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Abstract: The 2019–2020 bushfire season is estimated to be one of the worst fire seasons on record
in Australia, especially in New South Wales (NSW). The devastating fire season ignited a heated
public debate on whether prescribed burning is an effective tool for preventing bushfires, and how
the extent of bushfires has been changing over time. The objective of this study is to answer these
questions, and more specifically to identify how bushfire patterns have changed in the last 100 years
in NSW. To do so, we conducted a spatio-temporal analysis on prescribed burns and bushfires using
a 100-year dataset of bushfires. More specifically, three research questions were developed, with
each one of them addressed differently. First, generalised linear modelling was applied to assess the
changes in fire patterns. Second, a correlation analysis was conducted to examine whether prescribed
burns are an effective tool for reducing bushfire risk. Third, a spatio-temporal analysis was applied
to the bushfire location data to explore spatio-temporal clusters of high and low values for bushfires,
known as hotspots and coldspots, respectively. The study found that the frequency of bushfires has
increased over time; however, it did not identify a significant trend of change in their size. Based
on the results of this study for the relationship between prescribed burns and bushfires, it seems
impossible to determine whether prescribed burns effectively reduce bushfire risk. Thus, further
analysis with a larger amount of data is required in the future. The results of the spatio-temporal
analysis showed that cold spots are propagated around metropolitan areas such as Sydney, while
hotspots are concentrated in rural areas such as the North Coast and South Coast regions of NSW.
The analysis found four statistical areas that have become new bushfire frequency hotspots in the
2019–2020 bushfire season. These areas combined have about 40,000 residents and at least 13,000 built
dwellings. We suggest that further analysis is needed in the field to determine if there is a pattern of
movement of bushfire towards metropolitan areas. To make the results of this research accessible to
the public, an online interactive GIS-based dashboard was developed. The insight gained from the
spatial and temporal analyses in this research is crucial to making smarter decisions on allocating
resources and developing preventive or mitigating strategies.

Keywords: emerging hotspot analysis; geographic information systems; smart cities; data-driven
decision-making; dashboard; space-time cubes; climate change

1. Introduction

In 1770, one of the most influential British explorers, Captain James Cook, sailed the
Endeavour to discover a new land that he described in his journal as “The Continent of
Smoke,” since the crew of the Main (the name of the ship) “saw smokes by day and fires by night
upon the Main . . . ” [1]. Approximately 250 years later, Cook’s “Continent of Smoke,” today
modern Australia, is known to be one of the most fire-prone countries in the world, with a
unique biota that is adapted to a reoccurring fire pattern [2–4]. The reason is its unique
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climate, which includes extreme high temperatures, low humidity and strong winds, which
combine to create ideal conditions for severe fire storms [1,5–7]. At least once a decade,
Australia faces massive, destructive bushfire events, such as the 1974–1975 and 1993–1994
fires, 2009 Black Saturday, etc. [1,5].

With a death toll of over 20 people, the recent 2019–2020 bushfire season is estimated
to be one of the worst fire seasons in Australia on record [8]. Various Australian fire services
estimate that these megafires burnt approximately 19 million hectares as of the 14 January
2020, and killed over one billion mammals, birds and reptiles, with a possibility that entire
species have become extinct [8]. Increasing global temperatures and climate change have a
significant impact on Australia’s bushfires, since intense heat, longer heat waves and longer
droughts are predicted to increase the annual average fire danger in Australia by up to
30% by 2050 [6,9,10]. In fact, numerous studies on future fire activity have concluded that
the frequency of weather conditions conducive to fire in southeast Australia is increasing,
including in New South Wales, where a significant proportion of Australia’s population
resides [6,9–12].

As Australia battled through the 2019–2020 bushfires, a public debate formed about
the effectiveness of “prescribed burns” as a tool to reduce fires, i.e., deliberately starting
fires in a controlled environment to clear out flammable material and forest fuels [13,14].
Using fire as a tool for forest management dates back before the European settlement in
the 18th century [15,16]. In fact, fire was first used in Australia as method for hunting
by Indigenous Australians [15,16], then by farmers as a way to clear bush, burn off old
grass and reduce fire hazards on their farms, and most recently as a method of forest
control [14]. The practice of “prescribed burning,” also known as “hazard reduction
burning” or “controlled burning,” was first introduced in Australia in the 20th century
by forest managers in southwestern Australia, who were trying to protect native forests
from bushfires that had destructive impacts on their forests [14]. The methodology of
prescribed burning is used worldwide. It is based on the theory that excluding fires from
forest areas is a “recipe” for catastrophic fires, since it allows fuels to build up in the forest,
and once ignited, they will lead to an extreme fire event. In accordance, the principal
of prescribed burning is to ignite small-scale controlled fires in a fire-prone landscape
during cool weather to reduce the amount of surface forest fuel and shrublands [13,14].
It is important to note that the initial goal of prescribed burns is not to prevent areas
from burning, but to reduce their potential fire intensity, which can then be controlled
more easily by fire fighters [13,14]. Two Australian studies that have analysed historical
data of fires in southwest Western Australia and Victoria have concluded that prescribed
burns significantly reduced the incidence and extent of bushfires, and have the ability to
suppress them [13,17]. In a similar way, a wildfire simulation study conducted in Tasmania
examined the result of intentionally burning all the vegetation that can handle prescribed
burning in a hypothetical scenario of unlimited resources. It concluded that theoretically,
prescribed burns are extremely effective in reducing fire activity; however, in order to
effectively reduce fire activity, an unrealistically large area of prescribed burning would be
required, accounting for an annual area 30 percent the size of Tasmania [18].

Opponents of the prescribed burning methodology can also be found throughout the
literature. A study based on 34 years of fire data and weather records in southeastern
Australia concluded that the effectiveness of prescribed burns significantly varies from
one region to another, and that in most regions, it is likely to have very little effect on
limiting the extent of wildfires [19]. In addition, Price [20] emphasise in a similar way to
Furlaud [18] that large areas are required to be burned in order to significantly reduce
the risk of bushfires. Another claim is that prescribed burning in remote areas has little
impact on reducing fire risk compared to prescribed burning in residential areas [20], which
can be five times more effective [21]. In addition, there is evidence in the literature that
prescribed burning takes a toll on both the ecosystem and public health. This includes
smoke pollution [22], a decline in biodiversity [23] and even escaped prescribed burns that
go out of control and become wildfires, such as in Margaret River in Western Australia in
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2013. All of the above lead to the question of whether prescribed burns are, in fact, effective
or not.

Predicting the likelihood and the intensity of fires has been a common practice in fire
agencies around the globe for decades. In the 1960s, the McArthur Forest Fire Danger Index
(FFDI), a common index for assessing bushfire hazard, was developed by CSRIO (Com-
monwealth Scientific and Industrial Research Organisation) scientist A.G. McArthur [24].
Another common index, used by the Rural Fire Service in NSW, is the Bushfire Prone Area
index. Similar to the FFDI, it mainly uses geographical attributes to assess fire danger, but,
as opposed to displaying the fire hazard at a specific time, it represents the potential areas
that have a fire risk overall [25]. The common ground of these different indexes is that
they were created by using a combination of geographic attributes, a process that is usually
done with GIS.

Geographic information systems (GIS) are computer-assisted systems designed to
capture, store, retrieve, manipulate, manage and analyse spatial data, i.e., information that
is identified by a geographic location of features and boundaries [26]. Since their emergence
in the mid-1980s, GIS have become an important tool for fire prediction and analysis,
because they provide ecosystem mangers the ability to simulate multiple conditions across
space [27]. More specifically, GIS have the ability to identify crucial requirements for forest
fire management by identifying hotspots and evaluating the risk probability and measures
to reduce fire risk [28]. This is why fire agencies across the world have embraced GIS
as a tool to effectively handle fires, and balance the needs, uses and hazards to promote
sustainability of the environment and develop response strategies for certain fire events [27].
In fact, many countries around the world are investing in the development of geographical
fire information systems to improve their fire-management abilities [29]. For example, in
2004, the European commission developed the European Forest Fire Information System
(EFFIS), which includes forest fire data from 14 different member states; since 2008, it has
provided maps of fire danger anomalies based on its fire index [30]. Another example is
Canada, which developed the Canadian National Fire Database, a collection of point and
polygon data of all the fires in a size greater than 200 hectares [31]. There are numerous other
examples of countries around the globe that have developed geographical information
systems. While the databases differ from one country to another, they share the same
principal aim of having a fire database to allow a better understanding of fire patterns, and
increase the ability to predict them [29].

Adopting a GIS approach to predict fire and examine how bushfire patterns change
over space and time is not new to fire studies. A study in 2002 combined different geo-
graphical factors that contribute to fire, such as topography, land cover, vegetation, etc.
to create a forest fire risk model [32]. In the past few years, fire data is being developed
better and becoming more publicly available. This is highly beneficial, since predicting and
analysing fire patterns have become more accessible [33–35]. As a result, various spatial
studies in the Australia—New Zealand region analysed fire prediction methods based on
geographic attributes in both small and large spatial extents. Some of these studies [3,36,37]
modelled the predicted probability of bushfire occurrence in different areas in Australia
based on different geographic attributes such as climate, elevation and land cover; while
other studies [4,38] used historical fire data to analyse fire patterns and occurrence intervals.
In a similar way, Dutta [39] integrated fire data for 336 weeks to examine fire patterns in
Australia, and found that the frequency of bushfires increased between 2011–2016 by 40%.
On the other hand, Sewell [40] used fire occurrence data as part of a “disaster declarations”
hotspot analysis that aggregated bushfire, flood and storm data.

GIS have the potential to bring together different data and information, whether static
or not, and turn into insights that serve as intelligence for emergencies and catastrophic
events. These insights can then be shared with other emergency agencies or can be pub-
lished publicly. GIS have the ability to aggregate and visualise multiple datasets, and
therefore have a great potential for responding to disasters and extreme weather events, in-
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cluding bushfires, while dashboards are platforms that provide key insights for at-a-glance
decision-making [41].

Nevertheless, there is a gap in bushfire research in Australia. To date, the use of
historical bushfire data to identify spatio-temporal patterns of bushfires based on 100 years
of bushfire data in New South Wales has not been documented. A spatio-temporal data
analysis has the potential to reveal unexpected fire patterns and relationships that are
hidden within databases; however, none of the above studies have included a spatio-
temporal analysis based on historical bushfire data to assess patterns of fires over space
and time. The main objective of this study is to fill these gaps, by using more than 100 years
of bushfire data in New South Wales to conduct a spatio-temporal analysis that will reveal
the temporal patterns hidden in the bushfire data. The study aims to analyse these patterns
to identify how the bushfire patterns have changed in the last 100 years and in comparison
to the 2019–2020 bushfire season. It is important to note that it is not within the scope of
this study to consider what might cause bushfire patterns to change in New South Wales
and whether the causes for change are a result of man-made or natural factors such as
changes in climate patterns. Another key objective of this study is to publish its results in
an online GIS platform, which will allow other researchers and practitioners to have access
to the processed data and corresponding results, unlike in other studies in which the data
and results are buried in papers.

This study has developed three research questions that the spatio-temporal analysis
aims to answer. These are aligned with some of the questions that arose during the
2019–2020 bushfire season that became a public debate:

• Is there a change in the pattern of bushfires in NSW over time?
• Are areas of prescribed burns negatively correlated to areas where bushfires have

occurred, i.e., do prescribed burns help to reduce bushfire risk?
• Is the frequency of bushfires spatially clustered over time? Did these clusters change

over the 2019–2020 bushfire season?

2. Materials and Methods

This study used a GIS approach to analyse more than 100 years of bushfire data. The
data was analysed in a two-step approach by importing the data into ArcGIS/ArcGIS
Pro and R databases for management and analysis, and included: (1) summarising and
counting bushfire data for a statistical analysis; (2) identifying spatio-temporal patterns
using hotspot analysis, emerging hotspot methods, as well as a space-time cube.

2.1. Study Area

The study area of this analysis was the State of New South Wales (NSW) in Australia.
NSW is located in southeastern Australia, bounded by the Pacific Ocean and the states of
Victoria and Queensland (Figure 1). The area of NSW is approximately 800 km2, meaning
that it is not Australia’s largest state; however, despite its size, it is still the most populated
state in the country, with nearly 7.5 million residents [42].

2.2. Data

The primary data source that stands at the base of this research is a polygon shapefile
that was published by the NSW State Government and the NSW Department of Planning,
Industry and Environment (2010) [43], publicly available under a Creative Commons public
license. The dataset visualises the final fire boundaries for every fire in NSW since 1900 in
a vector format. Each of the polygon’s attributes are described in an attribute table that
contains information about each fire’s date, season, type, area and perimeter (Figure 2).

2.3. Pre-Processing of Data and Data Analysis

First, the data were imported into ArcGIS Pro to create a unique ID field in order to be
able to link each polygon to its attribute if needed during the analysis. Then the data was
converted into a CSV file using ArcGIS Pro and used in R (Figures 3 and 4), in which three
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columns were added based on the “Label” column: (1) Season—describes the fire season
when the fire occurred; (2) Type—classifies whether the fire is a controlled man-made fire
(prescribed burn) or a bushfire (wildfire); (3) Decade—describes the decade in which the
fire occurred, e.g., 1960s. Since there is not sufficient data for both prescribed burns and
bushfires before 1957, the data has been filtered for further analysis to include only fires
from 1957 onward.
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2.3.1. Change in Bushfire Trends over Time

To explore the temporal associations of the bushfire data, a generalised linear mod-
elling method was adopted using R [36] to examine the hypothesis that the frequency of
bushfires and extreme bushfire events is increasing in NSW, in a similar way to the Aus-
tralian trend, as suggested by the literature [6,9,39,44]. Since the data set does not include
any prescribed burns before the end of the 1950s, features prior to 1957 were removed from
this analysis.

2.3.2. Correlation between Bushfires and Prescribed Burns

One of the objectives of this study is to examine the relationship between prescribed
burns and bushfires to assess whether prescribed burns assist in reducing bushfire danger
in NSW. This study used a similar approach to a previous study [45] that used a correlation
analysis to determine the relationship between prescribed burns and bushfires. The princi-
pal behind using a correlation analysis in this case relies on the hypothesis that if prescribed
burns decrease bushfire risk, then either the frequency or the burnt area of the fire will be
negatively correlated between these two types of fires. The data frame previously imported
into R (see Figure 4) has been used to perform a bivariate Pearson correlation, which
produces a sample correlation coefficient (r), a commonly used to measure the strength of a
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linear relationship between two variables [46]. Pearson’s correlation between two variables
x and y (prescribed burns and bushfires in this case) from n observations, is defined as [47]:

p =
∑n

i=1(xi − x)(yi − y)[
∑n

i=1 (xi − x)2 ∑n
i=1 (yi − y)2

]1/2

where x and y are the mean values of x and y. In this study, x and y are representatives of
prescribed burns and bushfires data, respectively.
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2.3.3. GIS Dashboard and Interactive Plots

This study’s data and results have been published in an online GIS dashboard that
is open to the public. While most of the studies in the literature offer only an exclusive
or limited access to the data used and all of its results, this study adopts an open data
approach. The purpose of this dashboard is not only to produce the highly important
insights of this study, but also to promote a freely accessible bushfire information platform
that will allow both practitioners and decision-makers to reuse and redistribute the study’s
data and results.

The plots that have been published on the online platform were first created in a static
form with R, using different R libraries such as Tidyverse and grouper. Once the static
plots were created, they were converted into an interactive html format, which was later
published on Plotly and embedded in the dashboard.

2.4. Spatio-Temporal Patterns of Fires

GIS are commonly used in the literature as a tool to analyse spatio-temporal pat-
terns [37,48]. In accordance, this research uses a GIS approach to identify bushfire patterns
over time. As mentioned, the dataset used in this research is a vector layer containing the
fire boundaries of all the recorded fires in NSW since 1900, and as a result, there are numer-
ous polygons that overlay each other. Compared to change detections in raster layers, there
are fewer methods available for analysing spatio-temporal patterns in vector layers [49,50].
However, despite some of the limitations of vector GIS data, there are different methods
for analysing spatial patterns over time [49]. The method in this analysis is based on
similar analyses used in the literature [51–53] that used the Getis-Ord G∗

i hotspot analysis,
a spatial autocorrelation method that is used for evaluating clustering, randomness and
fragmentation of spatial patterns [52–54].
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2.4.1. Hotspot Analysis

The hotspot analysis required an additional overlaying polygon layer, divided into
defined areas, to be added to the analysis to aggregate the total number of fires and their
size within a particular area. To assess the best practice for defining such an area, two
methods from the literature were considered. To use any of the two methods (Figure 5), the
polygon fire data set was converted into points using ArcGIS Pro’s “Feature to Point” tool.
Each point represents the centroid of each fire polygon.
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Figure 5. Hotspot methodologies.

According to Method 1, a square/hexagon grid is overlayed on top of the points.
Then, all the points that fall within each grid cell are aggregated and counted. Based on
the literature, it is more common to use a 1 km2 cell-sized grid for relatively small study
areas [33,55], and a 5 km2 grid for larger study areas [56].
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According to the Method 2 [40,51], the points are aggregated to an overlaying poly-
gon of either statistical areas or municipalities, rather than a fixed grid. In order to be
able to identify the regions where the hotspots occur, it was decided to adopt Method 2
(Figure 5) [40,51] by overlaying statistical area level 2 (SA2) polygons [57] on top of the fire
points. This methodology was chosen in order to be able to associate bushfire patterns to
municipal jurisdictions, rather than to a geographical hexagon/square grid. Size 2 statisti-
cal areas [58] were chosen, since they are the closest in size to the 5 km2 grid, suggested by
Kwak [56] for large study areas such as NSW. After aggregating the points into the SA2
polygons, ArcGIS Pro’s “HotSpot Analysis” tool was used to calculate the Getis-Ord G∗

i
statistic, which results in a z-score and p-value that identify where features with either
low or high values cluster spatially [59]. In other words, for an area to be a statistically
significant hotspot, it needs a high value of bushfire frequencies and will be surrounded by
other areas with high values of frequency. The G∗

i local statistic is defined by Getis and
Ord [59] as:

G∗
i =

∑n
j=1 wi,jxj − X ∑n

j=1 wi,j

S

√ [
n ∑n

j=1 w2
i,j−(∑n

j=1 wi,j)
2
]

n−1

(1)

where xj is the attribute value for feature j, wi,j is the spatial weight between feature i and
j, and n is equal to the total number of features In addition, X and S are calculated as
demonstrated below:

X =
∑n

j=1 xj

n
(2)

S =

√
∑n

j=1 x2
j

n
−
(
X
)2 (3)

In this paper, the attribute values of bushfires are used so that the patterns of hotspots
and coldspots can be extracted. As G∗

i is a z-score, applying G∗
i to each neighbour leads to

a z-score for each pixel. In GIS domain, a low z-score obtained for a feature indicates that
the neighbours of that feature have low values [53].

2.4.2. Emerging HotSpot Analysis

As for identifying temporal patterns, ArcGIS Pro’s “Create Space Time Cube from
Defined Locations” tool was used to analyse the spatio-temporal trends. This tool uses
time-stamped point features and converts them into a net-CDF file data cube of bins,
where each bin’s values are measured across time and space using the Mann–Kendall
statistic [60,61] (Figure 6). The Mann–Kendall test uses the following statistic [62]:

S = ∑n−1
i=1 ∑n

j=k+1 sin
(
xj − xi

)
(4)

If S > 0, then later observations in the time series tend to be larger than those that
appear earlier in the time series, while the reverse is true if S < 0. The variance of S is
given by:

var =
1
18

[
n(n − 1)(2n + 5)− ∑

t
ft( ft − 1)(2 ft + 5)

]
(5)

Each bin within the data cube contains a count of the data value collected at each bin
location for the specified timestamp. In this research, the space-time cube method was
applied to fire data so that the spatio-temporal pattern of the concentration of fire could
be detected.

After creating the space-time cube, ArcGIS Pro’s “Emerging Hotspot” tool was used
to visualise the results of the space-time cube in a 2D map. The emerging-hotspot analysis
tool is able to then identify hotspots and coldspots over time, and categorises these as new,
consecutive, intensifying, persistent, diminishing, sporadic, oscillating, and historical hot
and coldspots [63].
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Figure 6. A space-time cube.

Once the methodology was set, a model was built using ArcGIS Pro’s “ModelBuilder”
tool (Figure 7) to create a streamlined geoprocessing analysis, which allowed us to re-use
the model in the future and reproduce results in case the data is updated. The results of
this model included the following: (1) A hotspot analysis of all the aggregated bushfires
in NSW; (2) 10 individual hotspot maps for each year between 2010 and 2020 to visualise
the change in hotspots over time; (3) an emerging-hotspot analysis based on a space-time
cube to identify new hotspots; (4) a trend map to visualise which areas experienced a
positive/negative trend in the frequency of bushfires.
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3. Results
3.1. Increase in Fires over Time

A generalised linear model was developed to examine whether bushfires and pre-
scribed burns have increased over time, because an increase in the frequency of fires does
not necessarily mean an increase in the burnt area and vice-versa. For example, a possible
option is that the frequency is increasing, but the size of fires is decreasing, resulting in a
smaller total of burnt area. This is why the generalised linear model was used to assess
both the frequency and the area of the fires.

According to the literature, extreme fire events, in which the total burnt area is higher
than the average, occur in Australia at least once a decade [1,5]. Plotting the data suggests that
a similar pattern occurs in NSW, which can be seen in the highly fluctuated results (Figure 8).
As seen in Figure 8, the scattered data is highly variable. While it is common to detect and
remove outliers to improve statistical models, it is important to understand that in this case,
extreme fire events are outliers that are a crucial part of the natural bushfire cycle [1,5].

1 

 

 

Figure 8. The trend of areas burnt over time. 

 

Figure 8. The trend of areas burnt over time.

As an alternative to treating the extreme fire events as outliers and removing them from
the analysis completely, all the extreme fire events were analysed separately. However,
in order to separate the extreme fire events from data, it was first crucial to know the
minimum area that defines a bushfire as an extreme fire event.

In the U.S., extreme fire events, or megafires, are defined as bushfires with a minimum
area of 40,500 hectares; while in Europe, the size is smaller, with a minimum of 1000 ha [64].
Using any of these definitions to identify extreme fire events in NSW is not applicable to
this study’s data, since the median area of fires in this dataset is already much higher than
the U.S. definition. Consequently, extreme events were identified by detecting statistical
outliers [10], based on a classical boxplot. These values were then extracted into an



Buildings 2021, 11, 37 12 of 27

additional data frame to determine if there was also an increasing trend in extreme fire
events alone. The results (Table 1) suggested years when extreme fire events occurred with
a mean burnt area larger the 1887 ha. Figure 9 was produced using only the values in
Table 1, in order to examine if there was a pattern of change in the burnt area of extreme
fire events over time. Figure 9 does not indicate a pattern of increase or decrease in the area
burnt in extreme fire events; however, the results (Table 1, Figure 9) suggest that extreme
fire events occur in cycles in New South Wales, similar to the fire pattern described by
Cheney [5] and Payne [1].

Table 1. Statistical outliers.

Season Mean Area Burnt (Hectares)

1974–1975 15,549
2019–2020 11,214
1969–1970 4027
1984–1985 3819
2002–2003 2296
1968–1969 2271
1977–1978 1887
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Figure 9. Extreme fire events. 

 

 

 

Figure 12. Correlation between prescribed burns and bushfires. 

Figure 9. Extreme fire events.

Regarding the frequency of fires, Figure 10 was produced to examine if the frequency
of fires is increasing over time. The results indicated that the frequency has been steadily
increasing over time since the 1960s. However, when examining the figure, it appears that
there is much more variability in the data between 1980–2020 compared to 1960–1980.

Figure 11 was created to examine if the trend was more significant between 1960–
1980 compared to 1980–2020. The results show an increasing trend of the frequency of
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fires between 1960–1980; however, this could be a result of less available data between
those years. In both Figures 10 and 11, the variability in the results was higher among
bushfires (wildfires) compared to prescribed burns. A possible reason for these results
could be the origin of the fires. Compared to prescribed burns, which are man-made fires
that are scheduled by fire agencies in different intervals, bushfires depend on different
weather conditions such as wind and rain. Changes in these factors are likely to increase
the randomness in the frequency of fires in each bushfire season.
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3.2. Pearson’s Correlation between Bushfires and Prescribed Burns

Figure 12 was created to explore the possible relationship between bushfires and
prescribed burns by performing a bivariate Pearson’s correlation [46], in alignment with
the literature [45]. As mentioned before, the practice of prescribed burning is based on the
hypothesis that intentionally burning areas that are abundant in forest fuels will decrease
the frequency, area and intensity of fires [13,14]. If this hypothesis is true, the results should
indicate negative correlation between bushfires and prescribed burns in both frequency
and burnt area. However, the correlation coefficient (r) in Figure 12 suggests that in the
case of the frequency of fires, there is a positive correlation between prescribed burns
and bushfires, i.e., the frequency of bushfires is growing in respect to the frequency of
prescribed burns, and vice versa. On the other hand, examining the correlation between
the area of prescribed burns and bushfires reveal different results. As seen, the value of
the correlation coefficient (r) is negative and very low, which indicates that there is no
correlation between the area of prescribed burns and bushfires (wildfires). While it was
not within the scope of this study to identify the reasons for these results, some of possible
reasons are discussed in the Discussion section of this study.
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Figure 9. Extreme fire events. 

 

 

 

Figure 12. Correlation between prescribed burns and bushfires. Figure 12. Correlation between prescribed burns and bushfires.

3.3. Spatial Clustering of Bushfire Frequency

As opposed to the previous sections, which examined the bushfire patterns and their
relationship with prescribed burns, the spatial-clustering analysis only included bushfires.
The results of the spatial-temporal patterns of bushfires are presented in the following
maps, which were produced with ArcGIS Pro using the model described in Figure 7.

3.3.1. All Time Hotspot Analysis

At first, all the bushfire data was used to perform an optimised hotspot analysis, which
calculated the Getis-Ord G∗

i statistic values and reveals the spatial clustering of bushfire
frequency for each level 2 statistical area in NSW. Figure 13 is map of New South Wales and
includes the boundaries of all the level 2 statistical areas in the state. Coldspots (blue) and
hotspots (red) can be seen in the map in three different colour variants; the darker the variant,
the higher the confidence level of the G∗

i statistic. Figure 13 shows a spatial clustering of high
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values (hotspots) in northeastern and southeastern NSW along the Northern Rivers, North
Coast and South Coast regions, while a spatial clustering of low values (coldspots) can be
seen around the Sydney metropolitan area, along the Central Coast and Illawarra regions.
One explanation for these results could be the geographic and topographic characteristics
of these areas. The coldspots in Figure 13 are concentrated around highly populated urban
areas. These highly developed areas obviously do not have as much vegetation that can
burn, especially compared to the hotspot areas of the Far South Coast and Far North Coast
of New South Wales, which are abundant in dense forest areas.
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3.3.2. Bushfire Frequency Hotspots between 2010–2020

Figure 14 was produced to visualise the changes in the bushfire frequency hotspots
in the 10 years preceding the catastrophic 2019–2020 bushfire season. Figure 14 shows
how versatile bushfire location can be, and demonstrates how hotspots changed between
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2010–2020. As in Figure 13, blue areas indicate bushfire coldspots, while red areas indicate
hotspots. The figure reveals that, similar to Figure 13, the area around Greater Sydney,
including Wollongong and the Central Coast, has been a bushfire coldspot in every one
of the bushfire seasons between 2010–2020, while the location of bushfire hotspots seems
to be changing more radically. Even though bushfire hotspots changed more radically
than coldspots throughout this time period, the bottom half of Figure 14 could suggest a
pattern of movement in bushfire hotspots between 2015–2020. During those years, hotspots
seemed to move closer to the area of Greater Sydney, Australia’s most populated area.
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In addition, Figure 14 might also suggest a pattern movement of the bushfire hotspots
towards the area of Greater Sydney, especially between 2015–2020.

Figure 15, which was produced using the “Space Time Cube” (Appendix A) and the
“Emerging Hotspot” tools, describes the change over time in fire frequency in each of
NSW’s SA level 2 areas. ArcGIS Pro’s Emerging Hotspot tool uses a space-time cube to
identify the change over time of different types of hot/cold spots, which, as described
previously, are areas with significant spatial clustering. The results indicated that most
of the areas are sporadic hot/coldspots, which are areas where hot/cold spots disappear
and reappear over time. Sporadic coldspots can be seen in the Sydney metropolitan area
around the Sydney Harbour together with diminishing coldspots, that is, areas that become
less of a coldspot over time. On the other hand, there is a significant presence of sporadic
hotspots in the NSW South Coast and North Coast regions. Most importantly, the results
have identified four new hotspots of bushfire frequency in NSW, which are areas that have
never been a hotspot until the recent 2019–2020 bushfire season, the final time stamp in
the dataset. These statistical areas are Nyngan—Warren, Queanbeyan Region, Armidale
Region—South and Wauchope.

3.4. Land Use in Hotspots

Figure 16 was created to examine the geographical characteristics and land use of the
four new hotspots identified in New South Wales in Figure 15. As seen in Figure 16, the
new identified hotspots are scattered throughout the State of New South Wales and are
located in entirely different topographical divisions. In fact, the hotspots represent together
almost all the state’s topographical divisions, including the coast, the Great Dividing Range,
the Snowy Mountains and the Western Plains. The contrasting topographical divisions of
each one of the hotspots is likely to be the reason for the versatility in the land use among
these statistical areas, including dryland cropping, grazing native vegetation, production
and plantation forests, native conversation and intensive urban use. The combined area
of all the new hotspots is about 2.7 million hectares, and they are populated with nearly
40,000 residents in at least 13,000 dwellings [65].

Bushfire Frequency Trends

Another method to visualise the space-time cube of this analysis in 2D is a trend map.
Figure 17 was produced using ArcGIS Pro’s “Visualise Space Time Cube” tool to display
the trends of change in the frequency of bushfires in each statistical area level 2 in New
South Wales over time. This tool determines the trend of values in each location using the
Mann–Kendall Statistic and displays the trend on a 2D map. The figure is based on two
major colours, green and purple, which indicate a downward or upward trend, respectively.
Both colours are divided into variations; the darker the colour, the higher the statistical
confidence level. As seen in Figure 17, most of the statistical areas (SA2s) in New South
Wales have experienced an increase in the frequency of fire in the last 100 years, with a
99 percent confidence level. As also seen in Figures 13–16, there is a different trend in the
metropolitan areas of Greater Sydney, the Central Coast and Wollongong compared to
regional New South Wales. In this case, the figure indicates that in most of the statistical
areas within these metropolitan areas, there was no significant trend of increase or decrease
in the frequency of bushfires. Once again, this could be a result of the urban characteristics
in these areas. The enclosed map of Greater Sydney (Figure 17) demonstrates there was no
significant trend within the highly developed inner city, compared to the regional outskirts,
where an increasing trend was present in bushfire frequency.
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3.5. Bushfire Dashboard

After all the figures and maps were produced, all the outputs were uploaded to the
hosting servers of GitHub, Chart Studio and ArcGIS Online. ArcGIS Online’s “Sites” tool
was used to create a publicly available online platform. The online platform allows its
users to access all the data that was used throughout this study, scroll through a story
map that visualises the methodology used for this study, and most importantly, access an
interactive dashboard. The dashboard (Figures 18 and 19) compromises two tabs. The first
tab (Figure 18) allows users to explore the entire dataset used in the study and interactively
calculate different statistics based on location, year, etc. The second tab (Figure 19) allows
users to access interactive versions of all the figures in the Results section of this study. The
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dashboard, demonstrated in Figures 18 and 19, is publicly available and can be accessed
through this link: https://tinyurl.com/y2bdp4h8.
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4. Discussion

The objective of this study was to understand how bushfire patterns have changed in
New South Wales by conducting a spatio-temporal analysis of 100 years of bushfire data.
The study used three key analysis techniques to answer its research questions, and used
data-analysis and spatial-analysis software such as R and ArcGIS Pro.

First, generalised linear modelling was applied on the data to assess whether there
was a pattern of change in the size and frequency of bushfires in New South Wales in
recent decades. The literature review has shown that bushfires have played a major role in

https://tinyurl.com/y2bdp4h8
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Australia’s eco-system for millions of years and are vital for some of its flora and fauna [2–4].
However, an increase in the frequency and the intensity of fires may have devastating
results [2–4]. Based on the literature [6,9,10,36,39], the hypothesis of this study was that
bushfires have been increasing in New South Wales in the last decades, similar to the trend
observed throughout Australia. The results have shown this hypothesis to be true. While
the results indicated that there was a trend of increase in the frequency of bushfires and
prescribed burns since the 1960s (Figure 10), they did not indicate a trend of change in
regard to the size of the burnt area (Figure 8). Further analysis revealed (Figure 11) that the
variability of the frequency of fires was higher between 1980–2020 compared to 1960–1980.
As a result, the trend of increase in the frequency bushfires appears to flatten after 1980. It is
not within the scope of this study to assess what caused these results. This part of the study
also examined the patterns of extreme bushfire events, which according to the literature
occur in Australia once every one or two decades [1,5]. Extreme fire events in New South
Wales were identified by detecting statistical outliers, based on a classical boxplot. The
results (Table 1, Figure 9) identified seven extreme fire events with a mean area larger than
1887 ha.

Another aim of this study was to examine whether prescribed burning is an effective
tool to reduce bushfire risk. To do so, a bivariate Pearson’s correlation test was performed
according to each fire’s type (prescribed burn/bushfire) (Figure 12), to measure the strength
of the linear relationship between two variables [46]. The hypothesis behind using a
correlation test was that if prescribed burning reduces bushfire risk, then the results should
indicate a negative correlation between bushfires and prescribed burns in both frequency
or burnt area. The principal of using a correlation test to examine the relationship between
bushfires and prescribed burns originated from Pollet [45], who also used a correlation test
to assess the effectiveness of prescribed burns; however, in that study, they analysed the
correlation between pine tree characteristics and fire severity, while our study analysed the
direct relationship between bushfire size and frequency to prescribed burns. Therefore, the
results of Pollet [45] and Omi (2002) cannot be compared with this study.

According to Figure 12, there is a positive correlation between the frequency of
bushfires and prescribed burns, yet there were no significant results regarding the size of
the area of the fires. In NSW, prescribed burns are used as a method for clearing forest
fuels and preventing extreme bushfire events, so we assumed that the positive correlation
between the frequency of bushfires and prescribed burns is a result of two possible scenarios.
First, the number of bushfires has increased, and as a result, fire authorities in NSW have
increased the number of prescribed burns as a preventative action. Second, the increase
in prescribed burns over time has led to an increase in the number of bushfires. Even
though prescribed burns have gone out of control in the past, scenario two is less likely
to be the reason for the positive correlation. Determining the reason for this correlation
is not within the scope of this study; therefore, this is suggested as the direction of future
studies based on this research. As mentioned, the correlation analysis of this study also
examined a possible correlation between the size of the burnt areas from prescribed burns
and bushfires. The result (Figure 12) was a correlation coefficient (r) with a low negative
value, which does not indicate a correlation. This means that based on this study’s results,
it is impossible to determine if prescribed burns effectively reduce bushfire risk. Thus,
further analysis is needed with more sufficient data to determine the relationship between
prescribed burns and bushfires.

The last step of this study was the spatio-temporal analysis, which examined how
geographic patterns and spatial clusters of bushfire frequency have changed over time and
space in New South Wales. As described, the data used for this study were originally in a
GIS polygon vector layer that contained all fire boundaries in NSW since 1900. Despite
the limitations of using vector GIS data for a spatio-temporal analysis [49,50], this study
developed a spatial framework to overcome these limitations. Figure 7 was developed
using ArcGIS Pro’s ModelBuilder and describes the all the geo-processing tools that were
used for populating the results of this study. The logic behind using a streamlined model,



Buildings 2021, 11, 37 23 of 27

rather than running different geo-processing tools separately, is that the entire process
could be redone in case the bushfire dataset is updated in the future, and would also
allow other practitioners to imitate this study’s results for future bushfire research and
further analysis.

The spatial framework of this study (Figure 7) was developed according to the ele-
ments of previous hotspot analyses in the literature [40,51,52]. However, as opposed to
past studies, this study’s framework was developed to specifically address the authors’
intention to answer the specific research questions of this study. As opposed to the common
practice in the literature to convert polygons into points, and then aggregate them into
either a hexagonal or fishnet grid [33,55,56], this study’s spatial framework has aggregated
bushfire centroids to level 2 statistical areas in order to be able to associate bushfire patterns
to municipal jurisdictions, rather than geographical grid cells.

The results of the hotspot analysis (Figure 13) identified Greater Sydney and its
surrounding areas as bushfire frequency coldspots, and the Far North Coast and Far South
Coast regions as all-time bushfire hotspots. Figure 14 was created to examine the change in
bushfire frequency hotspots in the 10 years preceding the 2019–2020 bushfire season. The
figure suggests that there could be a pattern of movement of hotspots towards the Sydney
metropolitan area; however, additional data and information are required to confirm this.

The emerging-hotspots analysis (Figure 15) identified four new statistical areas that
became fire hotspots in the 2019–2020 bushfire season; these statistical areas are Nyngan—
Warren, Queanbeyan Region, Armidale Region—South and Wauchope. Figure 15 reveals
a number of patterns of hotspots that emerged in the 2019–2020 bushfire season. First,
three out of four of these new hotspots (Queanbeyan Region, Armidale Region—South
and Wauchope) are located in vegetated areas, while Nyngan—Warren is located in the
centre of NSW, a less-vegetated area characterised by an extremely hot and dry climate
(Figure 16). Second, Figure 16 shows that except for Nyngan—Warren, all other emerging
hotspots are located within close proximity to population centres such as Port Macquarie,
Armidale and Canberra. Considering that the frequency of bushfires is increasing in NSW
according to both predictions and the results of this study, the impacts on the communities,
environment and vulnerable wildlife within these statistical areas may be devastating in
the future. Third, Nyngan—Warren is the only new hotspot that is not surrounded by other
types of hotspots. This could suggest that bushfires will be present in the area in the future
more than they have been in the past. Nevertheless, examining why exactly these areas
have become bushfire frequency hotspots in the 2019–2020 bushfire season was not within
the scope of this study.

As shown in Figure 17, there was a trend of increase in the frequency of fires, with
a 99% confidence, in most of the level 2 statistical areas in NSW, except in metropolitan
areas such as Sydney. This reinforces the hypothesis suggested by the literature that
bushfires are increasing in NSW, as well as overall in Australia. It is important to note
that numerous studies point out that the increase in bushfire frequency is a direct result
of climate change [6,9,10], but it was not within the scope of this research to assess what
the cause of this increase, and the authors recommend this topic as a future direction for
this research.

As mentioned above, all the findings of this study were uploaded into an online
platform that also includes an interactive dashboard. To date, the developed dashboard of
this study (Figures 18 and 19) is unique because it enables users to browse through more
than 100 years of bushfire data. The dashboard also gives users the ability to download
the raw data of the study, as well as its results, and therefore can be of great value for
additional bushfire research and decision-making.

To better understand the reasons for the detected patterns, one of the future directions
of this research is recommended to be based on using artificial intelligence to process and
analyse big data using various data types from web services. Methods such as the ones
proposed by Berner [66,67] can be further investigated to be used for this purpose.
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The authors recommend overcoming the following limitations for future studies based
on this research:

• Lack of enough data before 1957.
• Low accuracy of the data relevant to the boundaries of the fires for early data in

the century.
• Lack of provision of the intensity attribute for the fires (e.g., “light” fires in large areas

compared to “intense” fires in small areas). Such intensity data can help to explore
whether prescribed burns have reduced the fire intensity but not the area/frequency.

5. Conclusions

The goal of this study was to conduct a spatio-temporal analysis on more than
100 years of historical bushfire data to shed a light on how bushfire patterns have changed
in the last 100 years.

The study used a two-step approach to analyse the data and achieve its objective.
The first step focused on statistical data analysis and used methods such as generalised
linear modelling and a Pearson’s correlation test. In the second step of the analysis, GIS
techniques such as hotspot analysis were applied to the temporal data to identify the spatial
and temporal changes of bushfires.

As mentioned in the introduction, three research questions were developed to achieve
the goal of this study. The first one questioned whether there has been a trend of increase
in bushfires in recent decades. The results indicated that the frequency of bushfires in New
South Wales has increased; however, they could not indicate whether the size of these
fires is also increasing. The second question analysed whether prescribed burns are an
effective tool for reducing bushfire risk by conducting a correlation analysis. According
to the results of this study, it is impossible to determine whether prescribed burns have a
significant impact on reducing bushfire risk bushfires. Therefore, the authors recommend
conducting further analysis with more sufficient data to determine if prescribed burns
affect the size and frequency of bushfires.

Finally, the study examined if the frequency of bushfires was spatially clustered over
time, and if so, how the clustering was different compared to the 2019–2020 bushfire season.
Using different hotspot-analysis methodologies, the study found four new statistical areas
that became hotspots of bushfire frequency during the 2019–2020 bushfire season; namely,
Nyngan—Warren, Queanbeyan Region, Armidale Region—South and Wauchope. In
addition, the findings of this study also suggest that there is a possible pattern of movement
in bushfire frequency hotspots towards the highly populated area of Greater Sydney. Since
this pattern of movement is not absolute, and due to the potential threat of bushfires
moving towards dense urban areas in the future, the authors strongly recommend future
research in that field.

The fact that this study used statistical areas to identify bushfire frequency hotspots in
New South Wales also means that the findings of this research can be potentially used as a
baseline for future research that will examine how bushfire hotspots may affect different
socio-economic characteristics of the communities living within their boundaries. In a
smart-city paradigm, these types of findings in this study will be of great importance for
informed, data-driven decision-making by fire agencies on all levels, in order to preserve
lives, natural resources and property. They will allow policymakers to specifically target
urban and rural areas that are at greater fire risk. The authors recommend that further
discovery research on the reasons behind the new hot spots should be considered to develop
preventive/mitigation strategies in hot seasons across New South Wales, Australia.
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