tset,DHW + 5), so no heat is supplied to the
DHW tank, although heat can be discharged from the DHW tank to meet the demand.

In all three modes, the temperature distribution inside the tank is considered homo-
geneous, and it can be calculated at any time t by means of an energy balance given in
Equation (12):

a1·
.

QDHW,bu f f er + a2·
.

QDHW,el −
.

QDHW,demand −
.

Qloss,DHW =
MDHW ·cp,w·(TDHW,t − TDHW,t−1)

∆t
, (12)

where a1 = (1, 0, 0) and a2 = (0, 1, 0) for DHW mode = (1, 2, 3), respectively,
.

QDHW,bu f f er (in

kW) is the heat extracted from the buffer tank,
.

QDHW,el = 2 kW is the thermal power sup-

plied by the electric heater,
.

QDHW,demand (in kW) is the DHW demand,
.

Qloss,DHW (in kW)
are the heat losses from the DHW tank to the ambient air, MDHW = 250 kg is the mass of
the water inside the DHW tank and TDHW,t−1 (in ◦C) is the temperature of the water inside
the DHW tank calculated in the previous time slot.

The heat extracted from the buffer tank (
.

QDHW,bu f f er) depends on the temperature
inside the DHW tank (TDHW,t) as shown in Equation (13):

.
QDHW,bu f f er =

.
mDHW ·cp,w·(TDHW,in − TDHW,t), (13)

where
.

mDHW = 0.556 kg/s is the water mass flow rate (displaced by pump P3) in the loop
that charges the DHW tank and TDHW,in = 60 ◦C is the set-point of water temperature at
the DHW tank inlet.

Heat losses from the DHW tank to the ambient air (
.

Qloss,DHW) are calculated using
Equation (14):

.
Qloss,DHW =

TDHW,t − Tamb,t

RDHW
, (14)

where RDHW = 830.8 K/kW is the overall thermal resistance of the DHW tank.
The electricity consumption of the DHW tank from the grid is associated to the

circulating pump P3 (only in mode 1) and the electric heater (only in mode 2). There is no
electricity consumption in mode 3.

2.2.7. Buffer Tank

The buffer tank is modelled considering three different regions (volumes) and assum-
ing a uniform water temperature distribution inside each volume (Figure 2) [33,34]. The
temperature of the buffer tank at time slot t is calculated by applying an energy balance
to each of the three different volumes of the tank. Heat transfer by conduction or natural
convection between two adjacent regions is neglected and the only heat transfer mechanism
considered is through mass transfer. The buffer tank charging is assumed to be done with
hot water at constant inlet temperature of 95 ◦C coming from the Fresnel solar field. The
heat generated by the solar collectors (

.
Qsolar, in kW) is transferred to the buffer tank by

means of a heat exchanger placed between the solar field loop and the buffer tank loop
(HEX1 in Figure 1). Heat losses between the solar field and the buffer tank were neglected
for simplicity. The mass flow rate of the water in the buffer tank loop (

.
msolar, in kg/s) is

variable to maintain a constant water temperature at the buffer tank inlet.



Buildings 2021, 11, 194 9 of 31

Figure 2. Schematic of the different inlets and outlets of the buffer tank.

For the top region, the energy balance is shown in Equation (15):

.
msolar·cp,w·

(
Tsolar,in − Tbu f f er,top,t−1

)
+

.
m′DHW ·cp,w·

(
Tbu f f er,mid,t−1−

Tbu f f er,top,t−1

)
+

.
mad·cp,w·

(
Tbu f f er,mid,t−1 − Tbu f f er,top,t−1

)
−

(Tbu f f er,top,t−1−Tamb)
Rbu f f er,top

= ftop·Mbu f f er·cp,w·
Tbu f f er,top,t−Tbu f f er,top,t−1

∆t ,

(15)

where Mbu f f er = 800 kg is the mass of the water inside the buffer tank, ftop = 0.3 is the mass
fraction of the top part of the buffer tank, Tsolar,in = 95 ◦C is the inlet temperature of the
water flow coming from the Fresnel collectors, Tbu f f er,top,t−1 (in ◦C) and Tbu f f er,mid,t−1 (in
◦C) are the temperatures of water at the top and middle parts of the buffer tank in the
previous time slot, respectively, and ∆t is the time step (in seconds). If sorption module is
off,

.
mad = 0. The sorption module is automatically switched off when Tbu f f er,top,t < 65 ◦C

and it may be switched on again when Tbu f f er,top,t ≥ 68 ◦C (if the high-level controller
decides it is best to do it, and whenever the heat pump is working in one of the cooling
modes 1, 3 or 4).

The mass flow rate of the loop that connects the buffer tank with the solar field (
.

msolar,
in kg/s) is given by Equation (16):

.
msolar =

.
Qsolar

cp,w·
(

Tsolar,in − Tbu f f er,bot,t−1

) , (16)

where Tbu f f er,bot,t−1 (in ◦C) is the water temperature at the bottom part of the buffer tank
evaluated at the previous time slot. When the water temperature at the top of the buffer
tank reaches 94 ◦C during charging, the solar field is switched off and the charging of
the buffer tank stops (

.
msolar = 0) until the water temperature at the top of the buffer tank

decreases to 90 ◦C, when it may be switched on again if
.

Qsolar > 0.
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The water mass flow rate at the buffer tank outlet towards the DHW tank charging
circuit (

.
m′DHW , in kg/s) is given by Equation (17):

.
m′DHW =

.
mDHW ·(TDHW,in − TDHW,t−1)(

Tbu f f er,top,t−1 − TDHW,t−1

) , (17)

where TDHW,t−1 (in ◦C) is the temperature inside the DHW tank at the previous time slot.
Equation (17) only applies if the DHW tank works in mode 1 (charging with heat supplied
from the buffer tank), otherwise

.
m′DHW = 0.

Heat losses from the top part of the buffer tank to the ambient air depend on the
thermal resistance of this part of the tank (Rbu f f er,top, in K/kW), which can be calculated
using Equation (18):

Rbu f f er,top =
Rbu f f er·

(
Aedge + 2·Abase

)
ftop·Aedge + Abase

, (18)

where Rbu f f er = 430.3 K/kW is the overall thermal resistance of the buffer tank, Aedge = 4.095 m2

is the surface area of the buffer tank edge (lateral surface area) and Abase = 0.62 m2 is the surface
area of the base of the buffer tank.

For the middle part of the buffer tank, the energy balance is shown in Equation (19):

.
msolar·cp,w·

(
Tbu f f er,top,t−1 − Tbu f f er,mid,t−1

)
+

.
m′DHW ·cp,w·(

Tbu f f er,bot,t−1 − Tbu f f er,mid,t−1

)
+

.
mad·cp,w·

(
THT,out,t−1 − Tbu f f er,mid,t−1

)
+

.
mheat·cp,w·

(
Tbu f f er,bot,t−1 − Tbu f f er,mid,t−1

)
− (Tbu f f er,mid,t−1−Tamb)

Rbu f f er,mid
= fmid

·Mbu f f er·cp,w·
Tbu f f er,mid,t−Tbu f f er,mid,t−1

∆t ,

(19)

where
.

mheat = 0.63 kg/s is the mass flow rate of the building heating loop (circulated
by pump P4), fmid = 0.3 is the mass fraction of the middle part of the buffer tank and
THT,out,t−1 (in ◦C) is the temperature of the water returning from the adsorption module. If
there is no heating demand (

.
Qheat,demand = 0) or heat is provided to the building by the heat

pump working in heating mode,
.

mheat = 0.
Heat losses from the middle part of the buffer tank to the ambient air depend on the

thermal resistance of this part of the tank (Rbu f f er,mid, in K/kW), which can be calculated
using Equation (20):

Rbu f f er,mid =
Rbu f f er·

(
Aedge + 2·Abase

)
fmid·Aedge

, (20)

For the bottom region of the buffer tank, the energy balance equation is shown in
Equation (21):

.
msolar·cp,w·

(
Tbu f f er,mid,t−1 − Tbu f f er,bot,t−1

)
+

.
m′DHW ·cp,w·(TDHW,t−1−

Tbu f f er,bot,t−1) +
.

mheat·cp,w·
(

Theat,out,t−1 − Tbu f f er,bot,t−1

)
−

(Tbu f f er,bot,t−1−Tamb)
Rbu f f er,bot

= fbot·Mbu f f er·cp,w·
Tbu f f er,bot,t−Tbu f f er,bot,t−1

∆t ,

(21)

where fbot = 0.4 is the mass fraction of the bottom part of the buffer tank.
When the heating demand is satisfied by the buffer tank, water temperature returning

from the building (Theat,out,t−1, in ◦C) depends on the heating demand of the building
(

.
Qheat,demand, in kW) and it is calculated according to Equation (22):

Theat,out,t−1 = Tbu f f er,mid,t−1 −
.

Qheat,demand
.

mheat·cp,w
, (22)
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Otherwise, when there is no heating demand from the building (
.

Qheat,demand = 0) or
heat is provided by the heat pump working in heating mode,

.
mheat = 0 and Theat,out,t−1 =

Tbu f f er,mid,t−1 (as an alternative to Equation (22)). In case that water temperature at the
middle part of the buffer tank is below 45 ◦C (Tbu f f er,mid,t < 45 ◦C), heat cannot be delivered
to the building from the buffer tank, therefore pump P4 switches off (

.
mheat = 0).

Heat losses from the bottom part of the buffer tank to the ambient air depend on the
thermal resistance of this part of the tank (Rbu f f er,bot, in K/kW), which can be calculated
using Equation (23):

Rbu f f er,bot =
Rbu f f er·

(
Aedge + 2·Abase

)
fbot·Aedge + Abase

, (23)

The overall electricity consumption associated to the buffer tank only consists of the
electricity consumption of pump P4 (34 W) when the heating demand of the building is
higher than zero and this demand is met by the buffer tank (

.
mheat >0) and not by the heat

pump working in heating mode.

2.2.8. DC-Bus

The heat pump is driven by DC through a connection to the DC-bus. Electricity can be
taken either from the PV panels and/or from the battery, depending on the PV production
and the state of charge of the battery. Furthermore, in case that the power supplied by
the battery and the PV panels is not enough to feed the heat pump, electricity can also
be provided by the power grid through an AC/DC converter (not shown in Figure 1).
Conversely, when the PV production is high and the battery is fully charged, surplus
electricity can be delivered to the grid. The power generated by the PV panels (PV, in
kW) was assumed to be always less than the maximum charging power of the battery
(PV < MaxB) and the maximum discharging power of the battery (MaxB) was assumed
to be always higher than the power demanded by the HP (MaxB > HP).

Three different operating modes were considered for the DC-bus, focusing on the
control strategy of the battery, as summarized in Table 2. Two thresholds, E1 (in %) and E2
(in %), were used to drive the DC-bus in one of the three possible operating modes.

Table 2. Operating modes of the DC-bus and associated thresholds values.

Mode Name E1 (%) E2 (%)

1 Charging 75 90
2 Discharging 10 25
3 Buffer 10 90

Charging mode (mode 1) takes place if Emin ≤ BS ≤ E1, where Emin = 10% is the lower
charging level allowed for the battery, BS (in %) is the state of charge of the battery and E1
(in %) is a threshold below which the battery is automatically charged (i.e., when BS ≤ E1).
In this mode, the battery charges at a constant maximum rate (B = MaxB = 3 kW) until
BS = 75%, after which the battery switches to buffer mode.

In charging mode, the power required by the heat pump (HP) can only be taken from
the PV and/or from the grid (G), but not from the battery (Figure 3a).
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Figure 3. Schematic of the DC-bus operating in (a) charging, (b) discharging and (c) buffer modes.

The equations that describe the different energy streams in charging mode are shown
in the set of Equation (24): 

HPPV = min(PV, HP)
BPV = max(0, PV − HP)

BG = MaxB− BPV
HPG = max(0, HP− PV)

GPV = HPB = 0

, (24)

where HPPV (in kW) is the power supplied to the HP from the PV panels, BPV (in kW) is
the power supplied to the battery from the PV panels, BG (in kW) is the power required
from the grid to charge the battery at maximum power, HPG is the power required from
the grid to feed the HP, GPV is the power coming from the PV panels that is delivered to
the grid and HPB is the power supplied to the HP from the battery. The power exchanged
between X and Y, where X and Y may refer to PV (PV panels), HP (heat pump), G (power
grid) or B (battery), is assumed to be positive (XY > 0) if energy is incoming to X from Y
( X ← Y ).

Discharging mode (mode 2) takes place if E2 < BS ≤ Emax, where E2 (in %) is a
threshold above which the battery automatically discharges (i.e., when BS > E2) and
Emax = 90% is the upper threshold allowed for the charging level of the battery. In this
mode, the battery is discharging at the maximum rate (B = −MaxB = −3 kW) towards
both the HP and the grid (Figure 3b) until BS = 25%, after which the battery switches to
buffer mode.

The equations that describe the different energy streams in discharging mode are
shown in the set of Equation (25):

HPPV = min(PV, HP)
HPB = max(0, HP− PV)

BG = −MaxB + HPB
GPV = max(0, PV − HP)

HPG = BPV = 0

, (25)

Buffer mode (mode 3) takes place if E1 < BS ≤ E2. Whenever the optimizer decides
to switch to the buffer mode, the following values are assigned: E1 = 10% and E2 = 90%.
In this way, the battery will be forced to switch to buffer mode whatever the value of BS is.

In mode 3, the battery acts as a buffer, meaning that it charges if there is a surplus of
electricity production from the PV panels or it discharges if the HP requires more power
than is produced by the PV panels (Figure 3c). In this mode, there is no interaction between
the battery and the grid, i.e., the battery cannot charge from the grid, neither can it deliver
electricity to the grid.
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The equations that describe the different energy streams in buffer mode are shown in
the set of Equation (26):

HPPV = min(PV, HP)
BG = 0

if (−400 W < PV − HP < 400 W) then
GPV = max(0, PV − HP)
HPG = max(0, HP− PV)

BPV = HPB = 0
else

BPV = max(0, PV − HP)
HPB = max(0, HP− PV)

GPV = HPG = 0
,

(26)

In this mode, the total power supplied to the grid (G) can be negative, positive or zero,
depending on the relation between PV production and HP consumption. The total power
supplied to the battery (B) can be positive if there is a surplus of PV generation, negative
when the power demand of the HP cannot be met only from the PV panels, or zero, when
the absolute difference between PV production and HP consumption is less than 400 W
(|PV − HP| < 400 W).

For all operating modes, the state of charge of the battery at time instant t (BS,t) is
given by Equation (27):

BS,t = BS,t−1 +
ηB·B·∆t/3600

CB,max
, (27)

where BS,t−1 is the state of charge of the battery at the previous time slot, ηB is the efficiency
of battery charging/discharging process, CB,max = 7.3 kWh is the maximum storage
capacity of the battery and ∆t (in seconds) is the time step of the simulation. For the sake
of simplicity, the value of the efficiency of battery charging/discharging process (ηB) was
assumed to depend on the sign of B: ηB = 0.9 if B ≥ 0 (battery is charging) and ηB = 1 if
B < 0 (battery is discharging).

2.2.9. Summary of the Main Model Parameters

The main model parameters considered for the training/testing scenarios that will be
explained later are summarized below:

• Surface of the Fresnel solar collectors: 60 m2.
• PV panels surface: 20.9 m2.
• PV panels orientation: 0◦ (south).
• PV panels inclination: 30◦.
• PCM tank storage capacity: ≈ 43, 200 kJ (12 kWh).
• DHW tank capacity: 250 L.
• DHW electric heater power: 2 kW.
• Buffer tank capacity: 800 L.
• Battery energy storage capacity: 7.3 kWh.
• Maximum battery charging/discharging power: 3 kW.

2.3. DRL Control Description
2.3.1. General Description

Reinforcement learning is a class of solution methods that optimizes a numerical
reward by interaction with the environment [9], in which a learning agent takes actions that
drive the environment to new states, provoking some reward being observed by the agent.
It is in this context that Markov decision processes (MDP) provide a useful mathematical
framework to solve the problem of learning from interaction to optimize a given goal [35].
In a finite and discrete MDP, the environment is represented at each time step as a state.
Based on this state, the agent, according to a given policy, decides to execute an action,
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obtaining a reward from the environment and moving it to the next state. Considering
stochastic environments, one can think on state-transition probabilities that characterize
the MDP. Furthermore, as each transition gives a reward, each state may be associated to
a state-value function that represents all the expected MDP rewards given a state. These
representations are the basis for the Bellman optimality equations [36], which must be
solved to achieve an optimal solution for the problem.

Expressing the MDP abstraction more formally, and considering a discrete time MDP
with time step t = 0, 1, 2, . . . , the MDP consists of:

• A set of states S that represents the environment, being St ∈ S the environment state
at time t.

• A set of actions A that can be taken by the agent, being At ∈ A(s) the action taken at
time t from the subset of available actions at state s, A(s).

• A numerical reward for the new visited state, Rt+1 ∈ R that will depend on its
trajectory: S0, A0, R0, S1, A1, R1, . . . , St, At, Rt.

• Assuming that the system dynamics is Markovian, random variables St and Rt will
only depend on its previous values, with a probability distribution, p(), which charac-
terizes the system, defined as in Equation (28):

p
(
s′, r
∣∣s, a

) .
= Pr

{
St = s′, Rt = r

∣∣St−1 = s, At−1 = a
}

, (28)

• An agent policy, π, which determines the chosen action at a given state. Defined as a
probability, π(a|s) results in the probability of choosing action a from state s.

Figure 4 shows a typical RL paradigm representation. In this case, policy π depends
on a set of parameters θ that represents the neural network weights to be discussed later.

Figure 4. RL paradigm that represents the sequence: state, action, reward, of an MDP process.

The cumulative reward at a given time slot can be defined as in Equation (29):

Gt
.
= ∑T−t−1

i=0 γiRt+i+1, (29)

where T is the final time step and γ is a discount rate that determines the worthiness of
future rewards. Equation (29) helps to define the concept of the value of being at a state for
a given policy given in Equation (30):

νπ(s)
.
= Eπ [Gt|St = s], (30)
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and using Equation (28), Equation (30) becomes the Bellman equations for νπ , shown in
Equation (31):

νπ(s) = ∑a π(a
∣∣∣s)∑s′ ,r p(s′, r

∣∣∣s, a)[r + γνπ(s′)], (31)

for all s ∈ S.
Solving a RL problem implies to find an optimal policy (π∗) that solves the state-value

function defined in Equation (32):

ν∗(s) .
= max

π
νπ(s), (32)

and derives from Equations (28), (29) and (32), the Bellman optimality equations as in
Equation (33):

ν∗(s) .
= max

a ∑s′ ,r p(s′, r
∣∣∣s, a)[r + γν∗(s′)], (33)

The solution of Equation (33) provides the best action (a), in terms of future rewards,
from a given state (s). Once solved for every possible state, it gives the optimal policy, π∗,
because the probabilities π(a|s) are known.

It is at this point that the whole family of reinforcement learning algorithms is created,
trying to solve these optimality equations by different means. Resolution techniques based
on dynamic programming (DP) may solve the problem, i.e., find an optimal solution, by
iteratively finding the state-values, ν(s), but these methods suffer from the so-called curse
of dimensionality, because the number of states grows exponentially with the number
of state variables. Such a curse is tackled by Monte-Carlo (MC) methods by sampling
values of the state-values through experience, by interaction with the model. Even with
a partial knowledge of those state-value functions, good MC algorithms converge to
acceptable solutions. Even more, if those MC methods are combined with DP ideas, such as
update regularly the estimated values, a new family of algorithms arises, called temporal-
difference (TD) learning, such as Sarsa (λ), Q-Learning or TD (λ), proving to be highly
efficient methods for a lot of optimal control problems.

Even the improvement of new RL methods, large and complex problems may require
an enormous amount of computational power, particularly when the number of states is
large, during the learning phase. Under this scenario, the ground-breaking concept of deep
reinforcement learning (DRL) [13,37] appears to change the rules of the game, scaling up
RL to space state dimensions previously intractable. DRL deals efficiently with the curse of
dimensionality by using neural networks as substituting parts of traditional value tables,
obtaining approximations of the optimal value functions trained by their corresponding
neural network backpropagation mechanisms. The emergence of specialized libraries as
TensorFlow [38] did the rest, by allowing parallelization across multiple CPUs or GPUs and
permitting in this way to train huge neural networks able to cope the structure of complex
systems in affordable running times.

2.3.2. Policy Gradient Algorithms

The above-mentioned RL algorithms based the resolution of the Bellman optimality
equations on the learned value of the selected actions. Instead, policy gradient methods
base their learning on a parameterized policy that selects the actions without the knowledge
of a value function. Generically, one can consider a set of parameters θ ∈ Rd that usualy
correspond to the weights of a neural network. By doing so, one can rephrase the policy
function as πθ(a|s).

At this point, Equation (30) may work as an objective function, J(θ). Effectively, one
can define the objective as in Equation (34):

J(θ) .
= νπθ(s0) = Eθ [G0|s0], (34)
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i.e., the expected cumulative reward from t = 0. According to the policy gradient theo-
rem [39], whenever the policy was differentiable with respect to θ, the gradient of the cost
function obeys the proportionality shown in Equation (35):

∇θ J(θ) = Eπ

[
Gt
∇θπ(At|St, θ)

π(At|St, θ)

]
, (35)

Considering that Equation (35) can be instantiated at each time slot and that parame-
ters θ are time-dependent, one can apply any gradient descent algorithm to compute θ as
in Equation (36):

θt+1 ← θt + αGt
∇θπ(At|St, θ)

π(At|St, θ)
= θt + αGt∇θ ln π(At|St, θ), (36)

being α a learning rate constant. Equation (36) is the fundamental idea that supports a
new family of RL algorithms called REINFORCE [40]. As noted, REINFORCE is a MC-like
algorithm because it can be implemented by sampling the environment, getting from it the
cumulative reward and the logarithm of the policy gradient, presenting good convergence
properties for small enough values of the learning parameter. The existence of gradient
descent optimizers based on neural networks, as well as the existing softmax layers did the
rest to allow efficient REINFORCE implementations.

2.3.3. HYBUILD Control Model

The HYBUILD control is based on a REINFORCE algorithm with no baseline. HY-
BUILD system model operates at two differently slotted time scales. First, a finer slot is
considered in order to numerically compute the HYBUILD system behavior (3 min are
typically considered). This smaller time slot is only considered for inner model operations
and it is not relevant for control purposes. Second, a larger slot (Ts) is used to manage the
control system (15 and 30 min were considered). Within Ts time slot, any action decided
by the control system is invariant until reaching any subsystem limit. As an example, if
during a given slot Ts one decides to charge the heat pump/PCM tank subsystem, the
charging process will not stop unless the maximum state of charge was reached. Similarly,
the input system variables for the control system are considered invariant in Ts.

HYBUILD control model for the Mediterranean system may be defined for cooling or
heating purposes, but the heating model can be considered as a subset of the cooling model
because heating operations for the Mediterranean system are much simpler. Actually,
heating mode bypasses the PCM tank and sorption subsystems, resulting in only one
operating mode for the heat pump subsystem.

The state vector (St) is an 8-dimensional vector in cooling mode (7-dimensional in
heating mode) with the following components:

1. Thermal energy demand for cooling/heating in the current time slot (TEdem
t ).

2. Thermal energy demand for domestic hot water (DHW) in the current time slot
(TEdhw

t ).
3. Ambient temperature (Tamb,t).
4. Energy cost for electric demand in the current time slot (Ct).
5. Direct normal irradiation, (DNIt), as explained in Sections 2.2.1 and 2.2.2.
6. Charge level of the PCM tank subsystem, (EPCM,t), as explained in Section 2.2.3. Not

used in heating mode.
7. Buffer tank top temperature, (Tbu f f er,top,t), as explained in Section 2.2.7.
8. Battery state of charge in the DC-bus subsystem (BS,t), as explained in Section 2.2.8.

being t the corresponding time and all of them were standard normalized according
to their ranges.

Choosing thermal energy demand as input, instead of temperature set-points, allow
to decouple the model from building thermal mass dynamics, providing more consistency
to the Markovian assumption. In this sense, considering the control process as an MDP
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results is a valid assumption as long as the heating/cooling subsystem models, detailed
in Section 2.2, are time-depending on only previous time slots. As a counter effect, an
on-site control implementation will require to model the building dynamics based on the
temperature set-points in order to predict the thermal demand. In this sense, the models
used in this study are based on reinforcement learning that accurately provide the thermal
demand for a particular building under different weather conditions and set-points.

The set of actions (A) that guide the control can be defined as A = {C,S ,B}, where
C is the set of cooling/heating operating modes, S is the set of activation modes for the
sorption subsystem and B is the set of battery modes in the DC-bus subsystem. As only the
set C differs for the cooling and the heating models, one can differentiate the set of actions
accordingly: Acool = {Ccool ,S ,B} and Aheat = {Cheat,S ,B}.

According to the operating modes defined in Table 1, Ccool = {0, 1, 2, 3, 4} and
S = {0, 1} because the sorption subsystem may be on or off. For the heating modes, as
sorption and heat pump/PCM tank subsystems are bypassed, only one operating mode is
considered, being Cheat = {0, 1}.

Concerning the actions related to the DC-bus subsystem, as detailed in Section 2.2.8,
the high-level control may determine the E1 and E2 thresholds that define the area of
DC-bus operation, as well as the maximum charging/discharging power when operating
in charge/discharge areas. As the control model presented here only deals with discrete
values, the DC-bus control operations were simplified according the following rules:

• Charging/discharging power is set to a fixed value, namely 3 kW.
• If from the high-level control the DC-bus is forced to operate in charging, buffer or

discharging mode, the pair of values (E1, E2) is set to three fixed levels: (75, 90), (10,
90) and (10, 25), respectively, as a percentage of the battery state of charge, BS.

Following these assumptions, B = {0, 1, 2}, which corresponds to charging, buffer
and discharging modes, respectively.

Finally, considering that during cooling mode 2 (all cooling energy is supplied by the
PCM tank) the sorption chiller is in mode 0, the set of possible actions are:

Acool = {[1, 0, 0], [1, 0, 1], [1, 0, 2], [1, 1, 0], [1, 1, 1], [1, 1, 2],
[2, 0, 0], [2, 0, 1], [2, 0, 2],
[3, 0, 0], [3, 0, 1], [3, 0, 2], [3, 1, 0], [3, 1, 1], [3, 1, 2],
[4, 0, 0], [4, 0, 1], [4, 0, 2], [4, 1, 0], [4, 1, 1], [4, 1, 2]}

and |Acool | = 21.
In heating mode, considering that the sorption chiller is always off, it follows that:

Aheat = {[1, 0, 0], [1, 0, 1], [1, 0, 2]}

and |Aheat| = 3.
It should be noted that all the cases where cooling/heating mode is 0 may be omitted

because:

• If there is some energy demand, cooling/heating mode 0 is not an option.
• Otherwise, any cooling/heating mode will perform as mode 0 inside TS.

In other words, mode 0 is adopted when energy demand is null.
For the purpose of this study, a policy gradient REINFORCE algorithm was imple-

mented, with two three-layer fully-connected neural networks of sizes Ninp,heat×Nhid,heat×
Nout,heat and Ninp,cool × Nhid,cool × Nout,cool for heating and cooling, respectively, with the
following characteristics:

• Ninp,heat = 7 and Ninp,cool = 8 are the number of inputs, defined by the system state
dimension. Their values are standard normalized with their corresponding ranges.

• Nhid,heat and Nhid,cool are the hidden layer sizes for heating and cooling modes, respec-
tively. They use to be much larger than the size of inputs and outputs. Actually, the
number of hidden layers, their size, the type activation functions, as well as other
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parameters will be adjusted in a future study by hyper-parameter setting analysis,
being out of the scope of this paper. The values Nhid,heat = 100 and Nhid,cool = 1,000
were adopted here, with exponential linear unit activation functions and a dropout
rate of 0.8.

• Nout,heat = 3 and Nout,cool = 21 are the number of outputs corresponding to the cardi-
nality of the actions set. Outputs represent softmax of logits and the corresponding
action is taken as a multinomial of the logarithm of outputs.

• Learning rate, α = 0.0005.
• Discount rate, γ = 0.99.

The neural network was trained minimizing the cross entropy of the multinomial
outputs using an Adam stochastic optimizer [41]. Under this scenario, one objective
function was defined regarding an economic reward related to the cost associated to the
system operation.

2.3.4. Minimum Cost Control Policy

In order to derive control policies focused on minimizing the cost of operation, the
cumulative reward Gt used in Equation (36) and in Equation (29) should be calculated
considering the reward function Rt defined in Equation (37):

Rt
.
=
(

EE f g
t − 0.5·EEtg

t

)
·Ct +

(
TEdem

t − TEhp
t − TEpcm

t

)
·Penalty, (37)

where:

• EE f g
t is the electrical energy bought from the grid in slot t, either to feed the DC-bus

or other equipment, such as the electric resistance of the DHW tank.
• EEtg

t is the electrical energy sold to the grid in slot t. A discount factor of 0.5 was
considered.

• TEhp
t is the thermal energy provided by the heat pump subsystem for cooling/heating

in slot t.
• TEpcm

t is the thermal energy provided by the PCM tank for cooling/heating in slot t.
• Penalty is the cost assumed for a non-covered demand. A value much higher than the

energy cost is used.
• Ct and TEdem

t as detailed in Section 2.3.3.

Note that TEdhw
t is not part of the objective function because it is assumed that DHW

requirements will always be fulfilled by the backup electric heater.

2.3.5. Rule-Based Control Policies

With the objective to evaluate the DRL control policy goodness, a simple rule-based
control (RBC) policy for the cooling season was also implemented, which can be simplified
for heating mode. The RBC policy is based on its own thresholds and can be described as
follows:

• Battery mode—charging, buffer or discharging—is determined by two battery state of
charge thresholds (Bth

min and Bth
max) and the grid cost (Ct).

• Cooling mode 1 (PCM tank charging) is set if there is no cooling demand. Otherwise,
cooling mode 2 (PCM tank discharging) is set if PCM energy (EPCM,t) is larger than a
threshold factor (PCMth

f ) times the cooling demand (TEdem
t ). Otherwise, cooling mode

3 (simultaneous PCM tank charging and cooling supply to the building) or 4 (cooling
supply using the standard HP evaporator) is set according to the energy stored in the
PCM tank in relation to the PCM energy threshold (Eth

PCM).
• Sorption chiller mode is set depending on the buffer tank temperature threshold (BTth)

in comparison to the buffer tank temperature at the top region (Tbu f f er,top,t).

The details on both cooling and heating RBC policies are shown in Appendix A. In
both RBC policies, a hyper-parameter optimization was applied in order to determine the
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optimal thresholds. Hyperopt python library [42] was used employing an adaptive Tree
Parzen Estimator algorithm with 400 runs over the same training test set.

2.3.6. Implementation Aspects

Figure 5 shows the structure designed for the implementation of the HYBUILD con-
trol system. It is divided into three layers. Layer 3 is composed of the low-level controllers
for each subsystem. It operates directly over the system components, including all sensors,
actuators and low-level security protocols. Layer 2 is composed of the Supervisory Con-trol
And Data Acquisition (SCADA) system. It monitors the system parameters, sends the state
vector to layer 1 and executes the set of actions set by layer 1. Layer 1 is composed of the
DRL control algorithm described in this paper. The communication between layers 1 and
is done using MQTT(json) and the communication between layers 2 and 3 is performed
using the OPC-UA communication protocol.

Figure 5. Diagram of smart control implementation in the HYBUILD system.

The HYBUILD control model was written in Python 3 [43]. Furthermore, Tensorflow
libraries were used in control models [38]. The availability of a lite version of Tensor-
flow libraries makes suitable this implementation for light hardware or micro-controller
environments that may be required for control scenarios in real time.

2.4. Network Trainizng

In this subsection, the data set used to train and test the network is described. The
computations are performed with weather data for the reference building (assumed to be
located in Athens), but it could be applied to any other location. The computing training
time and its convergence issues are also presented in this subsection.

2.4.1. Training and Test Data

Cooling data set spans from day 120 to day 250 of the year, while heating data set
spans from day 290 to day 365 and from day 1 to day 90. Such sets are shuffled and split into
smaller subsets (batches). Each batch is composed of a fixed number of days (T ). Actually,
its cardinality (|T |) is a parameter. During the experimentation, batch sizes of 3 and 6 days
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were used, giving the last one better performance results. From the 130 days available for
cooling, 18 days are taken for testing and the rest for training purposes. As mentioned
in Section 2.3.3, control model inputs are: thermal demand for cooling/heating, thermal
demand for DHW, ambient temperature, direct normal irradiation, cost of electricity, PCM
state of charge (not used in heating mode), buffer tank top temperature and electric battery
state of charge.

Ambient temperature and solar radiation are obtained from EnergyPlus weather data
Europe WMO Region 6, Greece, Athens 167,160 (IWEC) [24]. Since the time slot for this
data is one hour, data was linearly interpolated when Ts was smaller.

As already mentioned in Section 2.1, the energy demand profile for cooling, heating
and DHW were obtained within the HYBUILD project [23] activities. For the grid electricity
price, a two-period tariff was assumed:

• 0.2 €/kWh from 13:00 to 23:00 h.
• 0.1 €/kWh for the rest of the day.

2.4.2. Training Times

Before presenting the results of system performance, it is worth mentioning a few as-
pects of the training process. Inside a batch (3 or 6 days), a reward defined by Equation (37)
is first computed, after which, gradients are computed and propagated. This process is
repeated for all the sets in the training set, forming an iteration. After a small number of
iterations, the trained model is applied to the test set in order to obtain the control system
performance, always keeping the best model so far. Figure 6 shows the cumulative reward
G0 (or cost) for the test and training sets as a function of the number of iterations at two
different scales, showing the learning process. During the first iterations, the network
rapidly finds better strategies than the random one established at the beginning. It is a
common behavior to get stuck at a local minimum during a large number of iterations.
Even though the discovered strategies are quite good, they are still far from the best ones
found beyond 2000 iterations. From this point, the strategies are slightly improved until
reaching overfitting, where no improvement is observed.

Figure 6. Cumulative reward for test and training set in cooling mode.

The following settings for the control system were considered:

• Time granularity for model computation: ∆t = 3 min for cooling mode and ∆t = 15 s
for heating mode. Taking longer time slots for the period when the heat pump is
switched on would surpass in excess the heating demand in that time slot, due to the
fact that the heat pump has higher coefficient of performance in heating mode.
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• Time slot between control decisions: Ts = 30 min.
• Batch size of 6 days. Test set consists of 3 batches (18 days or 864 control slots).

Note that, using an Intel i5-6600 4-cores at 3.3 GHz CPU, each iteration takes approxi-
mately 15 s (for Ts = 30 min and ∆t = 3 min) and, consequently, the learning plot shown in
Figure 6 took almost two days of CPU computation.

2.5. Robustness Analysis

A robustness analysis was also carried out to evaluate the effect that the uncertainties
in some parameters of the mathematical models (not experimentally validated) of the
main system components might have on the results. First, the network was trained as
described in the previous subsection using the reference values of all the parameters of the
component models. Second, the reference values of some of the model parameters were
randomly altered following a uniform distribution within a certain error range around the
reference value, as shown in Table 3. An “error multiplying” factor (n) was used to define
different levels of errors affecting the parameters of the model.

Table 3. Set of parameters used to check the robustness of the model.

Variable Symbol Reference Value Error Range Units

Optical efficiency Fresnel ηopt Data from [22] Ref·(1 ± 0.2·n) -
PV efficiency ηPV 0.16 Ref·(1 ± 0.25·n) -

Maximum battery charging or discharging power MaxB 3.0 Ref·(1 ± 0.2·n) kW
Battery charging efficiency ηB 0.9 Ref·(1 ± 0.11·n) -
Sorption thermal efficiency COPth 0.55 Ref·(1 ± 0.09·n) -

Dry cooler electricity consumption
.

Wdc Equation (10) Ref·(1 ± 0.2·n) kW
Heat pump cooling power

.
Qevap Data from [30] Ref·(1 ± 0.2·n) kW

Heat produced by the compressor
.

Qcomp Data from [30] Ref·(1 ± 0.2·n) kW
Buffer tank thermal resistance Rbuffer 430.3 Ref·(1 ± 0.13·n) K/kW
RPW-HEX thermal resistance RPCM 424.5 Ref·(1 ± 0.18·n) K/kW
DHW tank thermal resistance RDHW 830.8 Ref·(1 ± 0.19·n) K/kW

Next, the performance of the model trained using the reference values was tested for
ten different independent data sets obtained at each error level (defined by the value of the
error multiplying factor n). To check the robustness of the DRL approach, the network was
also trained using new training data sets generated for each of the ten deviated models at
each error level. The average of the relative deviations in the results obtained using the
network trained with the reference model and using the network trained with each of the
deviated models was used to quantify robustness of the DRL approach. Finally, to compare
the DRL and the RBC approaches, the RBC was also applied for each of the deviated data
sets mentioned above, using the same thresholds obtained for the model without error.

3. Results and Discussion

This section details the results obtained with the trained system and abovementioned
settings and model parameters in both cooling and heating scenarios. System perfor-
mance results obtained using the smart control are compared against conventional RBC
mechanisms.

Figure 7 shows the performance of the trained network for the test set. The plots, from
top to bottom, show:

1. Cooling demand (‘Demand’) and global horizontal solar irradiation (‘GHI tilted’) on
the tilted plane (PV surface). Green and orange areas show how the cooling demand
was met: whether from the heat pump (‘From HP’) or from the PCM tank (‘From
PCM’).

2. The state of charge of the PCM tank (‘PCM SoC’), heat pump cooling mode (‘Cool.
mode’) and mode of operation of the sorption chiller (‘Sorption act.’).
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3. The values of E1 and E2 thresholds of the DC-bus subsystem as detailed in Section 2.2.8.
The state of charge of the battery is also shown (‘Battery SoC’), along with the cost of
electricity (‘Grid cost’) as binary (0 corresponds to 0.1 €/kWh and 1 to 0.2 €/kWh).

4. Domestic hot water demand (‘Demand DHW’) and top region temperature of the
buffer tank (‘Buffer Tank top temp.’). Green and orange areas show how the DHW
demand was met: whether from the heat pump (‘From elect’) or from the buffer tank
(‘From BT’).

5. Cumulative cost associated to the energy delivered to and taken from the power
grid during valley (‘Ener. sold 0′ and ‘Ener. bought 0′, respectively) and peak (‘Ener.
sold 1′ and ‘Ener. bought 1′, respectively) electricity tariff, along with the total cost
according to the cumulative cost (‘Cost’) defined as ∑t

i=0 Ri. The total amount of
electricity consumption is also plotted (‘Cumm. elec. energ.’).

Figure 7. DRL performance results for the test set in cooling mode.

From Figure 7, some aspects of the DRL control policy can be highlighted:

• The operating cost for the 18 days of the test set is 11.1 €. As seen below, it is far less
than the RBC policy tested under the same scenario, indicating that the deep learning
control approach is highly efficient.

• Cooling demand is always covered, either from the HP or the PCM tank, in order to
avoid penalties.

• Cooling modes 1 (PCM tank charging) and 4 (operation of the HP with the standard
evaporator) are never (or rarely) used.
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• All energy storage modules (PCM tank, buffer tank and electric battery) are fully
exploited by charging and discharging them as much as possible on a daily basis
within the allowed thresholds.

• The sorption chiller is also activated on a daily basis to assist the operation of the HP,
which is beneficial for the overall system performance.

As seen from the bottom plot, the cost associated with the amount of energy sold in
tariff period 0 (low cost) does not exceed the cost associated with the amount of energy
bought during the same period. Depending on national regulations, an energy retailer
may not reward consumers for the surplus of energy supplied to the grid during a certain
period. No substantial differences were observed when running the control with a smaller
time slot (Ts = 15 min).

For comparison purpose, Figure 8 shows the performance of the system for the same
test set using an RBC control policy. The same variables as in Figure 7 are shown. The
following optimal thresholds were used in the simulations based on an RBC policy:

• Minimum and maximum battery thresholds: Bth
min = 0.01 and Bth

max = 0.94, respectively.
• Threshold factor for PCM tank discharging: PCMth

f = 1.98.

• Buffer tank temperature threshold: BTth = 76.7 ◦C.
• Threshold of the (normalized) amount of energy stored in the PCM tank: Eth

PCM = 0.19.

Figure 8. RBC performance results for the test set in cooling mode.

From Figure 8, the following aspects regarding the RBC policy can be highlighted:
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• The operating cost for the 18 days of the test set is 23.5 €, which is more than double
the cost obtained using an DRL policy.

• Cooling demand is always covered, either from the HP or the PCM tank.
• All cooling modes are used by the HP, with no clear predilection for a specific operating

mode.
• Sorption chiller activation is much more irregular as compared with the DRL case.
• The full potential of the PCM tank is hardly exploited, while the buffer tank is charged

and discharged as much as possible on a daily basis.
• Electric battery is reasonably well exploited, but the main difference with respect

to the DRL policy is that it is not discharged when the electricity cost is high and
electricity demand of the system is low.

Focusing on the DRL policy, a zoom view presented in Figure 9 shows that the
battery is discharged at peak tariff periods by adjusting the E2 threshold, putting DC-bus in
discharging mode. The control uses the PCM tank as a buffer and prevents its full discharge
in order to ensure that the demand is met at all times and avoid penalties. Surprisingly,
the energy required to meet the DHW demand is mostly supplied from the electric heater
instead of the buffer tank. This could be explained by the fact that, from a cost point of
view, it is better to use the heat stored in the buffer tank to drive the sorption module
during periods of high cooling demand, which allows the heat pump to work with a
higher efficiency leading to a lower electricity consumption and, therefore, to a lower
operating cost.

Figure 9. DRL performance results for the test set in cooling mode. Zoom view.
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In relation to the heating mode, Figure 10 plots the results of system performance
using the deep learning control strategy. The following aspects are worth noting:

• The upper plot (first) shows how the heating demand is covered, whether by the heat
pump (‘From HP’) or the buffer tank (‘From BT’).

• It can be observed, in the third plot, how the buffer tank temperature in the middle
layer drops when heat is provided to the building from the buffer tank.

• The cumulative cost results negative (bottom plot), meaning that economic benefit is
obtained from selling energy to the grid. This is achieved by charging/discharging
the battery during the corresponding valley/peak tariff periods, as observed in the
second plot.

• Bottom plot shows that the amount of energy sold in valley/peak tariff periods is
larger than the energy bought during the same periods. As mentioned previously, an
energy retailer may not reward energy reinjection when the amount of sold energy
surpasses the bought energy. If this is the case, the cumulative cost will be zero instead
of negative.

Figure 10. DRL performance results for the test set in heating mode.
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Table 4 shows the results for DRL and RBC policies over the same test set. Clearly, the
DRL policy outperforms the tested RBC policy.

Table 4. Operating cost (€) for DRL and RBC control policies.

Operating Mode
Policy

DRL RBC

Cooling 11.1 23.5
Heating −2.4 −0.1

However, the comparison between the DRL and RBC policies makes it clear that the
DRL policy is able to achieve considerably better results in cooling mode, while in the
heating mode it is only slightly better than the RBC policy. This is not surprising given
the fact that the system investigated in this study was designed and sized mainly for use
in Mediterranean climate regions, where the cooling demand is significant. In addition,
the complexity of the system control is mainly associated to the subsystem that provides
cooling, where there is a higher potential for improvement through an adequate control
strategy. Indeed, the control of the subsystem that provides heating and DHW is relatively
simple and it already includes some basic control rules at low (component) system level,
which means there is not much room for improvement.

With regards to the robustness analysis, the two curves plotted in Figure 11 show the
results obtained using the RBC and DRL approaches, both of them optimized for the model
without errors (reference model), for values of the error multiplying factor from 1 to 4. As
explained in Section 2.5, each point on the two lines is an average of the behavior of both
controls on ten independent instances of the model with errors. The green dots denote the
average over the same ten instances that correspond to the DRL approach in the case when
the network was retrained with the deviated values of model parameters. As expected,
the results obtained using the retrained network are better than the ones obtained using
the network trained with the reference values of model parameters. Nevertheless, it can
be seen that the original model (trained using the reference model) does not deviate too
much from the optimum value for error multiplying factors lower than, or equal to, 2. It is
only for value of the multiplying factor around 3 or higher that the deviation between the
results becomes relevant. This would demonstrate the robustness of the solution over a
wide range of model errors, since considerable deviations from the theoretical model (up
to 40%) would have little impact (less than 3%) on the behavior of the control. Even if this
were the case, the difference between the system performance using an RBC and a DRL
approach would still be clearly in favor of the DRL strategy.

Figure 12 shows the behavior of the two DRL models (the one trained using the
reference model and the one trained with the deviated models) for each individual instance
and for four different values of the error multiplying factor. It can be seen that, for values
of the error multiplying factor up to 2, the error in the cost obtained with the model trained
with reference values are below 5%, even though the cost has large variations as a result of
different model parameters. This confirms that the DRL model is able to adapt to different
types of deviations in the actual components’ behavior with respect to the mathematical
model used in the simulations.
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Figure 11. Results of the influence of the error level in the model parameters.

Figure 12. Results of the DRL models for individual instances at different error levels.
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4. Conclusions and Future Work

This paper investigated a smart control based on a deep reinforcement learning control
policy proposed for an innovative system developed within HYBUILD project. The main
aim of the system is to reduce the energy demand for heating, cooling and domestic
hot water of a standard single-family residential building by implementation of Fresnel
collectors and PV panels combined with hybrid electrical and thermal storage components.
The complexity of the system was a great challenge from the high-level control point of
view, which was dealt with by applying deep learning techniques to optimize the operation
of the overall system from a monetary point of view. To the best of the authors knowledge,
this is the first study in which DRL has been applied to a complex TES system. The
performance of the proposed control policy was compared with basic rule-based control
policies for both cooling and heating modes. The results show that the deep learning
control policy provides a proper system control that is able to efficiently manage the system
and to obtain significant cost (and energy) savings with respect to a standard rule-based
control. In addition, the results of the robustness analysis clearly showed that DRL model
is able to adapt to any changes in the actual behavior of the system in a real test pilot plant,
with deviations less than 3% in the average cost estimations for an error multiplying factor
up to 2.

Immediate future work will consist of deploying the DRL control for a pilot plant in
order to test its performance. Even the robustness analysis shows a good ability to deal
with large mismatches between theoretical and real models, there are still big challenges
before adopting this technology for the consumer market. Requiring accurate models for
heating/cooling systems as well as for building thermal demand may be a time-consuming
task, and more studies are required in order to determine the feasibility, in terms of time
requirements, of self-training starting from a basic or general knowledge of the system.
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Appendix A

The RBC used for the cooling mode is shown below (Figure A1):
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Figure A1. RBC for cooling.

The RBC used for the heating mode is shown below (Figure A2):

Figure A2. RBC for heating.
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