
buildings

Article

Scenario-Based Comprehensive Assessment for Community
Resilience Adapted to Fire Following an Earthquake,
Implementing the Analytic Network Process and Preference
Ranking Organization Method for Enriched
Evaluation II Techniques

Zheng He 1,2 , Huihua Chen 1,* , Hongyan Yan 2, Yang Yin 1, Qi Qiu 1 and Tingpeng Wang 1

����������
�������

Citation: He, Z.; Chen, H.; Yan, H.;

Yin, Y.; Qiu, Q.; Wang, T.

Scenario-Based Comprehensive

Assessment for Community

Resilience Adapted to Fire Following

an Earthquake, Implementing the

Analytic Network Process and

Preference Ranking Organization

Method for Enriched Evaluation II

Techniques. Buildings 2021, 11, 523.

https://doi.org/10.3390/

buildings11110523

Academic Editors: Tao Wang,

Jian Zuo, Hanliang Fu and

Zezhou Wu

Received: 8 October 2021

Accepted: 6 November 2021

Published: 7 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Civil Engineering, Central South University, Changsha 410075, China; he0814@csu.edu.cn (Z.H.);
yinyang@csu.edu.cn (Y.Y.); 174801042@csu.edu.cn (Q.Q.); wangtp@csu.edu.cn (T.W.)

2 School of Engineering Management, Hunan University of Finance and Economics, Changsha 410205, China;
yanhongyan@hufe.edu.cn

* Correspondence: chh@csu.edu.cn

Abstract: Natural hazards bring significant influences on and socioeconomic loss to cities and
communities. Historic events show that fire following earthquake (FFE) is the most influential
uncertain disturbance on the urban infrastructure system. Under the FFE scenario, the concept of
resilience is widely implemented to make up the shortcomings derived from the traditional disaster
management methodology. Resilient cities and communities are required to improve the systemic
performance in responding to the FFE. To fulfill these goals, measuring community resilience is
an essential work for municipal policy makers. Therefore, this study conducted a comprehensive
assessment on community resilience adapted to the FFE scenario. The systematic literature review
(SLR) was employed to identify the indicators, and the analytic network process (ANP) technique
was implemented to determine their weights. 20 indicators were extracted, and 4 communities that
encountered FFE in China were selected for the empirical analysis. Thereafter, the preference ranking
organization method for enriched evaluation (PROMETHEE) II technique was selected through using
the multicriteria decision analysis (MCDA) methods selection framework to fulfill the comprehensive
assessment. The results were discussed and demonstrated with graphical analysis for interactive aid
(GAIA) technique. The findings revealed that the G Community won the highest score and had the
strongest performance. However, H Community had the lowest score and the weakest performance.
The proposed comprehensive methods could benefit the decision-makers and the policy executors
achieving the community resilience adapted to the FFE scenario by improving the effective indicators.

Keywords: community resilience; fire following earthquake; comprehensive assessment; MCDA

1. Introduction

In the past decades, sustainable development goals in multiple domains have been
proposed to address the changing and deteriorating environment for the survival and
development of human beings [1–5]. However, as the carrier which could provide basic
living services for human development, the cities are facing a series of challenges where
natural hazards have the greatest influence and the most serious social and economic
losses [6,7].

To settle this issue, improving the system performance of the cities when these natural
hazards occur has drawn a climbing degree of attention [8–11]. There are a lot of research
scholars and participants realize that the sustainable development goals of cities should
be embedded into the concept of resilience [12–15]. Hence, exploring the performance of
the communities, which are the essential unit of the cities, after disasters and measuring
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the capability of the communities when adapting to the disasters is vitally significant and
imperative [16–18]. Achieving resilient cities and communities will benefit the sustainable
development of the cities in the aspects of society, economy, and environment [19,20].

Among the uncertain disturbances, earthquakes are the most destructive and influen-
tial disaster for the infrastructure in the city and community. A resilient community in an
earthquake-prone area should be able to withstand a major earthquake event and recover
quickly from the event such that the functionality of the community is restored within
a reasonable time framework [20,21]. In the process of planning and designing resilient
communities, it is necessary to consider potential cascading events that could follow the
initial earthquake. Historic events show that fire ignitions may follow an earthquake, caus-
ing further damage to a system that has already suffered a shock [22–27]. Fire following
earthquake (FFE) will bring huge social and economic losses to the urban system [28,29].

To tackle this issue, the concept of “resilience” is highlighted for its significant advan-
tages compared with the traditional hazard management methodology. A large number
of historical empirical data provide evidence that a resilient community is more likely to
be less influenced than non-resilient communities and to recover from the disaster more
rapidly when encountering the disturbances at the same level. In the past decade, com-
munity resilience has drawn increasing attention worldwide. Achieving resilience has
become a crucial goal for the planning and managing the infrastructure construction, the
community, and the city.

Hence, to actualize resilient communities, it is imperative to improve the capacity of
the communities to adapt to FFE. During this process, measuring and assessing community
resilience is essential work for researchers and policy makers. In spite of the large body of
prior studies that have made some progress related to measuring the resilience of cities and
urban communities, there are very limited scholars who pay attention to the comprehensive
assessment indicators on community resilience under a fire post-earthquake scenario.
Therefore, this study aims to investigate the indicators and propose effective evaluation
methods to help the decision-makers and policy-producers to improve perception in
constructing sustainable cities.

2. Literature Review

Prior studies have made great progress on the concept of hazard. For example, a large
body of literature took hazards as various negative social consequences caused by external
emergencies where the hazard source is natural, objective, and external, and the “relational
chain” between the hazard source and the social result is discontinuous, interrupted, and
static [30–33]. From the sociological perspective, Kendra et al. [34] defined a hazard as: “an
event with time-space characteristics that causes threats and substantial losses to society
or other branches of society, resulting in social structural disorder and interruption of
the function of the basic survival support system of social members”. Fuchs et al. [35–37]
argued that hazard is functional or event-oriented. That is, a hazard can be regarded
as an external, sudden, and instantaneous event that has a negative impact on society
as a whole within a specific time and space. Similarly, Birkmann et al. [38] defined a
hazard as an event that causes social chaos and material damage. Mazzorana et al. [39]
used exceptions and breaks through conventions to describe the relationship between
hazards and social order, believing that “hazards are the destruction of social conventions”.
Kappes et al. [40] believed that the criteria for defining hazards could be measured by
whether society needs long-term recovery. Navarro et al. [41] believed that the hazard event
first brings death or loss and then causes secondary social, political, and economic impacts.
Janizadeh et al. [42] believed that sociology should study social changes in hazardous
situations. Moreover, other geophysicists pay more attention to natural phenomena, such
as earthquakes, tornadoes, and floods. The failure of the social, cultural system has caused
the vulnerability of members of society in the face of external and internal threats. Based on
this, Monge et al. [43] defined a hazard as “the result of the interaction between vulnerable
people and extreme natural events”. Berlemann et al. [44] emphasized: “a hazard can no
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longer be regarded as an emergency. The occurrence of a hazard is actually a manifestation
of human vulnerability to environmental threats and extreme events”. Kendra et al. [34]
believed that hazards could not only be regarded as static events but also a dynamic
social result. Therefore, the occurrence of hazards is not only a consequence of extreme
events but also a result of vulnerability. Stritih et al. [45] regarded hazards as a kind of
collective pressure and believed that most research on hazards focused on the “community
level”, and those hazard events should be classified and dealt with. It can be seen that the
research on hazards has shifted from result-oriented hazard cognition to the investigation
of hazard social factors from the perspective of the whole process, which has led to the rise
in community hazard-related research based on the concepts of vulnerability and resilience.

For the infrastructure system of a city, when the degree of danger and destructive
power from the hazards exceed the capacity of the urban infrastructure system, the hazard
will develop into a disaster [46]. Earthquakes are often the most serious of the above
hazards and are often without warning [47,48]. The level of earthquakes is generally
divided into 12, from ultra-micro earthquakes to huge earthquakes [49]. Earthquake
disasters can be divided into direct disasters and secondary disasters according to the
degree of relevance and derivation of their impact on nature and society [50]. Direct
disasters are ground vibrations and cracks [51–54]. There are three main manifestations of
damage caused by rupture: First, the direct damage to buildings and engineering facilities,
which is also an important cause of the loss of life and property [55,56]. The second is
ground surface damage. Strong vibration will directly affect the ground surface, such as
ground cracks, landslides, sand liquefaction, and ground subsidence [57–59]. The third
is the tsunami caused by the disturbance of the water body caused by vibration. The
secondary disasters of earthquakes are various catastrophic events caused by earthquake
disasters, such as fires, mudslides, toxic gas leaks, plagues, etc. [60–62]. These disasters
are often affected by economic and social conditions, and to a large extent, they will be
more severe than direct disasters toward impact and loss [11,63,64]. In addition, with the
development of the economy and society, the so-called “third disaster”, such as the paralysis
of information and communication, the loss of data and information, and the destruction
of network systems, has also become an important aspect of earthquake disasters [65].

A resilient community in an earthquake-prone area should be able to withstand a
major earthquake event and recover quickly from the event such that the functionality of
the community is restored within a reasonable time frame [66]. Compared with the impacts
exerted on the community by the earthquake, the events chain during the post-earthquake
phase will bring a greater cascading effect. Historic events show that fire ignitions may
follow the earthquake, causing further damage to a system that has already suffered a
shock. Fire following the earthquake will bring huge social and economic losses to the
urban system. When a fire following the earthquake breaks out in an urban community,
residents and other people in the community may suffer burns, scalds, suffocation, jump
off buildings, and other hazards [13,67]. High temperature and burning cause damage
to buildings, structures, and infrastructure and cause losses to residents’ properties and
other community assets. The dense smoke produced by the fire affects the appearance of
the building and causes environmental pollution [68–70]. In addition, the use of fire extin-
guishers, fire sprinklers, and firetruck fire extinguishing equipment will cause secondary
damage to buildings and residents’ properties [71]. Finally, news and media reports will
reduce the brand, function, and cultural effects of the community. Old communities or
poorly managed communities often have problems, such as the occupation of fire lanes, in-
sufficient or ineffective firefighting facilities, and lack of safety education among residents,
which further worsens the impact of fires.

Hence, considering the community resilience for the urban infrastructure in a fire
following earthquake scenario is imperative and crucial [72–76]. In the past decades,
prior studies have investigated community resilience from different perspectives. For
instance, Tan [77] proposed an assessment method to measure community resilience by
investigating policy factors. The study put forward that the current research lacks em-
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pirical validation and historic data toward proposed resilience assessment tools. Based
on the risk perspective, Ji et al. [30] proposed the evaluation and decision-making plan
of the reliability and stability of urban infrastructure. Their findings revealed that the
distribution and intensity of risk greatly affect the anti-risk planning of the city’s adminis-
trative area, thereby changing the resilience of the community. Moreover, other scholars,
including Abdelhady et al. [78], Wang et al. [79], Her et al. [80], Gholizadeh [81], Nofal [82],
Baca et al. [83], Chen and Ji [84], etc., conducted some regional studies using a small sample
analysis method. Additionally, studies of resilience for different types of urban infrastruc-
ture in communities were implemented in a large body of literatures. For instance, the
power distribution infrastructure systems by Kim et al. [85]. More prior studies focused
on regional research of community resilience [86,87]. However, there is lack of a set of
systematic indicator systems for assessing the community resilience. Hence, this study
aims to make a comprehensive assessment on community post hazard-adapting resilience
under the scenario of fire following earthquake.

The objectives of this study were as follows: (1) investigating indicators of community
post-hazard-adapting resilience under fire post-earthquake scenario, (2) determining the
weights of the indicators using ANP, (3) establishing the assessment model and selecting
the studies community samples, (4) comparing and analyzing the assessment results.

The organization of the paper and the logic framework are as follows. Section 3 raises
the methodology of this study. Section 4 implements the proposed methods through the
empirical analysis of four communities in China, Section 5 lists the results and conducts
the discussion, and Section 6 makes the conclusions.

3. Research Methodology
3.1. Design of the Empirical Analysis

Empirical analysis is a widely implemented method in a larger number of articles
related to comprehensive assessment (e.g., He and Chen [88,89], Moghayedi et al. [90],
Dang et al. [91], Olawumi and Chan [92], Yu et al. [93], etc.). The processes of empirical
analysis include two parts. The first part is to conduct a semi-structured interview with
the people in key roles in a community. The design of the semi-structured interview is
to determine the final indicators after the first round of identification. The second part
is to carry out the investigation adapting a scoring scale and to determine the weight of
each indicator.

3.2. Identification of the Indicators on Community Resilience Adapted to FFE Using SLR

Due to the lack of identifying the key concepts of community resilience, research
perspectives and dimensions, evaluation indicators and influencing factors, and then
mixing them together, many previous studies have resulted in a number of negative effects
for follow-up research. Therefore, this study used a systematic literature review (SLR) to
extract the initial indicators on community resilience adapted to FFE. SLR is a method of
scientifically summarizing and collating texts by avoiding errors in selecting the literature
and reducing the subjective factors. We used “community”, “resilience/resilient”, “fire
following earthquake”, “urban/city” as the keywords to be searched in the databases
of Web of Science, Scopus, and Google Scholar, and verified the content of the obtained
articles in the search results. In addition, the search scope was limited to titles, abstracts,
and keywords. The language of the articles was limited to English. The article source was
limited to peer-review journals. The publication time was set between 2011 and 2021.

After the search processing, the screening process is another crucial step in completing
the SLR. Hence, we conducted screening strategies to fulfill the task. The screening
strategies included:

1. Duplicated screening. As an article may belong to multiple databases (for example,
articles published by Elsevier may be indexed by Google Scholar), the elimination
process needed to be repeated to ensure that there were no duplicate articles in
the results.
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2. Title filtering. We carried out the title screening process by reviewing the titles to
filter these articles that were obviously not related to the assessment indicators of
community resilience adapted to FFE.

3. Abstract filtering. Implementing abstract filtering was to check whether the detailed
objectives and conclusions of the selected literature were related to the SLR strategies.
It was necessary to obtain related information from the abstract and delete the articles
which did not include the related contents about community resilience adapted
to FFE.

4. Full-text filtering. In this step, we downloaded and read the full text to ensure the
availability of articles that met the above screening strategies.

5. Reference filtering. Reference filtering was used to collect the missing articles from
the references cited in the above-selected articles, which can provide the supplements.

The flowchart of using SLR is presented in Figure 1. Through SLR analysis, the initial
indicators set are obtained and presented in Table 1.

Table 1. Indicators on community resilience adapted to FFE.

Number Indicators Criteria Tier Source of Data

C1 Safety and health of residents

Management and resource

[94–96]

C2
Participation rate of

stakeholders [94,97]

C3
Earthquake and fire

prevention knowledge [83,84,98–101]

C4
Chaos following an

earthquake [58,86,102]

C5
Response time of the

firefighters [103–106]

C6 External support [77,107–109]

C7
Emergency management

capabilities [94,110]

C8 Resource reserve [30,111–113]

C9
Anti-seismic and fire-proof

design of buildings

Design and financial support

[79,114–122]

C10 Finances of the community [123–125]
C11 Communication systems [83,84,94,126–129]
C12 Transportation systems [3–5,130–132]
C13 Security systems [77,81,113,133]
C14 Firefighting systems [99–101,134]
C15 Gas supply systems [79,135–137]

C16 Water supply systems

The function of urban
infrastructure

[79,80,93,138–140]
C17 Electricity supply systems [97,135,141–144]
C18 Active fire control systems [93,145,146]
C19 Sewage systems [34,147,148]
C20 Waste treatment systems [149–152]

3.3. Calculating the Weights of Indicators Using ANP

The analytic network process method [153] is developed to a non-independent hierar-
chical structure and can more accurately describe the relationships between each element.
In the ANP network structure, indicators and their sets can influence and depend on each
other [154,155]. Using the ANP method, not only can the comprehensive weight of the
element to the target be obtained, but also the degree of mutual influence between the
elements can be calculated [156,157]. Using the ANP method, the indicators system to be
studied was divided into two parts, namely the control layer and the network layer. The
control layer included goals and decision-making criteria. All decision-making criteria
were independent of each other and were only governed by target indicators. The weight
calculation method of the criteria and sub-criteria in the control layer was the same as the
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AHP method [158–161], which can be obtained by traditional means. The network layer is
a network structure that affects each other internally, and the indicators in this layer are
dominated by the control layer.
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3.4. MCDA Method Selection

Due to the complexity of different dimensions for the assessment indicators, the
decision-makers require effective and systematic methods to fulfill the decision-making
process. On this basis, the MCDA methods are widely applied when tackling issues
with a multitude of conflicting objectives. In response to these needs, many solutions
dedicated to selected areas, as well as general-purpose methods, have been developed. The
evaluation methods are crucial to implementing the conducted evaluation index system.
MCDA is designed to provide schemes among limited alternatives for decision-makers
from the aspects of actions, goals, solutions, or candidates [162–164]. As measuring the
community resilience adaptability to a FFE scenario is a multiple criterion assessment
process, the options for the methodology were from the set of MCDA methods considering
attributes, characteristics, or goals. The most widely used MCDA includes techniques for
order of preference by similarity to ideal solution (TOPSIS) [165], complex proportional
assessment (COPRAS), multicriteria optimization and compromise solutions (VIKOR) [166],
and preference ranking organization method with rich evaluation content (PROMETHEE),
superiority and inferiority ranking (SIR) [167], analytic hierarchy process (AHP), goal
programming (GP), ELECTRE I, II, III, IV, IS, TRI [168,169], etc.

The most significant objective of MCDA methods is to help a decision-maker in se-
lecting the most preferable element from a set of possible alternatives. Subjectivity which
characterizes the importance of each criterion, impacts the practical result of the assess-
ment. Most decision-makers have a preference where they regard a group of indicators
as typically more important than others [170–172]. Moreover, the type of data that could
bring uncertainty also has a substantial influence on the subjectivity of assessment. On this
basis, a series of influences factors determine the advantages or shortcomings in applying
these MCDA methods. For instance, the topic, the complexity of the proposed problems,
the users’ preferences and adapted evaluation criteria, the form and validation of data,
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researchers’ requirements for sensitivity, and the availability of implementations are the
most critical consideration for choosing the MCDA methods [173–175].

Prior studies have pointed out that different MCDA methods can present conflict-
ing results in comparison research. For instance, Li et al. [176] developed a generalized
framework to help decision-makers to select a suitable MCDA method and software.
Kolios et al. [177] carried out a comparative study among a set of widely-applied MCDA
methods to determine the best choice from the alternatives. Their findings revealed that
more complicated methods, such as TOPSIS and PROMETHEE, have better performance
when choosing the best decision-making alternative. Sałabun et al. [178] identified and
selected a set of MCDA methods and benchmarked them by using different weighing
methods and implementing various approaches in dealing with the problem of initial data
normalization. Wątróbski et al. [179] developed a framework for determining suitable
MCDA methods according to the characteristics of the studied decision problem. A practi-
cal tool has been put forward to help decision-makers to select the rational MCDA methods
under a given decision-making situation. The MCDA method selection tool is based on the
web platform (www.mcda.it (accessed on 14 August 2021)) and requires the users to select
the abilities of the MCDA method according to the particular decision problem.

Hence, in the present study, we used the MCDA method selection tool to determine
the suitable MCDA method tailored to the decision problem. The tool provides 9 options
for selecting the required abilities from a set of 56 MCDA methods where some general
descriptors for the properties of the decision-making problem are provided. For instance,
the descriptors for the alternative type of weights are qualitative, quantitative, and relative.
Some descriptors provide the alternatives for the type of variants’ ranking, including
partial ranking and complete ranking. Other descriptors provide the alternatives for the
topic of the decision-making problem, including choice, classification, ranking and choice,
classification and choice, etc. The matching subset will be presented when each option
has been determined. During this selecting process, the quantified weights of criteria,
the quantified scale, the preference uncertainty, the topic of ranking and choice, and the
complete rank are served as the main significant abilities which the MCDA method needs
in the presented study. As a result, the PROMETHEE II method was recommended for this
study using the MCDA method selection tool.

3.5. Obtaining the Ranking of Community Resilience Implementing PROMETHEE II Method

The PROMETHEE was developed by Brans et al. (1986) [180]. The PROMETHEE
uses a set of evaluation criteria (i.e., priority functions) to describe the priority of a limited
number of alternatives (individuals) in attributes and ranks the pros and cons of each
scheme according to the size of the gap between the attribute values of each scheme.
Compared with other MCDA methods, the PROMETHEE method has become one of
the most commonly used decision-making methods in solving multi-attribute decision-
making problems due to its simple and clear execution process and easy understanding
by decision-makers. PROMETHEE offers unique advantages of compensating for other
MCDA methods due to its simple and clear execution process and ease of being understood
by decision-makers in solving multi-attribute decision-making problems [181–185]. The
ranking methods of the PROMETHEE series include PROMETHEE I-VI, PROMETHEE
Group Decision Support System (GDSS), PROMETHEE GAIA, PROMETHEE TRI, and
PROMETHEE CLUSTER. Based on specific mathematical attributes and applications, each
of the above-mentioned PROMETHEE methods can be considered as a dedicated evaluation
tool for a certain type of decision-making problem. In this study, the PROMETHEE II
method [186] was employed to obtain a complete ranking of alternatives. In PROMETHEE
II methods, through dealing with the input and output preference flows, the values of net
preference flow for individual variants were calculated. Thereafter, a complete ranking of
variants could be obtained.

There were 4 steps in conducting the comprehensive assessment on community
resilience adapted to FFE:

www.mcda.it
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1. Establishing the set of indicators, namely a set of various factors that affect the object of
assessment. In this study, the set of indicators are interpreted as E = {E1, E2, E3, ..., En};

2. Determining the evaluation criteria. The evaluation criteria are a set of collections
that describe the expert or community leader’s evaluation of various community
resilience adapted to FFE. In this study, the set of indicators are interpreted as
C = {C1, C2, C3, ..., Cn};

3. Selecting the studied hazard scenario. Due to the different influences of the negative
impacts caused by different hazard scenarios in a community, the types and levels of
hazards should be limited when evaluating and comparing the relative resilience to
hazards of a group of communities. Based on the multi-scenario model comparison
function provided by Visual PROMETHEE software, select a single hazard (fire
following earthquake) and evaluate the resilience of communities;

4. Result analysis. Based on the PROMETHEE II module of Visual PROMETHEE
software, each indicator is used to decide the ranking of the community resilience
adapted to FFE, and then the comprehensive priority level value and ranking can be
obtained to determine the absolute value.

4. Empirical Analysis
4.1. Background of the Selected Samples

The selected four communities are located in the southwest region of Yuxi City of
Yunnan province in China. As earthquake-prone areas, the four communities experienced
an earthquake with Magnitude 5.0 on 13 August 2018. According to the post-disaster
statistics of the Yunnan Provincial Earthquake Prevention and Mitigation Bureau, post-
earthquake fires were the disaster that had the greatest impact on these communities. The
basic information of them is demonstrated as follows.

Gaolongtan community (referred to hereafter as G Community) was established
in 2003, starting from Damiao mountain in the east to Dongfeng Road in the west, GCLP
village in the south, and Xingyun road in the north. It encompasses a total of 2960 house-
holds, with a land area of 1.48 square kilometers and a total population of 9730 residents.

Jinxiu community (referred to hereafter as J Community) was established in April
2011, and it is a community under the jurisdiction of Gucheng Street in Yuxi City of Yunnan
Province. The community is located on Chongwen Road, west to the center of Naxi
River, from the Bell Tower of Minzu Square in the south to the center of Pingdian River in
the north, with an area of 5.8 square kilometers. The total number of households in the
community is 2354, and the total population of J Community is 14,000, where the floating
population is more than 10,000.

Ruixin community (referred to hereafter as R Community) was established in 2014,
and it encompasses a total of 3400 households, with a land area of 1.96 square kilometers
and a total population of 6330 residents.

Hutian Community (referred to hereafter as H Community) is located in the south of
Fenghuang Road, Hongta District of Yuxi City in Yunnan Province. It was established in
May 2003, starting from Fuxian Road in the east and neighboring Xingyun in the south. The
total area of the community is 0.809 square kilometers, and there are 34 community units.
The total number of households in H Community is 4940, and the population is 15,000.

4.2. Data and Standardized Interview Adapting Scoring Scale

We designed the standardized interview adapting scoring scale. Sixty-three inter-
viewees who experienced the earthquake in G, J, R, H Communities were invited from
the stakeholders of these Community. These interviewees include staff in street offices,
committee leaders of the residents in the community, property service center supervisors,
and some representatives for residents. The profile of the responders is listed in Table 2.
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Table 2. Profiles of the responders.

Responders NO. Roles in the Community Years Participants Percentages

1 Local citizens 19 years 20 31.7%
2 Government branch 8 years 7 11.1%
3 Clerk in the community office 13 years 10 15.9%
4 Fire department and earthquake administration 8 years 4 6.3%
5 Security personnel in the community 13 years 4 6.3%
6 Firefighters 10 years 5 7.9%
7 Emergency management personnel 11 years 3 4.8%
8 Volunteers in the community 5 years 10 15.9%

4.3. Determining the Weights of the Indicators Using ANP

In the process of ANP, the interrelationship between each indicator (Ci) formed an
influential network where the nodes are dependent and interact. Hence, in order to
determine the weight of each indicator, we needed to make a pairwise comparison between
each node of the network. The index scale judgment rules are presented in Table 3.

Table 3. The index scale judgment rules.

Scores (S) Pairwise Comparison Index for the Importance
I Ci→Cj a

III Ci→Cj b
V Ci→Cj c

VII Ci→Cj d
IX Ci→Cj e

II, IV, VI, VIII Median Between the above indexes
1/S Cj→Ci Negative values

Using the judgment rules, we designed a questionnaire to conduct interviews and a
data collection process with 10 experts in the research field and 11 representatives from
the four selected communities. They were required to make a comparison between each
indicator using the rules proposed in Table 3 and to finish the questionnaire. Thereafter, we
collected the results of the questionnaire and input the results into ANP analysis platform.
The final relationship network is presented in the form of a matrix in Table 4.

Table 4. Pairwise comparison for the interrelationship between each indicator.

C(i) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 1 1 1 1
2 1 1 1 1 1 1
3
4 1 1 1
5 1 1
6 1 1
7 1
8 1 1
9 1 1
10
11 1 1 1
12 1 1 1
13 1
14 1 1 1
15 1 1
16 1 1
17 1 1 1
18 1
19 1 1 1
20 1
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By applying the ANP analysis platform, the final weights of the indicators of commu-
nity resilience adapted to FFE were generated and presented in Table 5.

Table 5. Indicators and weights of community resilience adapted to FFE.

Number Code Indicators Weights

1 C1 Safety and health of residents 0.1250
2 C2 Participation rate of stakeholders 0.0256
3 C3 Earthquake and fire prevention knowledge 0.0753
4 C4 Chaos following an earthquake 0.0159
5 C5 Response time of the firefighters 0.0570
6 C6 External support 0.0167
7 C7 Emergency management capabilities 0.0483
8 C8 Resource reserve 0.0291
9 C9 Anti-seismic and fire-proof design of buildings 0.1074

10 C10 Finances of the community 0.0256
11 C11 Communication systems 0.0175
12 C12 Transportation systems 0.0387
13 C13 Security systems 0.0139
14 C14 Firefighting systems 0.0198
15 C15 Gas supply systems 0.0345
16 C16 Water supply systems 0.0284
17 C17 Electricity supply systems 0.1501
18 C18 Active fire control systems 0.0492
19 C19 Sewage systems 0.0962
20 C20 Waste treatment systems 0.0256

4.4. Comprehensive Assessment on the Community Resilience Adapted to FFE

We designed and applied Liszt’s five-level scale for each item of the questionnaire.
Respondents need to assess the resilience of G, J, R, H communities on a scale of “1–5”
values toward fire following the earthquake in August 2018. The rating results are listed in
Table 6.

Table 6. The resilience of G, J, R, H communities adapting Liszt’s five-level scale.

Number Indicators G J R H

1 Safety and health of residents 4 4 5 2
2 Participation rate of stakeholders 3 4 5 3
3 Earthquake and fire prevention knowledge 5 3 5 3
4 Chaos following an earthquake 3 2 4 4
5 Response time of the firefighters 3 5 3 4
6 External support 4 3 2 4
7 Emergency management capabilities 3 3 5 4
8 Resource reserve 3 4 4 3
9 Anti-seismic and fire-proof design of buildings 4 2 3 1

10 Finances of the community 4 3 3 4
11 Communication systems 5 5 3 3
12 Transportation systems 5 2 2 2
13 Security systems 4 1 2 3
14 Firefighting systems 4 4 4 4
15 Gas supply systems 4 5 5 3
16 Water supply systems 5 3 2 1
17 Electricity supply systems 5 4 4 2
18 Active fire control systems 4 2 1 2
19 Sewage systems 4 2 1 5
20 Waste treatment systems 4 2 3 1

After obtaining the outputs in Table 3, we calculated the community post-hazard-
adapting resilience toward fire following earthquake using PROMETHEE software. The net
flow ranking chart of the four communities for post-hazard-adapting resilience is displayed
in Figure 2. The scoring maps of G, J, R, and H communities for resilience adapted to FFE
are presented in Figures 3–6, respectively.
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5. Results and Discussion
5.1. Results Analysis

(1) Graphical analysis for interactive aid on assessment results

The results of assessment for community post-hazard-adapting resilience toward
fire following earthquake could be analyzed by the Graphical Analysis for Interactive
Aid (GAIA), an auxiliary analysis tool provided by PROMETHEE. GAIA provides three-
dimensional spatial analysis diagrams based on different dimensional perspectives, in-
cluding U-V, U-W, and W-V coordinate systems. Taking the U-V coordinate systems as an
example, the GAIA analysis diagram is presented in Figure 6.

In the U-V coordinate systems of GAIA, 79% of the information in the three-dimensional
spatial analysis diagrams could be demonstrated in the map. The red line represents the
decision axis. The longer the length of the decision axis, the more information expressed
on the plane, and the more accurate the decision. When a certain decision criterion is the
same or similar to the direction of the decision axis, it means that the criterion meets the
current evaluation standard. If the decision-maker believes that the current result is not
what they expected, they should consider adjusting the weight of other evaluation criteria.
Therefore, in Figure 7, when the indicators C16, C17, and C14 were determined to be the
assessment criteria, G and R communities were considered to be the mean objectives for
the decision making. Similar discussions could be made on U-V coordinate systems of
GAIA (Figure 7), W-U coordinate systems of GAIA (Figure 8) and V-W coordinate systems
of GAIA (Figure 9), accordingly.
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(2) Net traffic ranking analysis of the four communities for assessment results.

Through implementing net traffic ranking analysis (Figure 2), the net traffic of the four
communities after experiencing the earthquake with Magnitude 5.0 on 13 August 2018,
could be obtained. The post-hazard-adapting resilience of the four communities under a fire
following earthquake scenario was also ranked. The reference interval of the community
resilience adapted to FFE was from −1 to 1, and the rank of the post-hazard-adapting
resilience of four communities could be determined.

The findings of net traffic ranking analysis (Figure 2) revealed that the post-hazard-
adapting resilience of G Community arrived at 0.412, which is the highest among the
four communities. The performance of the G Community was excellent. Meanwhile, the
post-hazard-adapting resilience of R Community arrived at 0.0906, which was the second
highest among the four communities. However, the post-hazard-adapting resilience of
J Community reached−0.0951, which means that its outflow was greater than inflow.
Moreover, the post-hazard-adapting resilience of H Community was −0.4075, namely, the
performance of H Community was the worst of the others.

(3) Comparison analysis on post-hazard-adapting resilience indicators

First, Figure 2 reveals the changes in the net flow of each community post-hazard-
adapting resilience indicator after experiencing fire following earthquake in the G commu-
nity. It could be drawn that C1 (safety and health of residents) and C14 (firefighting systems)
were not affected by the disaster. Both indicators can maintain their functionalities after fire
following earthquake. The stability of the firefighting systems is vital for the suppression
and mitigation of fire following earthquake.

C3, C6, C9-C13, C16-C20 arrived at a positive net flow of community post-hazard-
adapting resilience after fire following earthquake. That means these indicators have
achieved better performance by systematic self-organizing and changing in a resilient
community. Furthermore, C9 (anti-seismic and fire-proof design of buildings), C12 (trans-
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portation systems), C13 (security systems), C16 (water supply systems), C17 (electricity
supply systems), C18 (active fire control systems), and C20 (waste treatment systems),
which belong to the group of urban infrastructures, had the highest positive net flow
among all the indicators. It could be drawn that G community has a strong degree of
infrastructure resilience.

However, C2, C4, C5, C7, C8, and C15 arrived at a negative net flow of community post-
hazard-adapting resilience after fire following earthquake. Especially, C2 (participation
rate of stakeholders), C5 (response time of the community), C7 (emergency management
capabilities), and C8 (resource reserve) had the highest negative net flow among all the
indicators. More extensive efforts should be exerted to improve these indicators to achieve
a resilient community.

Second, Figure 3 reveals the changes in the net flow of each community post-hazard-
adapting resilience indicator after experiencing fire following earthquake in the J commu-
nity. It could be drawn that C1 (safety and health of residents), C14 (firefighting systems),
C17 (electricity supply systems), and C18 (active fire control systems) were not affected
by fire following earthquake. All four indicators can maintain their functionalities af-
ter fire following earthquake. Moreover, the functionalities of C14 (firefighting systems)
and C18 (active fire control systems) are vital for the suppression and mitigation of fire
following earthquake.

C2, C5, C8, C11, C15, and C16 arrived at a positive net flow of community post-hazard-
adapting resilience after fire following earthquake. Furthermore, C5 (response time of the
community) had the highest positive net flow among all the indicators. However, C3, C4,
C6, C7, C9, C10, C12, C13, C19, and C20 arrived at the negative net flow of community post-
hazard-adapting resilience after fire following earthquake. Especially, C4 (chaos following
an earthquake) and C13 (security systems) had the highest negative net flow among all the
indicators. More extensive efforts should be exerted to improve these indicators to achieve
a resilient community.

Third, Figure 4 reveals the changes in the net flow of each community post-hazard-
adapting resilience indicator after experiencing fire following earthquake in the R commu-
nity. It could be drawn that C14 (firefighting systems) and C17 (electricity supply systems)
were not affected by fire following earthquake. Both indicators could maintain their func-
tionalities after experiencing fire following earthquake. The stability of the firefighting
systems and electricity supply systems are vital for the suppression and mitigation of fire
following earthquake.

C1-C4, C7-C9, C15, and C20 arrived at a positive net flow of community post-hazard-
adapting resilience after fire following earthquake. Furthermore, C1 (safety and health
of residents), C2 (participation rate of stakeholders), and C7 (emergency management
capabilities) had the highest positive net flow among all the indicators. However, C5,
C6, C10-C13, C16, C18, and C19 arrived at a negative net flow of community post-hazard-
adapting resilience after fire following earthquake. Especially, C6 (external support), C18
(active fire control systems), and C19 (sewage systems) had the highest negative net flow
among all the indicators. More extensive efforts should be exerted to improve these
indicators to achieve a resilient community.

Forth, Figure 5 reveals the changes in the net flow of each community post-hazard-
adapting resilience indicator after experiencing fire following earthquake in the H commu-
nity. It could be drawn that C14 (firefighting systems) and C18 (active fire control systems)
were not affected by fire following earthquake. Both indicators could maintain their func-
tionalities after experiencing fire following earthquake. The stability of the firefighting
systems and electricity supply systems are vital for the suppression and mitigation of fire
following earthquake.

C4-C7, C10, C13, and C19 arrived at a positive net flow of community post-hazard-
adapting resilience after fire following earthquake. Furthermore, C19 (sewage systems)
had the highest positive net flow among all the indicators. However, C1-C3, C8, C9, C11,
C12, C15-C17, and C20 arrived at a negative net flow of community post-hazard-adapting
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resilience after fire following earthquake. Especially, C1 (safety and health of residents),
C9 (anti-seismic and fire-proof design of buildings), C15 (gas supply systems), C16 (water
supply systems), C17 (electricity supply systems), and C20 (waste treatment systems) had
the highest negative net flow among all the indicators. More extensive efforts should be
exerted to improve these indicators to achieve a resilient community.

5.2. Disscussion

To make a comprehensive comparison of the performance of the four samples, the
G community had an excellent performance on the categories of “design and financial
support” and “the function of urban infrastructure”. That means a lot of resources have
been invested in community infrastructure systems and resilience support systems by the
community manager. However, due to the poor performance of the G community in the
category of “management and resource”, greater benefits could be yielded if intensive care
was exerted to these weak indicators. When considering the limitation of resources in a
community, the community managers should allocate resources from the categories of “de-
sign and financial support” and “the function of urban infrastructure” to the “management
and resource” to achieve resource optimization and improve community resilience.

The whole community resilience performance of the J community was poor. There
were 6 positive scores and 10 negative for the J community. “Response time of the fire-
fighters” was the indicator that had the highest score in the six positive scores. However,
the indicators of “earthquake and fire prevention knowledge”, “chaos following an earth-
quake”, “emergency management capabilities”, “finances of the community”, and “security
systems” had evidently poor performance, with most of them belonging to the category
of “management and resource”. Limited resources were allocated to the category of
“management and resource” and weak strategies were implemented by policy-makers in
J community.

The R community had an excellent performance in the category of “management and
resource”. However, it presented low scores in the categories of “design and financial sup-
port” and “the function of urban infrastructure”. A lot of investment in the R community
was used to build resilient organizations and connections, but the construction of physical
systems, such as infrastructure construction, was very weak. Planning and strategies for
the achieving of a resilient community should be adjusted accordingly.

Though the H community won the highest score for the indicators of “sewage sys-
tems”, it had weak performance in all three categories. The resilience performance of the H
community determined that it would be a very unstable system when a disaster occurs.
Extensive resilience enhancement strategies should be applied to improve the disaster
prevention and mitigation capabilities of the community.

The final comparison results on a comprehensive assessment of relative scores are
demonstrated in Table 7. It can be drawn from the comprehensive assessment of relative
scores of the four communities toward three different criteria tiers that the G Community
won the highest score and had the strongest performance in the groups of design and
financial support and the function of urban infrastructure, respectively. Meanwhile, the R
Community won the highest score in the group of management and resource. However, H
Community had the lowest score according to the result of the comprehensive assessment.

Table 7. Final comparison results on the comprehensive assessment of relative scores.

Number Criteria Tier G Community J Community R Community H Community

1 Management and resource 88.72 53.62 100 76.28
2 Design and financial support 100 90.31 78.96 52.1

3 The function of urban
infrastructure 100 96.02 71.23 63.25
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6. Conclusions

At present, sustainable development goals in multi-domain have drawn great attention
in response to handling the changing and deteriorating environment for the survival and
development of human beings. A resilient city and community are required when facing
natural hazards, which could bring huge losses and damage to human society. Historical
events have shown that FFE is the most influential one. Hence, this study conducted a
comprehensive assessment on community post-hazard-adapting resilience under a fire
post-earthquake scenario.

In this study, 20 indicators on community resilience adapted to FFE were identified
using SLR. Thereafter, the weights of the indicators were determined using ANP. Four
communities in Yuxi City of Yunnan province in China were selected to fulfill the empirical
analysis. The PROMETHEE II technique was employed to make a multicriteria assessment.
The results of the assessment were demonstrated in the form of a net flow ranking chart.
Additionally, graphical analysis for interactive aid on assessment results was implemented.
The findings showed that the indicators on community post-hazard-adapting resilience
were significantly changed after FFE. The resilience assessment results of the G community
indicated that policy and strategy preferences should be imposed to reinforce the indicators
in the category of “management and resource” by municipal decision-makers. Because of
the poor community resilience performance of the whole J community, extensive efforts
should be exerted to the negative indictors in the three categories by municipal decision-
makers. The resilience assessment results of the R community revealed that the policy
and strategy preferences of municipal decision-makers should be adjusted to improve the
physical infrastructure construction and economic and social environment. As an unstable
system for the H community, extensive resilience enhancement strategies should be carried
out to improve the community resilience of all aspects.

Final comparison results on the comprehensive assessment of relative scores revealed
that the G Community won the highest score and had the strongest performance. However,
H Community had the lowest score according to the result of the comprehensive assessment.

A few limitations should be acknowledged. The primary findings were based on the
investigation of earthquake-prone areas. Due to low earthquake risk in many locations, the
proposed indicators on community resilience under a FFE scenario should be adjusted to
adapt to the most influential risks locally [187,188]. However, as the assessment techniques
implemented in this study is simple and valid, it could be applied to assess more disaster
scenarios. It will benefit the policy-makers and make some useful suggestion in the process
of achieving the sustainable development goals.
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