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Abstract: Ultra-thin asphalt overlay has become the mainstream measure of road preventive mainte-
nance due to its good economic benefits and road performance. However, hot mix asphalt concrete
technology is widely used at present, which is not the most ideal way to promote energy saving and
emission reduction in the field of road maintenance. At the same time, the ultra-thin friction course
based on cold mix technology, such as slurry seal layer, micro-surface, and other technologies, are still
far behind the hot mix friction course in terms of crack resistance. In this research, by establishing
an integrated design of materials and structures, a cold paving technology called “high-toughness
cold-mixed ultra-thin pavement (HCUP)” is proposed. The high-viscosity emulsified bitumen pre-
pared by using high-viscosity and high-elasticity modified bitumen is used as the binder and sticky
layer of HCUP. The thickness of HCUP is 0.8–2.0 cm, the typical thickness is 1.2 cm, and the nominal
maximum size of the coarse aggregate is 8 mm. Indoor tests show that HCUP-8 has water stability,
anti-skid performance, high temperature performance, peeling resistance, and crack resistance that
are not weaker than traditional hot-mixed ultra-thin wear layers such as AC-10, Novachip, and GT-8.
At the same time, the test road paving further proved that HCUP-8 has excellent road performance
with a view to providing new ideas for low-carbon and environmentally friendly road materials.

Keywords: ultra-thin pavement; cold-mixed asphalt concrete; crack resistance; design and performance

1. Introduction

The ultra-thin asphalt wear layer is a road surface overlay technology that focuses on
improving the functional performance of roads, and it is also one of the most promising
road preventive maintenance technologies at present [1–3]. The thickness of the ultra-thin
asphalt wear layer is only 1/3~1/2 (≤25 mm) of the traditional asphalt overlay [4]. It
can efficiently improve the road surface smoothness, anti-skid performance, and noise
reduction effect, as well as repair moderate to mild road diseases [5]. Since the introduction
of very thin asphalt concrete (Bétons Bitumineux Trés Minces, BBTM) and ultra-thin
asphalt concrete (Bétons Bitumineux Ultra Minces, BBUM) in France in the 1970s [6,7],
countries around the world have been competing to develop and apply ultra-thin wear
layer technology, including SMA10 in Germany [8], Novachip and OGFC in the United
States [9–12], Lastika in Indonesia [13], VTHMAL in the United Kingdom [14], and GT
Tech in China [15].

In recent decades, the ultra-thin wear layer has been widely used and has also exposed
its own weaknesses. Compared with the traditional wear layer, the ultra-thin wear layer is
more prone to fatigue cracking, shoving, raveling and other distress. This is because the
thickness of the wear layer is reduced. It leads to the growth of the tensile stress of the
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bottom layer, the fatigue damage rate of the structural layer, and the shear force between
the layers [16–18]. In order to enhance the durability and stability of the ultra-thin wear
layer, scholars focused on the improvement of asphalt materials and the optimization of
the grading design. On the one hand, rubber and SBS are used to modify the bitumen to
obtain high-viscosity and high-elastic bitumen [19–25]. On the other hand, the toughness
of the mixture is enhanced by improving the gradation and increasing the thickness of
the asphalt film [5]. The above two aspects of the research have significantly improved
the functional durability of the ultra-thin wear layer. Among them, the high-viscosity and
high-elastic modified bitumen is an indispensable key raw material for the realization of
the ultra-thin wear layer. However, bitumen materials with higher viscoelastic technical
indicators often require higher construction temperatures, and higher requirements for
the construction environment and supporting equipment, which are not conducive to the
promotion of high-performance ultra-thin wear layers in underdeveloped areas. At the
same time, compared with the traditional asphalt wear layer, the ultra-thin wear layer
using the hot mix hot paving process only saves part of the raw materials, consumes a large
amount of non-renewable energy during the project implementation, and emits a large
amount of greenhouse gas and PM2.5 (particles with a diameter of 2.5 microns or less),
causing irreversible damage to the ecological environment. In addition, in the process of
high temperature storage and mixing, the bitumen is prone to aging due to uneven heating,
which also has a certain negative impact on the quality stability of the ultra-thin wear layer.

In view of the technical defects of the hot-mixed ultra-thin wear layer, in order to
further improve the social, economic and environmental benefits of the ultra-thin wear layer,
various thin layer technologies for low-temperature paving have begun to be developed
and applied. Among them, the warm mix ultra-thin wear layer represented by SMC and
ECA was applied in China [26–31]. However, the warm mix asphalt mixture still needs
to be mixed and paved above 140 ◦C, which brings very limited environmental benefits.
Combined with the advantages of thin layer and normal temperature construction, cold-
mix thin layer technology has lower energy consumption and lower pollution emission,
which is an important development direction for realizing sustainable environmental
development and building green highways [32,33]. The conventional cold mix pavement
was first represented by the slurry seal, and based on its technology, the micro-surface
technology was gradually formed through the improvement of materials and processes [34].
However, a large number of application practices have proved that early distress, such as
raveling and cracks, are prone to occur at the micro-surface, resulting in a rough surface,
which reduces the driving service level. Due to the low technical standards of the micro-
surface, its service life is usually 2 to 3 years, which is far behind the traditional hot-mixed
wear layer. Therefore, there are some technical bottlenecks that urgently need to be broken
in terms of durability and road quality.

In summary, breaking through the technical shortcomings of the traditional cold-
mixed ultra-thin wearing layer, and developing low-carbon, environmentally friendly and
high-quality cold-mixed ultra-thin wearing layer technology with excellent durability will
have broad prospects. In this paper, research on raw material design, grading design,
road performance verification, crack resistance evaluation, etc., is carried out, and a high-
toughness cold mix ultra-thin pavement technology (HCUP) is proposed. This article first
introduces the design elements of HCUP, and then sets the traditional ultra-thin wear layer,
such as AC-10, Novachip, and GT-8 as a control group, and comprehensively evaluates
HCUP from the two perspectives of conventional road performance and crack resistance.
Finally, the implementation process and on-site performance testing of the HCUP test
road are briefly introduced in order to provide a reference for the research of high-quality
cold-mixed ultra-thin wear layer.

2. Materials Design of HCUP

HCUP is an ultra-thin asphalt wear layer technology with a thickness of 0.8–2.0 cm.
Mixing high-viscosity emulsified bitumen is used as the cementing material to obtain
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excellent overall binding force of the mixture; spraying high-viscosity emulsified bitumen
is used as the waterproof bonding layer to better bond with the underlying layer. A coarse
aggregate void filling method is adopted for gradation design to ensure the skeleton struc-
ture of the mixture. The simultaneous paving technology is used for physical engineering
paving, which effectively protects the waterproof adhesive layer from pollution and greatly
improves the construction efficiency.

2.1. Materials

The GT-8 special binder (PG100 high-viscosity and high-elasticity modified bitumen,
technical indicators see Table 1), which was the result of the research group’s previous
research [15], is used as the main raw material to prepare high-viscosity emulsified bitumen.
The resulting high-viscosity emulsified bitumen has good elastic recovery and rutting
resistance performance as well as superior dynamic viscosity. The specific preparation
process is as follows:

(1) Mixing high-viscosity emulsified bitumen is composed of 65~70% high-viscosity
and high-elasticity modified bitumen, 3% cationic emulsifier, 1% asphalt stabilizer and
26~31% water. Spraying high-viscosity emulsified bitumen is composed of 55~60% high-
viscosity and high-elasticity modified asphalt, 3% cationic emulsifier, 1% asphalt stabilizer
and 36~41% water.

(2) Water is mixed with a cationic emulsifier in proportion and heated to 70 ◦C to
obtain a soap solution.

(3) The high-viscosity and high-elasticity modified bitumen is heated to 185 ◦C, melted
and mixed with asphalt stabilizer. The high temperature mixing process requires more
than 1 h.

(4) The asphalt and soap solution are poured into the emulsifying machine in pro-
portion. After compression, shearing and grinding, the asphalt forms uniform and fine
particles, which are stably and uniformly dispersed in the soap solution to prepare high-
viscosity emulsified bitumen. Table 2 is the technical index of high-viscosity emulsified
bitumen.

Table 1. Technical index of the high-viscosity and high-elasticity modified bitumen.

Properties Units Technical
Requirement Test Results Test Method

Penetration (25 ◦C, 5 s, 100 g) 0.1 mm 30–50 38 ASTM D5-06E1 [35]
Softening point ◦C ≥95 98 ASTM D36-06 [36]

Elastic recovery (25 ◦C) % ≥98 99.5 ASTM D6084/D6084M-21 [37]
Solubility (Trichloroethylene) % ≥99 99.8 ASTM D2042-01 [38]

Storage stability ◦C ≤2.5 2.1 ASTM D5-06E1976 [39]
Complex shear modulus G * at 60 ◦C kPa ≥12 17.94 ASTM D6373-21A [40]

Dynamic viscosity at 60 ◦C Pa·s ≥580,000 ≥580,000 ASTM D2171-07E1 [41]
After short-term aging

Mass loss % ±1.0 +0.01 ASTM D2872-04 [42]
Penetration ratio (25 ◦C) % ≥70 83.9 ASTM D5-06E1 [35]

G */sind δ 2.2 kPa critical temperature ◦C ≥100 100 ASTM D7175-15 [43]

The coarse aggregate used in HCUP-8 should be selected from high-quality diabase,
basalt and diorite with high abrasion resistance, high adhesion, low water absorption, and
low needle flake. Table 3 shows the technical requirements for coarse aggregates.

The fine aggregate used in HCUP-8 is preferably machine-made sand with moderate
gradation, hard texture, no weathering, and no impurities. Table 4 shows the technical
requirements for fine aggregate.
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Table 2. Technical index of high-viscosity emulsified bitumen.

Properties Units
Technical Requirement Test Results

Test Method
Mixing Type Spraying Type Mixing Type Spraying Type

Oversize residue (1.18 mm
sieve) % ≤0.1 ≤0.1 ≤0.1 ≤0.1 AASHTO T59 [44]

Particle charge - Cation (+) Cation (+) Cation (+) Cation (+) AASHTO T59 [44]
Viscosity s 12–60 12–60 26 31 JTG T0621 [45]

Evaporated residue
Residue content % ≥60 ≥55 62.5 57.0 AASHTO T59 [44]
Softening point ◦C ≥80 ≥75 82.7 95.0 ASTM D36-06 [36]
Ductility (5 ◦C) cm ≥20 ≥20 39 28 ASTM D113-07 [46]

Solubility % ≥97.5 ≥97.5 99.5 99.2 ASTM D2042-01 [38]
Elastic recovery % ≥92 ≥85 99 95 ASTM D6084/D6084M-21 [37]

Dynamic viscosity at 60 ◦C Pa·s ≥30,000 ≥20,000 40,625 55,174 ASTM D2171-07E1 [41]
Penetration 0.1 mm 40–60 40–60 55 58 ASTM D5-06E1 [35]

Table 3. Technical requirements for coarse aggregates.

Properties Units Technical
Requirement Test Results Test Method

Crushing value % ≤18 11.3 ASTM D5821-13 [47]
Abrasion and Impact by Los Angeles Machine % ≤20 14.1 ASTM C131-01 [48]

Apparent specific gravity - ≥2.60 2.926 ASTM C127-12 [49]
Water absorption % ≤1.0 0.89 ASTM C127-12 [49]

Soundness % ≤12 3.1 ASTM C88/C88M-18 [50]
Flat and elongated particle content % ≤8 5.2 ASTM D4791-19 [51]

<0.075 mm particle content % ≤1 0.3 ASTM C136 [52]
Polished stone value BPN ≥42 45 ASTM D3319 [53]

Table 4. Technical requirements for fine aggregates.

Properties Units Technical Requirement Test Results Test Method

Apparent specific gravity - ≥2.50 2.875 ASTM C128-12 [54]
Soundness (>0.3 mm particle) % ≤12 6.0 ASTM C88/C88M-18 [50]

Sand equivalent % ≥65 71 ASTM D2419-14 [55]

2.2. Gradation Design

HCUP puts forward higher functional performance and durability requirements rela-
tive to the micro-surface, so the dense skeleton structure is used as the grading design goal
to obtain a cold-laid surface with high skeleton strength, good water tightness, and strong
wear resistance. At the same time, to reduce the interference between the aggregates, it
is proposed to increase the amount of bitumen to replace part of the fine aggregates to
strengthen the framework of the mixture and bonding performance between the frame-
works. The specific mixture design procedure are as follows:

(1) The voids of coarse aggregate in the dry rodded condition (VCADRC) are measured,
and the amount of bitumen, mineral powder and the designed volume of air voids (VV)
are preliminarily determined based on the engineering practice experience. (Generally, the
ratio of bitumen to aggregate is above 10%; the amount of mineral powder is 2% to 4% of
the mineral aggregate, and the VV is controlled at 3% to 6%).

(2) The coarse aggregate voids filling method (CAVF) is used to calculate the propor-
tion of coarse and fine aggregates and combine the gradation range (Table 5) to synthesize
the gradation curve. The calculation process satisfies Equations (1) and (2):

qc + q f + qp = 100%, (1)

qc

100γs
(VCA − VV) =

q f

γ f
+

qp

γp
+

qa

γa
, (2)
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where qc, qf, and qp are the mass percentages of coarse aggregate, fine aggregate, and
mineral powder, %; qa is the ratio of bitumen to aggregate, %; γf, and γp are the apparent
relative density of fine aggregate and mineral powder, respectively; γa is the relative
density of bitumen; and γs is the compact density of coarse aggregate.

Table 5. Gradation of HCUP-8 mixture.

HCUP-8
Mass Percentage (%) through the Control Sieve (mm)

9.5 7.2 4.75 2.36 1.18 0.6 0.3 0.15 0.075

Upper limit 100 100 80 35 25 20 15 12 8
Lower limit 100 85 30 15 8 6 5 4 3

(3) Prepare the Marshall specimens according to the synthetic gradation to verify
whether Equations (3) and (4) are established. If the above two conditions cannot meet the
design requirements at the same time, the gradation design should be re-designed. If the
above two conditions meet the design requirements, an attempt can be made to reduce the
bitumen–aggregate ratio from an economic point of view. The technical requirements of
the HCUP-8 mixture are shown in Table 6.

VCAmix ≤ VCADRC, (3)

DA ≥ 16 um, (4)

where VCAmix is the void of the coarse aggregate in the mixture, %, and DA is the depth of
the bitumen, um.

Table 6. Technical requirements of HCUP-8 mixture.

Properties Units Technical
Requirement Test Method

Bitumen content (bitumen
aggregate ratio) % ≥10.0 ASTM D6307-19 [56]

Retained Marshall stability % ≥85.0 ASTM D5581-07A(2013) [57]
Tensile strength ratio % ≥80.0 AASHTO T283 [58]

Dynamic stability cycles/mm ≥5000 ASTM D8292-20 [59]
Scattering loss % ≤10.0 ASTM D7064/D7064M-21 [60]
Texture depth mm ≥0.8 ASTM E965 [61]

3. Road Performance Evaluation Method
3.1. Contrast Experimental Group

In order to better evaluate the road performance of HCUP-8, three different types
of hot mix asphalt mixtures, including AC-10, Novachip, and GT-8, were used as the
comparative experimental group. The thickness of AC-10 is generally 3 cm, and it is
usually used as the surface wear layer of roads with lower traffic volume. The thickness of
Novachip is usually 2–2.5 cm, and it is one of the first ultra-thin wear layer technologies
proposed and widely used in high-grade highways in the United States. The thickness of
GT-8 is usually 0.8–2.0 cm, which is a new type of ultra-thin wear layer technology, which
is widely used in China and produces good economic benefits.

AC-10 and Novachip use SBS modified bitumen (PG76-22) as a binder. The technical
requirements for bitumen are shown in Table 7. The high-viscosity and high-elastic bitumen
used in GT-8 is the main raw material for preparing HCUP emulsified bitumen, and
its technical indicators meet the requirements of Table 1. The grading curve of AC-10,
Novachip, HCUP-8 and GT-8 is shown in Figure 1.
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Table 7. Technical index of the SBS modified bitumen (PG76-22).

Properties Units Technical
Requirement Test Results Test Method

Penetration (25 ◦C, 5 s, 100 g) 0.1 mm 40~60 50 ASTM D5-06E1 [35]
Softening point ◦C ≥70 81 ASTM D36-06 [36]

Elastic recovery (25 ◦C) % ≥85 97 ASTM D6084/D6084M-21 [37]
Solubility (Trichloroethylene) % ≥99 99.5 ASTM D2042-01 [38]

Storage stability ◦C ≤1 0.9 ASTM D5-06E1976 [39]
Dynamic viscosity at 60 ◦C Pa·s ≥800 1836 ASTM D2171-07E1 [41]

After short-term aging
Mass loss % ±1.0 −0.01 ASTM D2872-04 [42]

Penetration ratio (25 ◦C) % ≥65 77.0 ASTM D5-06E1 [35]
G */sin δ = 2.2 kPa critical temperature ◦C ≥76 76 ASTM D7175-15 [43]Buildings 2021, 11, x FOR PEER REVIEW 7 of 18 
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Figure 1. Grading curve of AC-10, Novachip, HCUP-8 and GT-8.

3.2. Testing Program

Fatigue damage and the cracking of asphalt pavement are currently the most difficult
to prevent and treat. They are mainly caused by the combined action of vehicle load, envi-
ronmental factors, and temperature factors. Due to the thinner thickness of the ultra-thin
wear layer, it is more prone to cracking than the traditional 4–5 cm wear layer. Therefore,
in addition to conventional road performance tests, this article uses the low-temperature
bending test, impact toughness test, semicircular bend test (SCB), and four-point beam
fatigue test to evaluate and analyze the crack resistance of HCUP.

3.2.1. Standardized Performance Tests

Supervised by the ASTM D5581-07A(2013) and AASHTO T283 [57,58], the retained
Marshall stability test and tensile strength test were carried out, respectively. The former
evaluates the water damage resistance of the bitumen binder, while the latter evaluates the
water stability of the asphalt mixture in areas with high temperature differences, especially
in frozen areas.

Under the guidance of JTG T0719 and JTG T0733 [45], the dynamic stability test and
Scattering loss test of asphalt mixture were carried out, respectively. The former is used to
evaluate the high temperature stability of the asphalt mixture, and the latter is usually used
to evaluate the degree of aggregate peeling from the road surface. At the same time, the
texture depth test of the mixture was carried out with reference to ASTM E965 to evaluate
its anti-skid performance [61]. Part of the standard performance test is shown in Figure 2.



Buildings 2021, 11, 619 7 of 17

Buildings 2021, 11, x FOR PEER REVIEW 7 of 18 
 

 
Figure 1. Grading curve of AC-10, Novachip, HCUP-8 and GT-8. 

3.2. Testing Program 
Fatigue damage and the cracking of asphalt pavement are currently the most difficult 

to prevent and treat. They are mainly caused by the combined action of vehicle load, en-
vironmental factors, and temperature factors. Due to the thinner thickness of the ultra-
thin wear layer, it is more prone to cracking than the traditional 4–5 cm wear layer. There-
fore, in addition to conventional road performance tests, this article uses the low-temper-
ature bending test, impact toughness test, semicircular bend test (SCB), and four-point 
beam fatigue test to evaluate and analyze the crack resistance of HCUP. 

3.2.1. Standardized Performance Tests 
Supervised by the ASTM D5581-07A(2013) and AASHTO T283 [57,58], the retained 

Marshall stability test and tensile strength test were carried out, respectively. The former 
evaluates the water damage resistance of the bitumen binder, while the latter evaluates 
the water stability of the asphalt mixture in areas with high temperature differences, es-
pecially in frozen areas. 

Under the guidance of JTG T0719 and JTG T0733 [45], the dynamic stability test and 
Scattering loss test of asphalt mixture were carried out, respectively. The former is used 
to evaluate the high temperature stability of the asphalt mixture, and the latter is usually 
used to evaluate the degree of aggregate peeling from the road surface. At the same time, 
the texture depth test of the mixture was carried out with reference to ASTM E965 to eval-
uate its anti-skid performance [61]. Part of the standard performance test is shown in Fig-
ure 2. 

   
(a) (b) (c) 

Figure 2. Standardized performance tests: (a) Marshall stability test; (b) tensile strength test; (c) dynamic stability test. 

0.
07

5
0.

15 0.
3

0.
6

1.
18

2.
36

4.
75 9.
5

0

20

40

60

80

100

Pa
ss

in
g 

Pe
nc

en
ta

ge
 (%

)

Particle Size (mm)

 AC-10
 Novachip
 HCUP-8
 GT-8

Figure 2. Standardized performance tests: (a) Marshall stability test; (b) tensile strength test; (c) dynamic stability test.

3.2.2. Crack Resistance Test

The low temperature bending test of asphalt mixtures was conducted using a Notting-
ham Asphalt Tester (NAT-10, developed by University of Nottingham, Nottingham, U.K.,
Figure 3a), according to ASTM C293/C293M-16 [62]. The tests were performed at −10 ±
0.5 ◦C. The loading rate is 50 mm/min. A concentrated load is applied to the center of
the specimen at a prescribed rate until the specimen is broken, then the breaking load and
mid-span deflection are measured to calculate the flexural tensile strength and ultimate
flexural tensile strain.
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The impact toughness test is based on the low temperature bending test. The loading
rate and test temperature of low temperature bending test were changed to a load rate of
500 mm/min and test temperature of 15 ◦C to conduct the impact toughness test. This test
method was first proposed by Professor Zhang Xiaoning to simulate the impact of wheels
on the road surface [63]. The impact toughness test uses the area from the point of load
application to the maximum load point in the load–displacement curve to characterize the
energy required for the asphalt mixture to break due to the impact load, and to evaluate
the ability of the asphalt mixture to resist the impact load. Correlative tests verified a good
correlation between the impact toughness and fatigue life of the asphalt mixture.

The semicircular bend test (SCB) of asphalt mixtures was conducted using a Notting-
ham Asphalt Tester (NAT-10, developed by University of Nottingham, Nottingham, U.K.,
Figure 3a), according to ASTM D8044-16 [64]. The tests were performed at 15 ± 0.5 ◦C.
The loading rate is 50 mm/min. A concentrated load was applied to the cut section of the
specimen until the specimen fractures. The maximum load work and fracture energy were
calculated by measuring the fracture load and vertical displacement of the specimen with
different notch depths.

The four-point beam fatigue test of asphalt mixtures was conducted using a Cooper
NU-14 tester (Cooper Research Technology-Technical Centre, Ripley, Derbyshire, U.K.),
according to ASTM D8237-21 [65]. The tests were performed at 15 ± 0.5 ◦C. A strain level
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of 1000 microstrains and a loading frequency of 10 Hz were used. During each load cycle
beam, deflections were measured at the center of the beam to calculate the maximum tensile
stress, maximum tensile strain, phase angle, stiffness, dissipated energy, and cumulative
dissipated energy. Failure is assumed to occur when the stiffness has reached half of its
initial value, which is determined from the load at approximately 50 repetitions; the test is
terminated automatically when this load has diminished by 50%.

4. Results and Discussion
4.1. Standardized Performance Tests

From Figure 4 and Table 8, it can be concluded that the retained Marshall stability
ratio of all asphalt mixtures has a relatively high level, and the stability strength is ranked
as AC-10, Novachip, GT-8, and HCUP-8 in order. It is worth noting that the Marshall
stability of HCUP-8 is 6.86 kN, which exceeds the technical requirements of ordinary hot
mix asphalt mixtures.
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Figure 4. Results of Marshall stability and tensile strength.

Table 8. Marshall stability test results.

Mixture Type Marshall Stability (kN) Retained Marshall Stability (%)
60 ◦C, 0.5 h 60 ◦C, 48 h

AC-10 12.72 ± 0.31 11.88 ± 0.81 93.4
Novachip 9.53 ± 1.09 9.09 ± 0.40 95.4
HCUP-8 6.86 ± 0.56 5.93 ± 0.93 86.4

GT-8 9.50 ± 0.42 8.74 ± 0.40 92.0

Figure 4 and Table 9 show the tensile strength of the asphalt mixture before and after
freeze–thaw. The results of the non-freeze–thaw group show that the tensile strength
of HCUP-8 and the traditional hot mix ultra-thin wear layer is almost at the same level.
However, after freezing and thawing, the tensile strength of HCUP-8 attenuates greatly,
and its tensile strength ratio is only 83.3%. From the perspective of resistance to water
damage, HCUP-8 is more suitable for temperate or tropical regions compared to frozen
regions.

Table 10 and Figure 5 show the dynamic stability, scattering loss and texture depth
of different asphalt mixtures. It can be seen that the dynamic stability of HCUP-8 is
much higher than that of AC-10 and Novachip, indicating that HCUP-8 has better high-
temperature rutting resistance. In terms of spalling loss and structural depth, the perfor-
mance of all asphalt mixtures is in the same order, which is Novachip, HCUP-8, GT-8 and
AC-10 in descending order.
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Table 9. Tensile strength test results.

Mixture Type Unfreeze–Thaw Group Freeze–Thaw Group Tensile Strength
Ratio (%)Critical Load (kN) Tensile Strength (MPa) Critical Load (kN) Tensile Strength (MPa)

AC-10 11.06 ± 0.53 1.11 ± 0.06 10.13 ± 0.30 1.00 ± 0.03 90.1
Novachip 9.84 ± 0.55 0.98 ± 0.06 9.36 ± 0.35 0.93 ± 0.03 94.9
HCUP-8 7.25 ± 0.28 0.72 ± 0.03 6.10 ± 0.37 0.60 ± 0.03 83.3

GT-8 8.81 ± 0.35 0.87 ± 0.03 7.85 ± 0.32 0.78 ± 0.03 90.0

Table 10. Results of dynamic stability, scattering loss and texture depth.

Mixture Type Dynamic Stability
(Cycles/mm) Scattering Loss (%) Texture Depth (mm)

AC-10 7922 ± 608 4.9 ± 0.82 0.93 ± 0.04
Novachip 7865 ± 1659 6.4 ± 0.28 1.31 ± 0.04
HCUP-8 8573 ± 370 6.0 ± 0.53 0.95 ± 0.03

GT-8 10,151 ± 478 5.2 ± 0.43 0.97 ± 0.04
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Figure 5. (a) Dynamic stability test; (b) scattering loss test and texture depth test.

The three indexes of dynamic stability, scattering loss and texture depth are highly
correlated with the structure of the asphalt mixture. Novachip has a skeleton void structure,
so it has high texture depth but poor peeling resistance. AC-10 is a suspended compact
structure, so it has good peeling resistance but weak texture depth and high temperature
performance. Both HCUP-8 and GT-8 have a dense skeleton structure, which has good high
temperature performance and anti-stripping performance. At the same time, the special
skeleton design makes its texture depth at the same level as AC-10.

4.2. Crack Resistance Test
4.2.1. Low Temperature Bending Test

The typical load–displacement curves of AC-10, NOVACHIP, HCUP-8 and GT-8
mixtures are shown in Figure 6. The NOVACHIP and AC-10 specimens experienced brittle
failure in a small area before reaching the maximum load, which affected the final value
of the strength of the specimen. The overall brittle fracture occurred after reaching the
maximum failure load, and the specimen quickly lost overall strength. The HCUP and
GT-8 specimens are in plastic failure after reaching the maximum failure load, and still
retains a certain degree of toughness at this time.

It can be seen from Table 11 that the ultimate bending strain of HCUP and GT-8 is
much higher than that of NOVACHIP and AC-10, which are 4527.2 µε and 5611.7 µε,
respectively, which proves that the crack resistance of HCUP and GT-8 in low temperature
environment is better than that of the conventional ultra-thin wear layer. In addition, from
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the point of view of flexural tensile strength, the mechanical properties of HCUP also
surpass the ordinary ultra-thin friction layer, and it has better crack resistance.
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Figure 6. Load-displacement curve of low temperature bending test.

Table 11. Results of low temperature bending test.

Mixture Type Critical Load (N) Mid-Span Deflection (mm) Flexural Tensile
Strength (MPa)

Ultimate Flexural
Strain (µε)

AC-10 1077.168 ± 26.462 0.261 ± 0.003 8.793 ± 0.249 1367.612 ± 17.737
NOVACHIP 735.323 ± 22.377 0.225 ± 0.010 6.003 ± 0.211 1183.193 ± 62.144

HCUP-8 807.963 ± 42.322 0.862 ± 0.054 6.596 ± 0.399 4527.193 ± 329.673
GT-8 1006.675 ± 40.371 1.069 ± 0.052 6.605 ± 0.403 5611.721 ± 329.785

4.2.2. Impact Toughness Test

The typical load–displacement curves of AC-10, NOVACHIP, HCUP-8 and GT-8
mixtures are shown in Figure 7. HCUP-8 and GT-8 specimens remains relatively “constant”
in a large vertical deformation displacement area close to the critical load, indicating that
they have better resistance to deformation when responding to impact loads. However, the
displacement of the NOVACHIP and AC-10 asphalt mixture specimens changes drastically
when the critical load approaches, indicating that brittle fracture is prone to occur when
resisting the impact load. According to Table 12, the impact toughness relationship of the
four asphalt mixture specimens is GT-8 > HCUP-8 > AC-10 > NOVACHIP, which proves
that HCUP has superior crack resistance when subjected to impact loads.
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Figure 7. Load–displacement curve of impact toughness test: (a) load–displacement curve; (b) calculation diagram of
impact toughness curve.
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Table 12. Results of impact toughness test.

Mixture Type Critical Load (N) Critical
Displacement (mm)

Impact Toughness
(N·mm)

NOVACHIP 805.318 ± 39.784 0.693 ± 0.042 325.300 ± 41.249
AC-10 1189.125 ± 23.229 0.790 ± 0.043 487.575 ± 44.886

HCUP-8 327.325 ± 36.836 5.709 ± 0.149 1471.825 ± 140.585
GT-8 606.175 ± 7.859 5.887 ± 0.210 2828.650 ± 200.260

4.2.3. Semicircular Bend test

The typical load–displacement curves of AC-10, NOVACHIP, HCUP-8 and GT-8
mixtures are shown in Figure 8. With the increase in the notch depth, the maximum load of
the four asphalt mixtures is relatively smaller because the notch depth will affect the size
of the cross section of the specimen to withstand the internal tensile stress, which proves
that the test results conform to the design principle of the semicircular bending test. On the
other hand, within the 5% load range of the specimen before and after the failure load, the
vertical deformation displacement of the AC-10, NOVACHIP, HCUP-8 and GT-8 asphalt
mixture specimens with a cut of 1.5 cm is 0.77 mm, 0.60 mm, 1.13 mm and 1.20 mm. The
vertical deformation displacements of the AC-10, NOVACHIP, HCUP-8 and GT-8 asphalt
mixture specimens with a cut of 2.5 cm is 0.50 mm, 0.42 mm, 1.61 mm and 0.7 mm. It
can be seen that under high load conditions, the anti-deformation abilities of the HCUP-8
and GT-8 asphalt mixtures are better than those of the other two asphalt mixtures. At the
same time, as the notch depth increases, the vertical deformation displacement of AC-10,
NOVACHIP and GT-8 is relatively smaller, reflecting the nature of brittle materials, that
is, the smaller the cross-sectional area subjected to tensile stress, the easier it is to break.
The vertical deformation displacement of HCUP-8 increases with the increase in the notch
depth, that is, in the case of high load, the smaller the HCUP-loaded area and the stronger
the deformation resistance, which reflects the characteristics of ductile materials.
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Figure 8. Load–displacement curve of semicircle bending test: (a) the notch depth is 15 mm; (b) the notch depth is 25 mm.

Figure 9 shows the calculation curve range of the maximum load for the semicircular
bending test. The integral area enclosed by the load–displacement curve from the beginning
of the applied load to the critical load is the load work when the semicircular specimen
fails. The fracture energy of asphalt mixture can be calculated by the maximum load work
of semicircular specimens with different notch depths. The related calculation results are
shown in Table 13. The fracture energies of the AC-10, NOVACHIP, HCUP-8 and GT-8
asphalt mixture samples were calculated to be 3.286 kJ/m2, 4.814 kJ/m2, 5.079 kJ/m2 and
11.165 kJ/m2, respectively. Among them, GT-8 has the largest fracture energy, followed by



Buildings 2021, 11, 619 12 of 17

HCUP-8, which proves that HCUP-8 has better deformation resistance than AC-10 and
Novachip.
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Figure 9. Load work calculation curve for semicircular bending test: (a) the notch depth is 15 mm; (b) the notch depth is
25 mm.

Table 13. Results of semicircular bend test.

Mixture Type Notch Depth (mm) Maximum Load Work (J) Fracture Energy (kJ/m2)

AC-10
15 7.227 ± 0.449

4.81425 4.818 ± 0.413

Novachip 15 4.108 ± 0.397
3.28625 2.465 ± 0.121

HCUP-8
15 3.190 ± 0.240

5.07925 0.651 ± 0.059

GT-8
15 11.532 ± 0.539

11.16525 5.949 ± 0.477

4.2.4. Four-Point Beam Fatigue Test

It can be seen from Table 14 that, at a strain level of 1000 µε, the fatigue life of various
asphalt mixtures in descending order is GT-8 > HCUP-8 > SMA-10 > AC-10 > Novachip. It
is worth noting that the fatigue life of HCUP-8 has reached 224,671 times, far exceeding
those of traditional hot-mixed ultra-thin wear layer materials, such as AC-10, Novachip,
and SMA-10. Generally, the four-point bending fatigue test with a strain level of 1000 µε
is only used to evaluate the crack resistance of the stress-absorbing layer-grade asphalt
mixture. This test further verified that the HCUP-8 has excellent crack resistance under
repeated bending loads with high strain levels. The reasons behind it are the high PG
grade asphalt binder, high oil film thickness, and the design concept of using high asphalt
content to replace part of the fine aggregate, which makes the HCUP-8 material tougher.

Table 14. Results of four point bending fatigue test.

Mixture Type Cycles of Failure (µε = 1000)

AC-10 5367 ± 910
Novachip 3833 ± 791
HCUP-8 224,671 ± 35,428

GT-8 925,903 ± 198,200
SMA-10 11,201 ± 1736
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5. Application of HCUP
5.1. Test Road Construction

In order to further verify the road performance of HCUP, a test road was paved on
China’s G78 highway, with a length of 122 m and a width of 3.75 m. The construction steps
and engineering effects are shown in Figure 10.
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5.2. Test Road Detection

Test the friction coefficient, texture depth, water seepage coefficient, and tensile
strength of HCUP-8 pavement, evaluate its true performance, and propose engineer-
ing quality acceptance standards. HCUP-8 performance test data and quality acceptance
requirements are shown in Table 15.

Table 15. HCUP-8 quality acceptance requirements and test results.

Properties Units Technical
Requirement Test Results Test Method

Friction
coefficient BPN ≥55 75.1 ± 0.8 ASTM E303 [66]

Texture depth mm ≥0.8 1.3 ± 0.2 ASTM E965 [61]
Water seepage

coefficient ml/min ≤80 20 ± 7 JTG T0971 [67]

Tensile strength MPa ≥0.3 0.48 ± 0.06 ASTM D4541 [68]
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Table 15 proves that HCUP-8 has excellent road performance. Specifically, the texture
depth is 1.3 mm, the friction coefficient is 75.1 BPN, the water permeability coefficient is
20 mL/min, and the tensile strength is 0.48 MPa. The field test data of the test road laid the
foundation for the promotion of HCUP-8.

6. Conclusions

This research proposes a “high toughness cold mix ultra-thin pavement (HCUP)”
technology with a thickness of 0.8–2.0 cm and introduces the key elements of material
design and grading design.

Conventional road performance tests show that the strength of HCUP-8 meets the
design requirements of ordinary hot mix asphalt mixtures, and it has high temperature
performance and anti-skid performance, superior to traditional hot mix ultra-thin wear
layers. However, its water stability is poor but still meets industry requirements.

The anti-cracking test shows that although the deformation resistance of HCUP is not
as good as GT-8, it is far superior to traditional hot mix asphalt concrete technologies, such
as AC-10 and Novachip, especially when dealing with impact loads. It is worth noting that
the large-strain four-point bending fatigue test proved that HCUP has the crack resistance
of the stress-absorbing layer. This is related to the design of high-asphalt film thickness
and the concept of using high-asphalt content to replace part of the fine aggregate.

The field test results of the test road further verified the excellent performance of HCUP-8.
Future research will focus on the long-term road performance tracking of HCUP-8.
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