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Abstract: The effectiveness of Double Concave Curved Surface Sliders (DCCSS), which initially
spread under the name of Double Friction Pendulum (DFP) isolators, was already widely proven
by numerous experimental campaigns carried out worldwide. However, many aspects concerning
their dynamical behavior still need to be clarified and some details still require improvement and
optimization. In particular, due to the boundary geometrical conditions, sliding along the coupled
surfaces may not be compliant, where this adjective is adopted to indicate an even distribution of
stresses and sliding contact. On the contrary, during an earthquake, the fulfillment of geometrical
compatibility between the constitutive bodies naturally gives rise to a very peculiar dynamic behavior,
composed of continuous alternation of sticking and slipping phases. Such behavior yields a temporary
and cyclic change of topology. Since the constitutive elements can be modelled as rigid bodies,
both approaches, namely Compliant Sliding and Stick-Slip, can be numerically modelled by means of
techniques typically adopted for multi-body mechanical systems. With the objective of contributing
to the understanding and further improvement of this technology, a topology-changing multi-body
mechanical model was developed to simulate the DCCSS. In the present work, attention is focused
on details regarding geometrical compatibility and kinematics, while the complete dynamics is
presented in another work. In particular, for the sake of comparison, the kinematic equations are
presented and applied not only for the proposed Stick-Slip approach, but also for the currently
accepted Compliant Sliding approach. The main findings are presented and discussed.

Keywords: base isolation; friction pendulum; multi-body dynamics; geometrical compatibility;
compliant pair; kinematics

1. Introduction

Friction pendulum devices, since their early introduction [1], have earned increasing
attention as a valid alternative to elastomeric bearings, for the seismic protection of both
low to medium-rise buildings, and bridges. The resulting relevant scientific research ranges
from early studies on the friction properties of the kinematic pair, mainly composed so
far of polytetrafluoroethylene (PTFE) and stainless steel (e.g., [2,3]), to the proposal of
many prototypes and their mechanical modelling (e.g., [3–8]), and up to the study of the
overall behavior of an isolated structure (e.g., [9–11]). More recently, the relevant scientific
output has encompassed both rigorous analytical–numerical studies (e.g., [12–19]), and
experimental tests (e.g., [20–23]). Such devices are based on the principle of obtaining the
decoupling between the movement of the structure and the underlying ground by means
of the relative sliding between coupled spherical surfaces, one of which is in plain polished
stainless steel and the other coated by a particular material chosen to ensure a suitable value
of the friction coefficient. The spherical shape of the two surfaces forming a kinematic pair
is supposedly necessary in order to provide the device with self-recentering capability. The
simplest of such devices envisages the presence of one only of these spherical kinematic
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pairs even though proposals of prototypes with multiple sliding surfaces can be found both
in the literature and on the market (e.g., [8]). The larger the number of coupling surfaces
composing the device, the more difficult the prediction of its mechanical behavior during
an earthquake appears to be. In the present work, attention is focused on the so-called
double friction pendulum (DFP) device (Figure 1).
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Figure 1. Friction pendulum bearings: (a) single (SFP), (b) double (DFP), and (c) so-called triple friction pendulum (TFP).
PTFE stands for polytetrafluoroethylene.

One of the aspects that has been largely investigated is the mathematical model of the
horizontal force–displacement hysteretic curve, which needs to be implemented in the finite
element models (FEM) of isolated structures in order to carry out the dynamic analyses.

Complex tribological (i.e., friction-related) systems are known to be susceptible to (1)
stick-slip and (2) sprag-slip phenomena (e.g., [24]). Where the former consists of the likely
alternation of time intervals of sliding to time intervals of absence of sliding, while the
latter consists of vibrations that may activate in the direction orthogonal to the sliding one.
In this scenario, many questions arise about the actual functioning of these devices. It is
evident that the topic is complex and needs to be faced from a multidisciplinary standpoint,
also involving mechanical and tribological engineering expertise (e.g., [25–28]).

Attention was initially devoted to studying the order of magnitude of the temperature
rises that can take place in these devices during an earthquake, and their influence on
the tribological aspects. For this reason, a pseudo-static thermomechanical model was
developed [29] to simulate the results of experimental tests retrieved in the literature, in
terms of both temperature rises and force–displacement hysteretic curves. From this point
on, we have started analyzing how the geometrical compatibility of these devices could
be fulfilled [30] and we realized that due to geometrical compatibility fulfillment, the
mechanical behavior may be characterized by a continuous alternation of sticking and
slipping phases, with contextual lifting of the base-isolated mass, as described hereinafter.
Subsequently [31–33], we have been working on the development of a numerical strategy
to simulate the dynamical behavior of a DFP.

Provided that the DFP can be seen as an assemblage of rigid bodies supposedly sliding
with respect to each other, the urge to rapidly develop a numerical model to simulate the
DFP devices initially led us to undertake the so-called Embedded numerical-modelling
technique [27], which leads to a minimum number of solving equations [31]. That strategy,
which led to a number of equations equal to the number of independent kinematic variables,
turned out to be impracticable since the minimum number of equations is strongly coupled
and difficult to solve. Subsequently, the solving equations have been written [33] by means
of the so-called Augmented Formulation technique [26,27], which is a technique that yields
a system of Differential and Algebraic Equations (DAE). Though the number of solving
equations is equal to the sum of both independent and dependent kinematic variables
plus the number of constraint reactions, the resulting DAE system can be more easily
implemented, and solved, by means of consolidated numerical techniques (e.g., [34]).

After having singled out the most suitable numerical strategy to model the dynamic
behavior of these devices, the decision was made to apply it not only to simulate the
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envisioned mode of behavior herein proposed, but also the one currently accepted. Where
the former envisages that the relative movement undergone by the numerous rigid bodies
constituting the device is composed of a continuous alternation of stick and slip, the latter
assumes that a pendulum-like behavior can be clearly identified, with contextual compliant
sliding occurring along the coupled surfaces.

In particular, in this work, before describing in detail the envisioned mode of behavior
and the corresponding multi-body kinematics, two steps backwards have been taken. In
fact, in the first part of the paper, some considerations are presented about the count of the
degrees of freedom, as a function of the kinematic constraints, in order to understand if,
in the case of DFPs applied underneath a building, the alleged pendulum behavior can
actually be expected. In the second part of the paper, the multi-body kinematics equations
are written and applied, taking the assumptions of pendulum-like behavior and relative
compliant sliding for granted. This is in order to try to understand initially if the solution is
numerically possible, and then if, in the obtained results, something can be singled out that
would rather induce one to doubt the validity of the underlying assumptions and to deem
the assumption of the stick-slip behavior herein proposed more probable. In particular, the
obtained equations are applied to two prototypes of DFP.

In the third part of the paper, the genesis of the mode of behavior proposed for the
DFPs is presented along with the main features.

In the fourth part of the paper, the multi-body kinematics equations are then written
and applied assuming that the behavior of such devices is not of the pendulum type, with
compliant sliding, but rather of the stick-slip type. The obtained equations are applied to
the same two prototypes and the results are compared with those obtained previously, in
search for confirmations about the validity of the envisioned mode of behavior proposed.

2. Research Motivation: Can We Always Speak about Pendulum?

Interest in quantifying the effects of earthquake-induced temperature rises on the
effectiveness of friction pendulum devices initially brought to the development of a simple
pseudo-static thermomechanical model [29]. That model meant to simulate the experimental
results retrieved in the literature by reproducing, for an imposed displacement time history,
both temperature rises and force–displacement hysteresis curves. When that model was
applied to simulate the relatively high velocity pseudo-static tests (

.
u ∼= 400− 500 mm/s ),

regardless of the number of pendula, the agreement between numerical and experimental
hysteretic curves was satisfactory. On the contrary, when the low velocity tests were
simulated, in particular for some tested TFP prototypes, in order for the agreement between
numerical and experimental curves to be satisfactory, it was necessary to introduce, stepwise,
a fictitious force whose physical meaning was not clear. Decomposing a posteriori the overall
hysteretic curve in the curves of the single sliding kinematic pairs, it was found that the
curves at the interfaces between the pad and the external plates showed an initial increase
in horizontal force at motion reversal. Among other things, such behavior had already been
observed experimentally [5]. However, doubt arose that such behavior might be due to
a velocity-related sticking. This finding has stimulated the authors to carry on with the
investigation in order to understand the actual functioning of these devices, which is very
simple only apparently. Each of such devices is composed of an assemblage of rigid bodies
and, regardless of the number of coupled sliding surfaces, must be characterized by at least
one degree of freedom, in order to function as a mechanism.

If we consider a single pendulum (Figure 2a), this will actually be a mechanism, with
spherical sliding surface effectively constituting a compliant kinematic pair, which means
with an even distribution of contact stresses, if it is made as depicted in Figure 2a. This
is composed of three rigid bodies (RBs) that are: (1) the concave lower plate (RB1), which
is fixed to the global inertial system, with a number of constraints nc equal to 3, (2) the
element RB2, coupled with the lower plate by a convex sliding surface of the same radius,
which is fixed (nc = 3) to the third RB3, (3) which is the connecting rod, constrained
to the global inertia system by means of a pinpoint (nc = 2). In this case, since RB1 is
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fixed, other internal kinematic constraints are not needed to guarantee compliant contact
between the two sliding surfaces and the whole system is actually a mechanism, having:
(a) nine global coordinates (3 · 3), (b) eight kinematic constraints, and consequently, (c)
one degree of freedom (ndo f = 1). If the horizontal translational constraint on RB1 is
removed, thus admitting that it can be moved by the earthquake, in order for the compliant
coupling between the concave (RB1) and the convex surface (RB2) to be maintained, it is
necessary to introduce another two internal kinematic constraints (Figure 2b) as will be
further clarified hereafter. However, in this case, the device is no longer a mechanism,
since the number of constraints is equal to the number of global coordinates, and the
device, thus statically determinate, does not move at all. For the multi-body system to go
back to being a mechanism, it is thus necessary to remove one constraint. For instance,
the vertical translational constraint on the pivot point of RB3 may be removed, leaving
only the horizontal translational one, which may be modelled, as usually performed for
fixed-base buildings, by a viscous damper that also simulates the resistance opposed by
the air to the horizontal deformation of the building (Figure 2c). In this case, the hinge
around which RB3 may rotate, can also move vertically, and therefore, the total number of
constraints is nc = 8 and the system has 1 degree of freedom. In this scenario, it is natural
to wonder what happens for a squat, rigid-body-like building supported by the so-called
DFP bearings (Figure 2d). Given the observations made so far for the single pendulum, the
situation must be more complex. Attention has been focused on the DFP for a two-fold
reason: (1) the single pendulum can be seen as one of its simplifications, and (2) it also
constitutes the internal nucleus of the triple (Figure 1), so that the advantages brought by
the understanding of its behavior are manifold.Buildings 2020, 10, x FOR PEER REVIEW 4 of 30 

 
Figure 2. Degrees of freedom of some examples of multi-body assemblages: a) pendulum or 
compliant kinematic pair, b) pendulum with translating base, c) pendulum with translating base 
(horizontally) and pivotal point (vertically), d) squat building (not in scale) isolated with DFP 
(DCSSD). 

 
If we consider a single pendulum (Fig. 2a), this will be actually a mechanism, with spherical 

sliding surface effectively constituting a compliant kinematic pair, which means with an even 
distribution of contact stresses, if it is made as depicted in Fig. 2a. This is composed of 3 rigid bodies 
(RBs) that are: 1) the concave lower plate (RB1), which is fixed to the global inertial system, with a 
number of constraints 𝑛௖ equal to 3, 2) the element RB2, coupled with the lower plate by a convex 
sliding surface of the same radius, which is fixed (𝑛௖ = 3) to the third RB3, 3) which is the connecting 
rod, constrained to the global inertia system by means of a pinpoint (𝑛௖ = 2). In this case, since RB1 
is fixed, other internal kinematic constraints are not needed to guarantee the complaint contact 
between the 2 sliding surfaces and the whole system is actually a mechanism, having: a) 9 global 
coordinates (3 ∙ 3), b) 8 kinematic constraints, and consequently c) 1 degree of freedom (𝑛ௗ௢௙ = 1). If 
the horizontal translational constraint on RB1 is removed, thus admitting that it can be moved by the 
earthquake, in order for the compliant coupling between the concave (RB1) and the convex surface 
(RB2) to be maintained, it is necessary to introduce another 2 internal kinematic constraints (Fig. 2b) 
as will be further clarified hereafter. But in this case, the device is no longer a mechanism, since the 
number of constraints is equal to the number of global coordinates, and the device, thus statically 
determinate, does not move at all. For the multi-body system to get back being a mechanism it is thus 
necessary to remove 1 constraint. For instance the vertical translational constraint on the pivot point 
of RB3 may be removed, leaving only the horizontal translational one, which may be modelled, as 
usually done for the fixed-base buildings, by a viscous damper that simulates the resistance opposed 
by the air to the horizontal deformation of the building (Fig. 2c). In this case, the hinge around which 
RB3 may rotate, can also move vertically, and therefore the total number of constraints is 𝑛௖ = 8 and 
the system has 1 degree of freedom. In this scenario, what happens for a squat, rigid-body-like 
building supported by the so called DFP Bearings (Fig. 2d)? Given the observations made so far for 
the single pendulum, the situation must be more complex. The attention has been focused on the DFP 
for a two-fold reason: 1) the single pendulum can be seen as one of its simplifications, and 2) it also 
constitutes the internal nucleus of the Triple (Fig. 1), so that the advantages brought by the 
understanding of its behavior are manifold. 

3. SUPPOSED COMPLIANT SLIDING 

In compliance with both the Italian Building Code [35] and EuroCode8 [36], when the DFP 
devices are installed under a building, they must be placed in between two rigid diaphragms, in order 
to impose the same horizontal movement to each of them. Such diaphragms are realized with grids 
of Reinforced Concrete (RC) beams, usually completed by a slab, also in RC. Each of these RC beams’ 
grids has also a not negligible out-of-plane flexural stiffness. Due to this and to the collaboration of 

a) b) c) d)

𝑅𝐵1 𝑅𝐵1 𝑅𝐵1 𝑅𝐵1
𝑅𝐵2

𝑅𝐵3 𝑅𝐵3 𝑅𝐵3
𝑅𝐵2 𝑅𝐵2 𝑅𝐵2𝑅𝐵3

𝑅𝐵4𝑛௤ = 3 · 3 = 9𝑛௖ = 3 + 3 + 2
𝑛ୢ୭୤ = 1 𝑛௤ = 3 · 3 = 9𝑛௖ = 3 + 2 + 2 + 2 = 9

𝑛ୢ୭୤ = 0 𝑛௤ = 3 · 3 = 9𝑛௖ = 1 + 3 + 2 + 2 = 8
𝑛ୢ୭୤ = 1

𝑛௖ = 2 𝑛௖ = 2

??𝑛௖ 2

𝑛௖ 3
𝑛௖ 3 𝑛௖ 2

𝑛௖ 2

𝑛௖ 3

𝑛௖ 1

𝑛௖ 3

𝑛௖ 2
Figure 2. Degrees of freedom of some examples of multi-body assemblages: (a) pendulum or compliant kinematic pair, (b)
pendulum with translating base, (c) pendulum with translating base (horizontally) and pivotal point (vertically), (d) squat
building (not in scale) isolated with DFP (DCSSD).

3. Supposed Compliant Sliding

In compliance with both the Italian Building Code [35] and EuroCode8 [36], when
DFP devices are installed under a building, they must be placed in between two rigid
diaphragms in order to impose the same horizontal movement to each of them. Such
diaphragms are realized with grids of Reinforced Concrete (RC) beams, usually completed
by a slab, also in RC. Each of these RC beams’ grids also has a not negligible out-of-plane
flexural stiffness. Due to this and to the collaboration of the hyperstatic superstructure,
the DFPs are forced to deform, during an earthquake, with the predominant horizontal
component, with the upper and lower bases that move remaining horizontal. In this way,
any rotation of the upper and lower plate is avoided.

3.1. Numerical Details

The DFP can be assumed as composed of three rigid bodies (RB), which are: (a) rigid
bodies 1 (RB1) and 3 (RB3), schematizing the lower and upper sliding plate, respectively,
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and (b) rigid body 2 (RB2) schematizing the internal pad (Figure 3). It is reasonable, at least
for the time being, to assume the total absence of any deformation. In this case, the position
of each i-th rigid body RBi in the global Cartesian reference system is identified by three
generalized coordinates, which are: the coordinates Ri

x and Ri
y of its centroid Gi, and the

rotation θi of its local reference system GiXiYi with respect to the global abscissa axis X0

(Figure 3). The rotation angle θi is assumed counterclockwise with respect to the positive

verse of the axis X0. Using the three coordinates Ri =
[

Ri
x Ri

y

]T
and θi, the position of

each j-th point Pi
j belonging to the generic i-th RBi has coordinates, in the global Cartesian

reference system, ri
P =

[
xi

P yi
P
]T given as follows:

ri
P = Ri + Ai · ui

P (1)

where:
ui

P = [xi
P yi

P]
T

(2)

is the position vector of the arbitrary point defined in the RB’s local coordinate system, and
Ai is the transformation matrix from the body’s coordinate system to the global coordinate
system defined in terms of the rotation angle θi, as follows:

Ai =

[
cos θi − sin θi

sin θi cos θi

]
(3)
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The coordinates Ri and θi are referred to as the absolute Cartesian generalized coordi-
nates of RBi. Thus, the multi-body schematizing the DFP, consisting of three RBs, has nine
independent generalized coordinates. The vector q of the generalized coordinates of the
DFP multi-body system is then defined as:

q = [R1
x R1

y θ1 R2
x R2

y θ2 R3
x R3

y θ3
]T

(4)

According to the currently accepted theory about the behavior of such devices, sliding
is expected to occur along the two kinematic pairs composed of: (1) the concave surface
of RB1 and the coupling convex lower base of RB2, and (2) the concave surface of RB3
and the coupling convex upper base of RB2. How would the corresponding kinematic
constraint equations be written in order to model such expected behavior? It is necessary
to impose that two points of each of the convex surfaces of RB2 are constrained to move
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on the relevant coupled concave surface of either RB1 or RB3. In fact, if we imposed one
constraint only, for instance on G2 to move along a circumference concentric to C1

n f , it
would not suffice, since RB could still undergo some rotation (Figure 4a). Moreover, even if
we imposed one constraint on a point belonging to the convex surface of RB2, vertex A2 for
instance, to move along C1

n f , RB2 could still rotate (Figure 4b). Ultimately, the only way to

impose that RB2 actually slides along the concave surface C1
n f is to impose such constraint

on at least two points of its convex surface (Figure 4c).
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Figure 4. Alternative kinematic constraints solutions: (a) centroid G2 has to migrate along a circle concentric to the concave
surface C1

n f , (b) the pad vertex A2 has to migrate along C1
n f , (c) both vertices A2 and B2 have to move along C1

n f .

In order to uncouple the superstructure from the ground shaking, these devices must
undergo some overall deformation, that is, some internal relative movement between the
constitutive components. This means that, overall, the multi-body system must be statically
underdetermined in order to be a mechanism. Thus, it must have at least one degree of
freedom, which means at least one generalized coordinate must not be constrained.

According to most testing protocols (e.g., [23,37]), a DFP is tested using a machine that
only allows vertical translation to the upper plate and imposes, generally by a vibrating
table, a kinematic history of displacement Xg(t) and velocities

.
Xg(t) on the lower plate

(Figure 5). In such conditions, the non-linear kinematic constraint equations, assembled in
matrix format, are written as follows:

C(q, t) =



R1
x − Xg(t)

R1
y

θ1(
r21

A
)T · n1

A(
r21

B
)T · n1

B(
r23

C
)T · n3

C(
r23

D
)T · n3

D
R3

x
θ3


= 0 (5)

where the first constraint equation imposes a displacement history on the translational
horizontal generalized coordinate of the lower plate, which is indicated as RB1. The second
and third constraint equations impose null vertical translation and rotation, respectively,
for RB1. The kinematic constraint equations from the fourth to the seventh impose sliding
to take place at the corner points of the two convex surfaces of the RB2 schematizing the
pad. In particular, each of them imposes that the vector r2j

Pi (tn) that describes the relative
movement of generic point P2

i ∈ RB2 (actually, one of the four points A2, B2, C2, D2) with

respect to its position Pj
i , at the previous time step (tn−1), along the coupled concave surface

Cj
n f (j = 1, 3), is tangent to the spherical surface Cj

n f itself. This is expressed imposing that
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the projection of vector r2j
Pi (tn) along the versor nj

P of the normal to Cj
n f in Pj

i (tn−1) is null.
In fact, the fourth kinematic constraint equation is written as:(

r21
A

)T
· n1

A = 0 (6)

meaning that the vector of the components of the displacement of point A2, belonging
to RB2 in the global inertial Cartesian system, and with respect to its previous position
A1(tn−1) occupied on RB1, namely along the surface C1

n f , has a null component along the

versor n1
A of the normal to C1

n f in A1(tn−1)—the expression for the latter is determined
as follows:

n1
A =

r1
AC1

R1 =
r1

C1 − r1
A

R1 (7)

in which r1
C1 and r1

A are the global position vectors of the center C1 of C1
n f and position

A1(tn−1), respectively, as points belonging to RB1.
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starting configuration, and (b) displaced configuration.

With these premises, the fourth to seventh non-linear kinematic equations are written
as follows:(

R2
x − A · cos θ2 +B · sin θ2 − R1

x − x1
A · cos θ1 + y1

A · sin θ1
)
·
(
sin α1

A · cos θ1 − cos α1
A · sin θ1)

+
(

R2
y − A · sin θ2 − B · cos θ2 − R1

y − x1
A · sin θ1 − y1

A · cos θ1
)

×
(
sin α1

A · sin θ1 + cos α1
A · cos θ1) = 0

(8)

(
R2

x + A · cos θ2 +B · sin θ2 − R1
x − x1

B · cos θ1 + y1
B · sin θ1

)
·
(
− sin α1

B · cos θ1 − cos α1
B · sin θ1)

+
(

R2
y + A · sin θ2 − B · cos θ2 − R1

y − x1
B · sin θ1 − y1

B · cos θ1
)

×
(
− sin α1

B · sin θ1 + cos α1
B · cos θ1) = 0

(9)
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(
R2

x − A · cos θ2 −B · sin θ2 − R3
x − x3

C · cos θ3 + y3
C · sin θ3) · (sin α3

C · cos θ3 + cos α3
C · sin θ3)

+
(

R2
y − A · sin θ2 + B · cos θ2 − R3

y − x3
C · sin θ3 − y3

C · cos θ3
)

×
(
sin α3

C · sin θ3 − cos α3
C · cos θ3) = 0

(10)

(
R2

x + A · cos θ2 −B · sin θ2 − R3
x − x3

D · cos θ3 + y3
D · sin θ3) · (− sin α3

D · cos θ3 + cos α3
D · sin θ3)

+
(

R2
y + A · sin θ2 + B · cos θ2 − R3

y − x3
D · sin θ3 − y3

D · cos θ3
)

×
(
− sin α3

D · sin θ3 − cos α3
D · cos θ3) = 0

(11)

where u1
A =

[
x1

A y1
A

]T
, u1

B =
[

x1
B y1

B

]T
, u3

C =
[
x3

C y3
C
]T

, and u3
D =

[
x3

D y3
D
]T

are the local

position vectors of points A2 and B2, and C2 and D2, along the circumferences C1
n f and

C3
n f , respectively, at time (tn−1); α1

A, α1
B, α3

C, and α3
D are the angles defining the current local

position of RB2 vertices along the two circumferences C1
n f and C3

n f (Figure 5), and A and B
are the constant quantities characterizing the geometry of RB2, given by:[

A
B

]
=

dp

2
·
[

sin ψ2

cos ψ2

]
(12)

in which dp is the diagonal and ψ2 is the opening angle of the pad, respectively (Figure 3).
The eighth and ninth constraint equations impose that RB3, schematizing the upper sliding
plate, can undergo neither horizontal translation nor rotation.

Due to the high non-linearity of the kinematic constraint equations in terms of the
generalized coordinates, they are often solved by means of the Newton–Raphson algorithm
(e.g., [26,27]). This iterative procedure starts by making an estimate of the desired solution
vector. If this estimate at a certain instant t is denoted as qi, the exact solution can be
written as qi + ∆qi. By using Taylor’s theorem, and neglecting the higher order terms, the
kinematic constraint equations become:

Cqi
· ∆qi = −C(qi, t) (13)

where ∆qi =
[
∆R1

x ∆R1
y ∆θ1 ∆R2

x ∆R2
y ∆θ2 ∆R3

x ∆R3
y ∆θ3

]T
is the vector of Newton differ-

ences and Cqi
(9, 9) is the constraint Jacobian matrix, whose j-th row is defined as follows:

∂Cj

∂qi
(1, 9) =

[
∂Cj

∂R1
x

∂Cj

∂R1
y

∂Cj

∂θ1

∂Cj

∂R2
x

∂Cj

∂R2
y

∂Cj

∂θ2

∂Cj

∂R3
x

∂Cj

∂R3
y

∂Cj

∂θ3

]
(14)

In this case, the system is kinematically driven since the number of constraint equa-
tions is equal to the number of generalized coordinates and, if the constraints are linearly
independent, Cq must be non-singular and invertible. In this case, Equation (13) can be
solved for the vector of Newton Differences and this vector can be used to iteratively
update the vector of the system’s generalized coordinates as follows:

qi+1 = qi + ∆qi (15)

With these premises, the assumed compliant sliding can actually take place along the
two concave surfaces only if the constraint Jacobian matrix is non-singular and invertible,
which means that the determinant

∣∣Cq
∣∣ is non-null.

For the multi-body model (hypothesis of compliant sliding) herein described (Figure 5),
all the terms of the Jacobian matrix Cq(9, 9) are null except for the following ones:

[c1,1 c2,2 c3,3 c8,7 c9,9] = 1.0 (16)
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
c4,1
c4,2
c4,4
c4,5

 =


cos α1

A − sin α1
A

− sin α1
A − cos α1

A
− cos α1

A sin α1
A

sin α1
A cos α1

A

 · [ sin θ1

cos θ1

]
(17)

c4,3 =
(

R2
x − A · cos θ2 + B · sin θ2 − R1

x
)

·
(
− sin α1

A · sin θ1 − cos α1
A · cos θ1)

+
(

R2
y − A · sin θ2 − B · cos θ2 − R1

y

)
·
(
sin α1

A · cos θ1 − cos α1
A · sin θ1) (18)

c4,6 =
(

A · sin θ2 + B · cos θ2) · (sin α1
A · cos θ1 − cos α1

A · sin θ1)
+
(
−A · cos θ2 + B · sin θ2)

·
(
sin α1

A · sin θ1 + cos α1
A · cos θ1) (19)


c5,1
c5,2
c5,4
c5,5

 =


cos α1

B sin α1
B

sin α1
B − cos α1

B
− cos α1

B − sin α1
B

− sin α1
B cos α1

B

 · [ sin θ1

cos θ1

]
(20)

c5,3 =
(

R2
x + A · cos θ2 + B · sin θ2 − R1

x
)
·
(
sin α1

B · sin θ1 − cos α1
B · cos θ1)

+
(

R2
y + A · sin θ2 − B · cos θ2 − R1

y

)
·
(
− sin α1

B · cos θ1 − cos α1
B · sin θ1) (21)

c5,6 =
(
−A · sin θ2 + B · cos θ2) · (− sin α1

B · cos θ1 − cos α1
B · sin θ1)

+
(

A · cos θ2 + B · sin θ2)
·
(
− sin α1

B · sin θ1 + cos α1
B · cos θ1) (22)


c6,4
c6,5
c6,7
c6,8

 =


cos α3

C sin α3
C

sin α3
C − cos α3

C
− cos α3

C − sin α3
C

− sin α3
C cos α3

C

 · [ sin θ3

cos θ3

]
(23)

c6,6 =
(

A · sin θ2 − B · cos θ2) · (sin α3
C · cos θ3 + cos α3

C · sin θ3)
−
(

A · cos θ2 + B · sin θ2)
·
(
sin α3

C · sin θ3 − cos α3
C · cos θ3) (24)

c6,9 =
(

R2
x − A · cos θ2 − B · sin θ2 − R3

x
)

·
(
− sin α3

C · sin θ3 + cos α3
C · cos θ3)

+
(

R2
y − A · sin θ2 + B · cos θ2 − R3

y

)
·
(
sin α3

C · cos θ3 + cos α3
C · sin θ3) (25)


c7,4
c7,5
c7,7
c7,8

 =


cos α3

D − sin α3
D

− sin α3
D − cos α3

D
− cos α3

D sin α3
D

sin α3
D cos α3

D

 · [ sin θ3

cos θ3

]
(26)

c7,6 = −
(

A · sin θ2 + B · cos θ2) · (− sin α3
D · cos θ3 + cos α3

D · sin θ3)
−
(

A · cos θ2 − B · sin θ2)
·
(
sin α3

D · sin θ3 + cos α3
D · cos θ3) (27)

c7,9 =
(

R2
x + A · cos θ2 − B · sin θ2 − R3

x
)
·
(
sin α3

D · sin θ3 + cos α3
D · cos θ3)

+
(

R2
y + A · sin θ2 + B · cos θ2 − R3

y

)
·
(
− sin α3

D · cos θ3 + cos α3
D · sin θ3) (28)

where the generic term ci,j indicates the partial derivative of the i-th constraint equation
with respect to the j-th multi-body generalized coordinate of Equation (4).
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With these equations, the determinant of the constraint Jacobian matrix becomes:∣∣Cq
∣∣ = (−c4,4 · c5,5 + c4,5 · c5,4) · (c6,6 · c7,8 − c6,8 · c7,6) + (c4,4 · c5,6 − c4,6 · c5,4)
·(c6,5 · c7,8 − c6,8 · c7,5) + (−c4,5 · c5,6 + c4,6 · c5,5) · (c6,4 · c7,8 − c6,8 · c7,4)

(29)

where all addends are generally different than zero so that
∣∣Cq
∣∣ itself is generally different

than zero and Cq results non-singular and invertible; thus, sliding can actually occur along
the two surfaces. In the case of the previous time step tn−1 characterized by symmetric rest
position α1

A = α1
B = α3

C = α3
D = α, Equation (29) becomes:∣∣Cq

∣∣ = 8 · sin α · (cos α)2 · [B · sin α + A · cos α] · cos θ2 (30)

which, again, is generally non-null since it may vanish only if either α = 0◦, α = 90◦, or
θ2 = 90◦ but none of these can be possible.

However, even if the model described so far admits a numerical solution, when
looking more closely at the trajectory undergone by the corner points of RB2 (Figure 6),
one realizes that such relative movement would actually yield interpenetration of matter,
which would imply some wear that is not reported in experimental testing.
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Moreover, in order to avoid such interpenetration of matter, we should impose four 
other linear kinematic constraints at the corner points of the convex surfaces of RB2 to 
force these points to move along circumferences instead of tangent straight lines, resulting 
in a statically indeterminate multi-body assemblage. However, such an assemblage would 
not be a mechanism any longer, due to this static indeterminateness. Thus, what is the real 
relative movement undergone by the numerous rigid bodies constituting the DFP during 
an experimental test and, more generally, during an earthquake? Let us start by analyzing 
the results of the model complying with the alleged kinematical behavior, in terms of only 
displacements and their instantaneous increments (velocities), neglecting accelerations 

Figure 6. Constrained (Compliant Sliding) model of the DFP to simulate the experimental tests:
details of the (a) undisplaced (tn−1) and (b) displaced (tn) configuration, (c,d) zoom of the displaced
(tn) configuration.

Moreover, in order to avoid such interpenetration of matter, we should impose four
other linear kinematic constraints at the corner points of the convex surfaces of RB2 to force
these points to move along circumferences instead of tangent straight lines, resulting in
a statically indeterminate multi-body assemblage. However, such an assemblage would
not be a mechanism any longer, due to this static indeterminateness. Thus, what is the
real relative movement undergone by the numerous rigid bodies constituting the DFP
during an experimental test and, more generally, during an earthquake? Let us start by
analyzing the results of the model complying with the alleged kinematical behavior, in
terms of only displacements and their instantaneous increments (velocities), neglecting
accelerations and forces for the time being. Two DFP prototypes are analyzed, whose
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geometrical features and testing parameters are listed in Table 1. The former include
(Figure 3): h1,3

r , t1,3
r height and thickness of the retaining ring; R1,3, α1,3 radius and opening

angle of the concave surface; h2 height of the straight cylinder part of the RB2; α21 and α23

opening angles defining the dimensions of the convex bases of RB2, coupled with RB1 and
RB3, respectively. The testing parameters include: ∆Xg(t1) initial value of ground-imposed
displacement; Xg,max maximum value and ωg circular frequency of the ground-imposed
displacement time history; initial rotation θ2(t0) of RB1 and RB2, respectively; time extent
tg and time increment ∆t of the ground-imposed time history Xg(t).

Table 1. Analyzed DFP prototypes: values for the input parameters adopted in the analyses.

Label h1
r , h3

r
cm

R1, R3

m
α1, α3

◦
h2

cm
h1,3

min
cm

t1,3
r

cm
α21, α23

◦
∆Xg(t1)

cm
Xg,max

cm
ωg

rad/s
θ2(t0)
◦

∆t
s

tg
s

DFP 1 2 1 21 15 10 2.58 10 5–10 * 19.08 30 2 0.01–
0.001 1

DFP 2 2 1 18 15 10 2.58 5 5–10 * 22.5 30 0.5–10 0.01–
0.001 1

(*) Values are intentionally assumed to be large for numerical investigation purposes.

3.2. Results: The First Time-Step t1 of Sliding

In accordance with what has been pointed out in the previous paragraph, an aspect
that is undoubtedly interesting to analyze is the amount of interpenetration of matter at
the corners of the pad, namely RB2. The interpenetration at each of the corners of RB2,
which are the points A2, B2, C2, and D2, can be measured along the radial straight lines
passing through themselves and the centers of the concave surfaces, yielding I1

A, I1
B, I3

C,
and I3

D, respectively (Figure 6). It is interesting to start by evaluating the interpenetration
at the initial instant of sliding: (a) starting from different geometrical configurations,
which are herein singled out simply by the relevant value of θ2(t0), (b) for two different
values of ground-imposed displacement ∆Xg(t1), and (c) for two different prototypes of
double friction pendulum bearings, herein labelled as DFP1 and DFP2. The geometrical
characteristics of these latter are listed in Table 1. The main difference between the two
is that the pad of DFP1 has a more flattened and lenticular shape, while the pad of DFP2
is squatter. The values of incremental ground-imposed displacement ∆Xg(t1) taken into
consideration are 5 and 10 cm. These values should indeed be assumed coherently with the
ground-motion velocity, but they are herein intentionally assumed slightly larger in order
to investigate their numerical influence on the value of the initial interpenetration at t1.

As can be gathered from Figure 7, the value of the initial interpenetration for each
of the vertices of the pad almost doubles by doubling the imposed ground displacement,
from 5 to 10 cm, independently of the analyzed DFP prototype and regardless of the value
of ∆Xg(t1). What is more interesting to observe is that for both analyzed prototypes, the
interpenetration evaluated at the two endpoints of each diagonal (e.g., I1

B(t1) and I3
C(t1))

assumes exactly the same value, for whatever value of the initial rotation θ2(t0) of RB2,
so that the two relevant curves IP(t1) = f

[
θ2(t0)

]
result superimposed to each other.

Moreover, the initial interpenetration at the endpoints of one diagonal of RB2 is always
larger than at the endpoints of the other diagonal (Figure 7). This, in the context of the
model herein applied, which assumes the various components to be rigid bodies, thus
impenetrable, means that in the points with higher interpenetration, there would actually be
a larger concentration of stresses so that the pad (RB2) would work essentially, or to a larger
extent, on one diagonal (e.g., the one singled out by vertices B2 and C2). Such deduction
would be legitimate even if the assumption of infinitely rigid bodies were removed and the
constitutive bodies were considered as deformable. Such effect is more pronounced for the
prototype with the squatter pad (DFP2) and for initial configurations q(t0) characterized
by a larger value of

∣∣θ2
∣∣ in the absolute value, which corresponds, being negative in the

contemplated cases, to a clockwise rotation of RB2 (compare Figure 3). In fact, as can be
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gathered from Figure 7a,b, the initial interpenetration at the endpoints of the diagonal
B2C2 is on average larger than that calculated at the endpoints of the diagonal A2D2,
approximately of 0.004 mm for ∆Xg(t0) = 5 cm and of 0.025 mm for ∆Xg(t0) = 10 cm.
These differences might seem tiny, but they would yield stress differences that may not be
negligible, if the elastic modulus of the constitutive material were taken into account [37].
The difference in value between the interpenetration calculated at the endpoints of the
diagonal B2C2 and that at the endpoints of the diagonal A2D2 is more pronounced for the
prototype with the squatter pad (Figure 7c,d). In fact, such difference reaches a maximum
value of approximately 6 mm for ∆Xg(t0) = 5 cm and of 12 mm for ∆Xg(t0) = 10 cm.
Note however that, in general, the initial interpenetration tends to increase by increasing
the global deformation of the device (characterized by larger values of

∣∣θ2
∣∣), with respect

to the undeformed configuration at rest (θ2 = 0). This is due to the fact that, for the reasons
already explained in a previous paragraph, the upper and lower plates are constrained
to translate while remaining horizontal. In Figure 7, the values of the determinant of
the constraint Jacobian matrix

∣∣Cq
∣∣ are also plotted, as an example, for the cases herein

examined. These values result, as expected, generally different than zero, meaning that a
numerical solution actually exists.
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Figure 7. Interpenetration at the initial sliding time step for the RB2 corners and determinant
∣∣Cq
∣∣ for different initial

configurations θ2(t0) for DFP1 (a,b) and for DFP2 (c,d), with ∆Xg(t0) = 5 cm (above) and with ∆Xg(t0) = 10 cm (below).

In the case of the DFP1 prototype, the more flattened one, the difference in initial
interpenetration is less pronounced than for DFP2, but is always present, indicating that
according to this model, initial sliding concentrates on the endpoints of one of the two
diagonals of the pad. The device would not start sliding with an evenly distributed inter-
penetration along the two kinematic pairs but, conversely, on the two vertices of a single
diagonal. This can also be gathered from Figure 8a, in which the displaced configuration
of DFP1 is plotted, for initial geometrical configuration characterized by θ2(t0) = −6.0◦

and imposed displacement of ∆Xg(t1) = 10 cm. Thus, a more flattened shape of the pad
yields, according to this model, and reasoning only in terms of displacement kinemat-
ics, a relatively more evenly distributed initial interpenetration, even if the value at the
vertices of one diagonal is slightly larger than at the others. This one-diagonal effect is
more pronounced for the DFP2 prototype, as can be gathered from Figure 8b, in which the
displaced configuration is plotted for the initial θ2(t0) = −8.8◦ and imposed displacement
of ∆Xg(t1) = 5 cm. It must be stressed that if sliding effectively took place according to
this compliant sliding model, stresses would concentrate at the endpoints of the diagonal
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opposite to the one that, taking into consideration the elastic deformations of the pad,
are consequent to a rightward imposed movement ∆Xg(t1). In fact, in such case (com-
pare Figure 8), the most stressed diagonal of RB2 would be the compressed one, which is
A2D2, instead.
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Figure 8. Initial and deformed configurations corresponding to breakaway interpenetration: (a) DFP1 prototype with
∆Xg(t1) = 10 cm, and (b) DFP2 with ∆Xg(t1) = 5 cm.

3.3. Results: The Time Histories

For the two prototype DFPs, whose characteristics are listed in Table 1, the time history
response to an earthquake-like sinusoidal ground movement Xg(t) = Xg,max · sin

(
ωg · t

)
was also evaluated. The values assumed for maximum imposed displacement Xg,max and
circular frequency ωg are listed in Table 1.

As can be gathered from Figure 9, for the DFP1 prototype, for both integration time
steps of 0.01 and 0.001 s, the curves representing the time histories of corner interpenetration
are almost superimposed to each other even if in the former case, in correspondence of the
peaks, those curves slightly diverge from each other. Even though this would induce the
conclusion that the DFP slides in a compliant form, when interpenetration is considered
in relative terms, meaning in terms of the difference between interpenetration at the RB2
corners that are supposed to slide along the same concave surface (i.e., I1

A− I1
B and I3

D − I3
C),

it can be realized that sliding concentrates at the extremities of one diagonal only. In fact,
as can be gathered from Figure 10, regardless of the integration time step value, the time
histories of I1

A − I1
B and I3

D − I3
C show a cyclic trend and always have the same absolute

value and sign, meaning that interpenetration is systematically and alternatively larger,
even though of a slight amount, at the ends of one diagonal only. For the second prototype
DFP2, characterized by a squatter pad, the curves representing the time histories of corner
interpenetration are superimposed to each other, in pairs, throughout the earthquake-
induced displacement history (Figure 9). Moreover, the larger values of interpenetration,
in absolute terms, are recorded for the larger integration time step and interpenetration is
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cyclically concentrated at the ends of one diagonal only. The one diagonal-concentrated
interpenetration effect is more evident with larger absolute values than in the case of the
more flattened prototype. In fact, the maximum values of difference in interpenetration
are equal to approximately 1.6 and 0.18 mm for the integration time steps of 0.01 and
0.001 s respectively (Figure 9), while for DFP1, such values were of the order of 15 µm and
0.015 µm (Figure 10).
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As examples, in Figures 11 and 12, the time histories are plotted of (a) imposed ground
displacement Xg(t) and velocity

.
Xg(t), and (b) global coordinates θ2(t) and R3

y(t), where
the latter are the pad rotation and the upper plate vertical motion, respectively. In the
same figures, the initial and final computed configurations are also plotted. Figure 11
refers to the analysis of the DFP1 with integration time step of 0.01 s and Figure 12 to the
DFP2, with integration time step of 0.001 s. Note that the maximum value of imposed
ground displacement Xg,max was evaluated as the one corresponding to the maximum
geometrical capacity of the given prototype, because any other exceedance would result
in a rigid body translation of the device, with the internal pad leant against the relevant
retainer. For the DFP1, for imposed ground motion characterized by Xg,max = 19.08 mm
and ωg = 30 rad/s, maximum and residual rotation are

(
θ2)

max = 8.5◦ and θ2(tg
)
= 8.43◦,

respectively, while the maximum upward movement, with respect to the initial rest position,
is ∆R3

y = R3
y,max− R3

y(t0) = 2.0 cm and the residual is R3
y
(
tg
)
= 1.96 cm (Figure 11). For the

DFP2, for imposed ground motion characterized by Xg,max = 22.5 mm and ωg = 30 rad/s,
maximum and residual rotation are

(
θ2)

max = 8.43◦ and θ2(tg
)
= 8.30◦, respectively,

while the maximum upward movement, with respect to the initial rest position is ∆R3
y =

R3
y,max − R3

y(t0) = 1.98 cm and the residual is R3
y
(
tg
)
= 1.95 cm (Figure 12). By comparing

Figures 9–11, it can be noticed that the peak values of difference of interpenetration at
the extremities of the two diagonals (i.e., I1

A − I1
B and I3

D − I3
C) are cyclically attained in

correspondence of the maximum relative values of ground velocity. This is simply due to
the fact that for a constant value of the integration time step ∆t, the maximum instantaneous
values of imposed displacement increments ∆Xg(t) are attained for the maximum values

of velocity, being ∆Xg(t) =
.

Xg(t) · ∆t.



Buildings 2021, 11, 50 15 of 28Buildings 2021, 11, x FOR PEER REVIEW 15 of 29 
 

 
Figure 10. Time histories of the difference of interpenetration at the corners of the pad supposed to 
slide along the same concave surface, 𝐼஺ଵ − 𝐼஻ଵ (above) and for 𝐼஽ଷ − 𝐼஼ଷ (below), for DFP1: for inte-
gration time step a) ∆𝑡 = 0.01 s, and b) ∆𝑡 = 0.001 s. 

As examples, in Figures 11 and 12, the time histories are plotted of (a) imposed 
ground displacement 𝑋௚ሺ𝑡ሻ and velocity 𝑋ሶ௚ሺ𝑡ሻ, and (b) global coordinates 𝜃ଶሺ𝑡ሻ and 𝑅௬ଷሺ𝑡ሻ, where the latter are the pad rotation and the upper plate vertical motion, respec-
tively. In the same figures, the initial and final computed configurations are also plotted. 
Figure 11 refers to the analysis of the DFP1 with integration time step of 0.01 s and Figure 
12 to the DFP2, with integration time step of 0.001 s. Note that the maximum value of 
imposed ground displacement 𝑋௚,௠௔௫  was evaluated as the one corresponding to the 
maximum geometrical capacity of the given prototype, because any other exceedance 
would result in a rigid body translation of the device, with the internal pad leant against 
the relevant retainer. For the DFP1, for imposed ground motion characterized by 𝑋௚,௠௔௫ =19.08 mm and 𝜔௚ = 30 rad s⁄ , maximum and residual rotation are ሺ𝜃ଶሻ௠௔௫ = 8.5° and 𝜃ଶ൫𝑡௚൯ = 8.43°, respectively, while the maximum upward movement, with respect to the 
initial rest position, is ∆𝑅௬ଷ = 𝑅௬,௠௔௫ଷ − 𝑅௬ଷሺ𝑡଴ሻ = 2.0 cm  and the residual is 𝑅௬ଷ൫𝑡௚൯ =1.96 cm (Figure 11). For the DFP2, for imposed ground motion characterized by 𝑋௚,௠௔௫ =22.5 mm and 𝜔௚ = 30 rad s⁄ , maximum and residual rotation are ሺ𝜃ଶሻ௠௔௫ = 8.43° and 𝜃ଶ൫𝑡௚൯ = 8.30°, respectively, while the maximum upward movement, with respect to the 
initial rest position is ∆𝑅௬ଷ = 𝑅௬,௠௔௫ଷ − 𝑅௬ଷሺ𝑡଴ሻ = 1.98 cm  and the residual is 𝑅௬ଷ൫𝑡௚൯ =1.95 cm (Figure 12). By comparing Figures 9–11, it can be noticed that the peak values of 
difference of interpenetration at the extremities of the two diagonals (i.e., 𝐼஺ଵ − 𝐼஻ଵ  and 𝐼஽ଷ − 𝐼஼ଷ ) are cyclically attained in correspondence of the maximum relative values of 
ground velocity. This is simply due to the fact that for a constant value of the integration 
time step ∆𝑡, the maximum instantaneous values of imposed displacement increments ∆𝑋௚ሺ𝑡ሻ are attained for the maximum values of velocity, being ∆𝑋௚ሺ𝑡ሻ = 𝑋ሶ௚ሺ𝑡ሻ × ∆𝑡. 

Figure 10. Time histories of the difference of interpenetration at the corners of the pad supposed
to slide along the same concave surface, I1

A − I1
B (above) and for I3

D − I3
C (below), for DFP1: for

integration time step (a) ∆t = 0.01 s, and (b) ∆t = 0.001 s.
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DFP2 and for integration time step ∆t = 0.001 s (above), and relevant initial and final deforma-
tions (below).

4. Inspiring Physical Observation

In chronological order, before developing and implementing the model described
in the previous paragraph, and reflecting on the findings described in paragraph 2, the
observation described in the following was made. Suppose a kind of double flat friction
bearing (Figure 13), composed of (a) two rigid horizontal steel plates and (b) a rigid steel
cylinder placed in between. Imagine that this device is loaded by a vertical force N and
that friction at the two interfaces is governed by the Coulomb constitutive law (Figure 13b),
with a rigid perfectly plastic dependence of the friction force on the relative displacement
F(u), and threshold value Fµ = µ · N. Imagine also that the friction coefficient µ at those
interfaces has the same value. If we impose a displacement on the lower plate, due to
the rigid plastic constitutive law of interfacial friction, we would immediately have, even
for infinitesimally small values of imposed displacement, the mobilization of the friction
threshold Fµ at each interface. Those two horizontal forces, equal in magnitude and
opposite in direction, do generate a couple, to which corresponds a moment MS = Fµ · H
that, in the initial configuration, is not balanced by any other couple. That moment would
tend to overturn the pad by making it rotate around one of the corners. In such tentative
rotation, the points of application of the vertical force N would migrate to the pad corners
still in contact with the relevant horizontal plates. In this way, even the vertical force
would give rise to a couple MR = N · d, opposed to the overturning one and larger in
absolute value that would make the pad undergo both a rigid body rotation around its
centroid G and a simultaneous vertical translation. During such movement of the pad,
the diagonally opposed corners, loaded by N, would also undergo sliding, up to the
new, restored equilibrium configuration (Figure 13e). It is the vertical weight force N that
restores the geometric compatibility at each time step.
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Figure 13. Case of a flat double friction bearing: (a) undeformed initial configuration, (b) friction’s Coulomb constitutive
law, (c) pad free body diagram, (d) intermediate deformed configuration, and (e) final configuration of the whole device.

Geometrical Compatibility

The observation initially made for the case of a double flat sliding isolator can be
extended to the double concave one, as follows. The considerations herein presented are
based on the following assumptions: the various parts constituting the friction pendulum
devices are considered as rigid bodies, thus neglecting, at least for the time being, any
possible deformation. In this way, geometrical compatibility is fulfilled each time the
two spherical caps constituting the two mating surfaces of a given interface are perfectly
superimposed to each other.

The first and most important constraint is represented by the fact that the two outer-
most horizontal surfaces, lower and upper, can undergo a rigid body motion remaining
horizontal, which means that they can only translate remaining parallel to themselves (see
paragraph 3). This is due to the fact that, at the extrados of the so-called isolation layer, the
various isolators are connected by a rigid diaphragm (e.g., [36]) while, at the intrados, they
are by the presence of the foundations structure, which can actually be seen as another
rigid diaphragm. In order for that condition to be fulfilled, it is necessary that sliding
simultaneously occurs at the two sliding interfaces. For this reason, the friction coefficient
should be the same along the two surfaces of the two sliding pairs, i.e., µ12 = µ23. It is
preferable to start by analyzing the behavior of a double friction pendulum in a radial plane,
which means in the case of unidirectional imposed horizontal displacement (Figure 14). At
a generic time step tn, the internal deformation undergone, as a function of the imposed
displacement ∆Xg(tn) by the numerous elements constituting the device, can be decom-
posed into two subsequent phases. When starting from the rest position (Figure 14a), in
the first phase, which means during the first part ∆t1 of the time increment ∆t, the pad,
due to the imposed displacement ∆Xg(t1), rigidly rotates around one of the lowermost
corners (A2) and such rotation also yields a certain vertical displacement of the upper plate.
During the second phase ∆t2 of the current time increment ∆t, the pad undergoes a rigid
rotation around its centroid G2 with the latter simultaneously rigidly translating along the
straight line connecting the centers of the two spherical surfaces C1C3. This latter direction,
resulting from the end of the previous sub-interval ∆t1, is inclined, with respect to the
vertical direction, at an angle of θ(∆t1), which is the geometrical parameter accounting for
the final configuration assumed by the entire device. The same two-step deformation can
be recognized if, at a generic time step tn, the ground imposes a reversed displacement,
and starting from a generic deformed configuration (Figure 14b). The only difference, in
the case of reversal, is that initial rigid rotation (∆t1) involves the other diagonal of the pad
(i.e., B2C2 instead of A2D2). During the second phase, sliding occurs along the corners of
the involved diagonal of the pad, and friction is mobilized therein.
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The same two-step deformation at a generic instant tn can be singled out when a
more general situation is considered, in which we assume that (1) the pad is already
dislocated (θ2(tn), ϕ2(tn)) from the equilibrium configuration, and (2) the ground-imposed
displacement ∆Xg(tn) is generically oriented with respect to the global reference system
(GXYZ)0 [30]. Even though already dislocated at the start (tn) of the current incremental
time step, the pad must have restored, according to the two-step deformation above,
a geometrically compatible configuration (Figure 15a). Such displaced configuration,
uniquely identified by the two spherical coordinates θ2(tn) and ϕ2(tn), which are the polar
and azimuthal angle, respectively (Figure 15), is thus characterized by the fact that the pad
axis C21C23(tn) is superimposed on the segment C1C3(tn) connecting the two centers of
the external spherical surfaces.

Whatever the orientation of the imposed displacement ∆Xg(tn) in (GXYZ)0, it is al-
ways possible to single out a plane π passing through that displacement orientation and the
two centers of the spherical surfaces (one is sufficient indeed, provided that the geometrical
compatibility was fulfilled). The geometrically compatible two-step deformation takes
place in the plane π that, since passing through the spheres’ centers, sections the latter
along two circles with maximum radius, i.e., R1 and R3, herein assumed equal. The two-
step deformation is again composed of (1) a rigid body rotation along one of the corners
of the pad (which means a point, in 3D), contained in the plane π, and (2) a subsequent
simultaneous rigid rotation and translation of the pad, always contained in π, that restores
compatibility (Figure 15). During the second phase (∆t2), sliding occurs, simultaneously to
the rigid roto-translation, along the corners of the pad. When geometrical compatibility is
restored, spherical coordinates assume updated values θ2(tn+1), ϕ2(tn+1) (Figure 15c).
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5. Proposed Stick-Slip Modelling Strategy

The same theory of kinematics of multi-body systems already applied, assuming
that the hypothesis of compliant sliding is valid (Paragraph 3), can be applied in the case
in which we assume that the mechanical behavior of the DFPs is characterized by the
alternation of Stick and Slip phases. Even in this case, the non-linear kinematic equations
are written assuming to test one such DFP, by constraining the upper plate (RB3) so that
it can only translate vertically and by imposing to the lower plate (RB1) a kinematic
history of displacements Xg(t) and velocities

.
Xg(t) and preventing it from either vertically

translating or rotating. The relevant solving equations are presented in the following for
the only rightward movement (

.
Xg(t) > 0), for the sake of brevity, but they can be easily

obtained, in the same way, for the leftward movement (
.

Xg(t) < 0). We assume that, at each
time instant tn, there are two phases, namely: (1) Stick, with contextual loss of geometrical
compatibility, and (2) Slip, with roto-translation of RB2 and restoration of geometrical
compatibility (Figure 16).
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Figure 16. Stick-Slip Model: (a) initial geometrically compatible configuration at current time step;
(b) rotated stick configuration at the end of sticking phase; (c) initial configuration at beginning of
Slipping phase; (d) recovered geometrically compatible new configuration.
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5.1. Sticking Phase

During the Sticking phase, we assume that the pad (RB2) undergoes a rotation by
jamming along its compressed diagonal, which is A2D2 for

.
Xg > 0. Such behavior is

modelled by constraining RB2 to the two concave surfaces C1
n f and C3

n f , by means of two

pinpoints, placed in the positions occupied by A2 and D2, respectively, at the end of the
previous time step tn−1. Thus, in this phase, the non-linear kinematic constraint equations
are given by:

C(q, t) = (9, 1) =



R1
x − Xg(t)

R1
y

θ1

r2
A − r1

A
r2

D − r3
D

R3
x

θ3


= 0 (31)

in which the fourth and fifth equations impose that the global coordinates of the vertices A2

and D2 assume the same values if written by using either their belonging to RB2, yielding
r2

A and r2
D, or their belonging to RB1 or RB3, respectively, yielding r1

A and r3
D. These two

row vector equations yield:

[
r2

A − r1
A

r2
D − r3

D

]
=


R2

x − A · cos θ2 + B · sin θ2 − R1
x − x1

A · cos θ1 + y1
A · sin θ1

R2
y − A · sin θ2 − B · cos θ2 − R1

y − x1
A · sin θ1 − y1

A · cos θ1

R2
x + A · cos θ2 − B · sin θ2 − R3

x − x3
D · cos θ3 + y3

D · sin θ3

R2
y + A · sin θ2 + B · cos θ2 − R3

y − x3
D · sin θ3 − y3

D · cos θ3

 (32)

where the local coordinates u1
A =

[
x1

A y1
A

]T
and u3

D =
[
x3

D y3
D
]T

are those at the end of the
previous time step (tn−1). With these equations, the square kinematic constraints Jacobian
matrix Cq(9, 9) has all null elements except for the following ones:[

c1,1 c2,2 c3,3 −c4,1 c4,4 c5,5 c8,7
−c5,2 c6,4 −c6,7 c7,5 −c7,8 c9,9

]
= 1 (33)

[
c4,3
c5,3

]
=

[
x1

A y1
A

y1
A −x1

A

]
·
[

sin θ1

cos θ1

]
(34)


c4,6
c5,6
c6,6
c7,6

 =


A B
B −A
−A −B
−B A

 · [ sin θ2

cos θ2

]
(35)

[
c6,9
c7,9

]
=

[
x3

D y3
D

y3
D −x3

D

]
·
[

sin θ3

cos θ3

]
(36)

where the symbols have the meaning already introduced.

5.2. Slipping Phase

During the Slipping phase, we assume that the pad undergoes a rigid roto-translation,
with G2, the instant center of rotation, moving along the straight line connecting the centers
of the two circumferences C1

n f and C3
n f , with frictional sliding at the two vertices A2 and
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D2, and up to the restoration of geometrical compatibility and closure of the two kinematic
pairs. In this phase, the non-linear kinematic constraint equations are given as follows:

C(q, t) = (6, 1) =



(
r21

A
)T · n1

A(
r23

D
)T · n3

C(
r2

G2

)T
· n12 − k1(

r3
F3

)T
· n12 − k2

R3
y − R3

y,rc
θ3


= 0 (37)

where the first and second equations impose that point A2 and D2, belonging to the RB2,
slide along the tangents to the circumferences C1

n f and C3
n f in points A1 and D3, respectively,

which are the relative positions of A2 and D2 at the end of the sticking phase. The first two
equations are identical to Equations (8) and (11), respectively.

The third equation imposes that G2, which is the instant center of rotation, translates
along the straight line passing through the position of points C1 and C3, at the end of the
sticking phase. This is equivalent to imposing that the projection of the global position
vector r2

G2 , along the direction normal to the segment C1C3, with versor n12, is constant and
equal to the value k1 assumed at the end of the sticking phase. The fourth equation imposes
that also RB3 has to translate along the segment C1C3, which is equivalent to imposing
that the projection of the global position vector r3

F3 , of the intersection point F3 between

C3
n f and C1C3, along the direction n12 is constant and equal to the value k3 assumed at the

end of the sticking phase. The third and fourth equations are given by:

R2
x · nx + R2

y · ny − k1 = 0 (38)

R3
x · nx + R3

y · ny − k3 = 0 (39)

where n12 =
[
nx ny

]T is the unit vector orthogonal to the segment C1C3.
The fifth equation is written as:

R3
y − R3

y,rc = 0 (40)

where R3
y,rc is the ordinate of RB3 in the global inertia reference system, necessary to restore

the overall geometrical compatibility (Figure 16d), given by:

R3
y,rc = h1

sup + R1 · (1− cos θ) + h3
sup + R3 · (1− cos θ) + cos θ

·
[
h2 + R1 ·

(
1− cos α21)+ R3 ·

(
1− cos α23)] (41)

where h1
s and h3

s are the distances between the centroid and the most depressed point of
the concave surfaces of RB1 and RB3, respectively, and α21 and α23 are the half opening
angles defining the convex surfaces of RB2 paired with Rigid Bodies 1 and 3 (Figure 3); the
sixth equation imposes that RB3 cannot undergo any rotation.

With these equations, all elements of the kinematic constraints Jacobian matrix Cq(6, 6)
are null except for the following ones:[

c1,1
c1,2

]
=

[
− cos α1

A sin α1
A

sin α1
A cos α1

A

]
·
[

sin θ1

cos θ1

]
(42)

c1,3 =
(

A · sin θ2 + B · cos θ2) · (sin α1
A · cos θ1 − cos α1

A · sin θ1)
+
(

B · sin θ2 − A · cos θ2)
·
(
sin α1

A · sin θ1 + cos α1
A · cos θ1) (43)
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
c2,1
c2,2
c2,4
c2,5

 =


cos α3

D − sin α3
D

− sin α3
D − cos α3

D
− cos α3

D sin α3
D

sin α3
D cos α3

D

 · [ sin θ3

cos θ3

]
(44)

2,3 = −
(

A · sin θ2 + B · cos θ2) · (− sin α3
D · cos θ3 + cos α3

D · sin θ3)
−
(

A · cos θ2 − B · sin θ2)
·
(
sin α3

D · sin θ3 + cos α3
D · cos θ3) (45)

2,6 =
(

R2
x + A · cos θ2 − B · sin θ2 − R3

x
)
·
(
sin α3

D · sin θ3 + cos α3
D · cos θ3)

+
(

R2
y + A · sin θ2 + B · cos θ2 − R3

y

)
·
(
− sin α3

D · cos θ3 + cos α3
D · sin θ3) (46)

[
c3,1 c4,4
c3,2 c4,5

]
=

[
nx
ny

]
(47)[

c5,5 c6,6
]
= 1 (48)

where the meanings of several symbols have already been introduced.

5.3. Numerical Results

For this model, it is not interesting to analyze the interpenetration at the initial time
step, since the model itself is based on the assumption that the DFP initially sticks along
one diagonal of the pad. Thus, attention will be focused on the time histories for the same
two prototypes whose data are listed in Table 1, together with the details of the imposed
ground motion. Maximum values of calculated interpenetration are of the same order of
magnitude as what was obtained by means of the Compliant Sliding Model, as can be
gathered comparing Figures 9 and 17. Of course, due to the fundamental features of this
model, being based on a Stick-Slip functioning assumption, the one-diagonal effect is clearly
shown also for the DFP1 prototype, even if with relatively less interpenetration with respect
to the DFP2 (Figure 17). In fact, with the stick-slip model, the curves representing the
interpenetration time history at the endpoints of each diagonal of the pad are superimposed
to each other, and reach their peak at different time instants with respect to the endpoints
of the other diagonal. In Figure 18, the time histories θ2(t) and R3

y(t) for DFP1 are plotted
for integration time step ∆t = 0.001 s, while the results concerning DFP2 for ∆t = 0.01 s are
plotted in Figure 19. Note that the stick-slip behavior yields a secondary oscillation which is
clearly visible in the global coordinate time histories R3

y(t) and θ2(t), whose magnitude
depends on: (a) the shape of the DFP, (b) the magnitude of the stepwise velocity, and (c)
the value of the integration time step ∆t. The dependence on the stepwise value of the
ground-imposed velocity can be clearly yielded from the plots of R3

y(t) and θ2(t) since the
maximum amplitude of the sticking-related oscillations

(
∆θ2)

max is attained at the time

instants in which the maximum relative values of
.

Xg are attained (Figures 18 and 19). This

is expected indeed since, applying the definition of discrete velocity
.

Xg = ∆Xg/∆t, we
realize that for a constant value of integration time step, the largest values of incremental
ground-imposed displacements ∆Xg(t) are attained in correspondence of the relative
maximum values of the imposed velocity. Even the dependence on the pad’s shape can
be clearly yielded since the maximum values of sticking-related oscillations

(
∆θ2)

max are
relatively larger for DFP2 with respect to DFP1 (Figures 18 and 19). The importance of the
instantaneous velocity can also be gathered from Figure 20, in which the configurations (1)
at the beginning of the time step, (2) at the end of the sticking phase, and (3) at the end of
the slipping phase are plotted for two different instants of the analyzed displacement time
history and for DFP1 and DFP2, respectively. In Figure 20a, the three configurations are
plotted for DFP1 at the instant t = 0.73 s, characterized by a relative maximum value of
velocity

.
Xg = −570.05 cm/s and the RB2 rotation θ2 at (1) the beginning of the time step,

(2) the end of sticking, and (3) the end of slipping is equal to −1.04◦, −3.75◦, and −0.78◦,
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respectively. Figure 20b plots the three configurations for DFP2, at instant t = 0.94 s to
which corresponds a relative maximum value of ground velocity

.
Xg = −672.99 cm/s and

the three values of RB2 rotation result −3.38◦, −27.95◦, and −1.31◦. It is interesting to note
that with a properly optimized shape of the pad, even for relatively high values of ground
velocity, the sticking-induced rotation is slight, as for DFP1 at t = 0.73 s. Another thing
worth noting is that for the same signs of ground velocity, the working diagonal obtained
with the Stick-Slip modelling assumption is always the opposite of the one obtained by
applying the Compliant-Sliding. However, if we remove the strong assumption of infinitely
rigid bodies, and do take into account their elastic deformability, it seems reasonable to
expect that for

.
Xg > 0, the sticking diagonal would be A2D2 while for

.
Xg < 0, it would be

B2C2. In fact, if you consider the shear deformation that a rightward ground movement
would induce in RB2, it is easy to figure out that the compressed diagonal, which can jam
(stick) is the A2D2 one and vice-versa.
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Figure 18. Numerical results about the DFP1 prototype, for ∆t = 0.001 s integration time step: global coordinate time histories.
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Figure 19. Numerical results about the DFP2 prototype, for ∆t = 0.01 s integration time step: global coordinate time histories.
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Xg = −672.99 s at t = 0.94 s.
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6. Conclusions

After having analyzed in detail the relative movement that the rigid bodies constitut-
ing a double friction pendulum (DFP) isolator can undergo during an earthquake in order
to fulfill geometrical compatibility, we realized that it cannot be characterized by compliant
sliding and a pendulum-like behavior. In fact, the European regulation EN 15129:2009 also
renamed these devices as Double Concave Curved Surface Sliders (DCCSS), thus removing
the reference to the pendulum.

Moreover, already for the simpler case of a single pendulum, a pendulum-like behavior
is numerically possible if the convex component is forced, by means of a torque applied at
the extremity of a connecting rod, to rotate around a pinpoint placed right in the center of
the coupling concave spherical surface. On the contrary, in the case of friction isolators, an
earthquake imposes a kinematic time-history, encompassing displacements, velocities, and
accelerations, at the lower plate. For this reason, it is difficult to believe that sliding might
take place, already for the single friction pendulum and even more so for the double, in a
compliant manner along the coupled spherical surfaces.

Therefore, we have proposed a behavioral model for the DCCSS isolator, capable
of fulfilling geometrical compatibility, which envisages a two-step relative movement,
named stick-slip. Such modelling strategy assumes that at each time step, the multi-body
model undergoes sticking, with temporary loss of geometrical compatibility and change of
topology, subsequent slipping concentrated at the endpoints of the compressed diagonal of
the pad, and recovery of the initial topology.

Before presenting the multi-body kinematic equations for such devices, developed
according to the proposed stick-slip approach, those same equations were also solved for
the currently expected behavior, based on compliant sliding, in order to add arguments to
the discussion. In this case, taking the pendulum-like behavior for granted, we obtained
two strange results, which enforce the idea that the pendulum behavior with compliant
sliding is unlikely. Namely, we found that interpenetration of matter is always larger at the
endpoints of one of the two diagonals of the pad and, such one-diagonal effect regards, as a
function of the sign of the ground-imposed velocity, the diagonal that would result tense, if
the elastic deformability of the various elements was taken into consideration. Such results,
even more marked for DCCSS isolators characterized by squatter pads, concur to confirm
the validity of the initial realization about the real behavior of these devices.

Lastly, the multi-body kinematic equations were applied to model the proposed stick-
slip behavior. The obtained results showed that two generalized coordinates, namely the
rotation of the pad and the vertical position of the upper sliding plate, undergo a secondary
oscillation, whose maximum amplitude is larger for the prototypes with squatter pads, and
for larger values of the earthquake-imposed instantaneous velocity.

In this work, for the sake of brevity, the complete dynamics were omitted. However,
it will be presented in another work, possibly also including the impact between one
another of several rigid bodies and the evaluation of friction-induced heat. Moreover, no
attention was paid to the seismological variability of the parameters characterizing the
sinusoidal time history adopted to model the earthquake-induced ground motion, since
more attention has been paid to the numerical aspects of the modelling strategy. The results
in cases of real accelerograms will be presented in a future work.
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Abbreviations

A, B Geometrical quantities defining the pad cross section
C1

n f , C3
n f Circumferences characterizing the lower and upper plates concave plates, RB1 and RB3

C1, C1 Center of the two concave surfaces of RB1 and RB3, respectively
C21

n f , C23
n f Circumferences characterizing the lower and upper convex surfaces of RB2

C21, C23 Center of the 2 convex surfaces of RB2, coupled with C1
n f and C3

n f , respectively
Gi Centroid of the i-th RB
Ii
P Intersection of the i-th RB circumference and the radius Ri passing through P

Pi
W Intersection of the i-th RB circumference and either one of the straight sides of the pad

R1, R3 Radius of the concave surface belonging to RB1 and RB3, respectively
R21, R23 Radius of the convex surface, of RB2, and coupled with RB1 or RB3, respectively
Ri

x Global abscissa of the local reference system of the i-th RB
Ri

y Global ordinate of the local reference system of the i-th RB
Ii
P(t1) Initial interpenetration in correspondence of point P, along the concave surface of the i-th RB

Ii
P(t) Time-history of interpenetration in correspondence of point P, along the surface of the i-th RB

Ai i-th RB coordinates transformation matrix
C Non-linear kinematic constraints written in vector format
Cq Non-linear kinematic constraints Jacobian Matrix
Ri Vector of the global coordinates of the centroid of the i-th RB
ni

P Versor with origin in point P and normal to the i-th RB
q Vector of the multi-body system generalized coordinates
qi Vector of the generalized coordinates of the i-th RB
ri

P Global position vector of point P belonging to the i-th Rigid Body
rij

P Displacement vector of point P belonging to the i-th RB, with respect to the j-th RB
ui

P Local position vector of point P in the reference system of the i-th Rigid Body
ci,j Element at the i-th row and j-th column of the Jacobian Matrix Cq
dp Length of the diagonal of the pad
h1

r , h3
r Height of the retaining ring of RB1 and RB3, respectively

h1
min,h3

min Height of the concave plate, either RB1 or RB3, between most depressed point and opposite flat face
tg Time duration of the ground-imposed time history
tn Generic time integration instant
t1
r , t3

r Thickness of the retaining ring of RB1 and RB3, respectively
xj

P Local abscissa of point P in the reference system of the j-th RB
yj

P Local ordinate of point P in the reference system of the j-th RB
∆t Integration time step
∆t1 First part (Sticking) of the time step
∆t2 Second part (slipping) of the time step
Xg(t) Ground-imposed time history
Xg,max Maximum amplitude of the ground-imposed time-history
α1, α3 Half opening angle defining the extension of concave plates RB1 and RB3, respectively
α21, α23 Opening angle of the convex face of RB2 coupled with either RB1 or RB3
α1

A, α1
B Angle between the radius R1 passing through either A2 or B2, and local axis Y1

α3
C, α3

D Angle between the radius R3 passing through either C2 or5 D2, and local axis Y3

θi Counter-clockwise angle formed by the local reference axis Xi with respect to X0

ψ2 Angle defining the size of the straight cylinder constituting the pad
ωg Circular frequency of the ground-imposed time history
∆qi Vector of the Newton differences
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