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Abstract: This study outlines a procedure for the seismic safety evaluation of historical buildings for
engineers and architects that commonly work on buildings belonging to cultural and architectural
heritage. The procedure is characterized by two interrelated phases: (a) building knowledge
acquisition and (b) structural behavior analysis and safety assessment. The seismic safety evaluation
strongly depends on the first phase, whose data can be obtained according to a multi-disciplinary
approach based on five steps: (1) critical-historical analysis; (2) photographic documentation and
geometrical survey; (3) structural identification and material survey; (4) foundation and soil survey;
and (5) cracking pattern and structural integrity analysis. The proposed method was applied to the
evaluation of the seismic safety of the Castle of Melfi (PZ, Italy). Comprehensive and multi-disciplinary
knowledge of this monument greatly facilitated an accurate seismic analysis of this monument, which
was conducted both at a local and global level using a linear kinematic analysis and non-linear static
(pushover) analysis, respectively.

Keywords: heritage structures; building knowledge; critical-historical analysis; pushover analysis;
cracking pattern

1. Introduction

The seismic safety evaluation of existing masonry buildings is a challenging issue, whose difficulty
depends on the large variety of existing structural typologies that do not allow the formulation of a
single and reliable strategy for their structural analysis. For existing masonry buildings belonging to
cultural and historical heritage, the challenge is intensified by the conflict between the conservation
requirements and the need to safeguard their structural safety, more specifically when the building hosts
strategic functions that involve public functions and the presence of large crowds. Moreover, there are
objective difficulties in performing tests on materials due to the need to preserve the cultural and artistic
value of monumental structures. Currently, conservation agencies (such as the Mibact—Ministry for
Cultural Heritage—in Italy) do not easily grant permission for destructive or partially destructive
tests and engineers can only rely on non-destructive investigations such as visual analyses, video
endoscopy of cavities, thermo-photography and chemical analysis of mortars, among others [1–4].
Finally, very few technical standards exist for heritage masonry structures [5–7]. A major issue is the
identification of an appropriate static scheme for buildings that have been modified several times
during their history, as discussed by [8].
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Every existing monumental masonry building is characterized by a specific and unique
construction history consisting of an initial body modified over centuries through substitutions,
deletions or additions. This requires that the seismic safety evaluation of monumental buildings
is performed according to a multi-stage approach based on two interrelated phases: (a) building
knowledge acquisition and (b) structural behavior analysis and safety assessment. The seismic
safety evaluation strongly depends on the first step, which gathers all information on the history of
the construction, its evolutions, its geometry, the characteristics of the masonry texture and of the
soil/foundation system. The proposed procedure was applied within a project funded by the Society
for the Development of Art, Culture and Performance Arcus Spa and the Italian Ministry for Cultural
Heritage and Activities and Tourism (MiBACT). MiBACT selected several museum structures hosted
in historical buildings in order to assemble a set of examples that serve as guidelines for the analysis of
other heritage buildings. The structural engineering group of the University of Chieti Pescara worked
on the seismic safety assessment of different museums, among which was the Archaeological Museum,
“Massimo Pallottino”, located in the Norman Castle of Melfi (PZ, Italy).

The Castle of Melfi was studied in an earlier research [9], which analyzed the efficiency of the
structural retrofitting by Francesco Canevaro after the 1694 earthquake. This study performs limit
analyses of the historical interventions at a local level showing that the portion of the castle retrofitted
by Canevaro is characterized by good seismic behavior.

In the current study, the vulnerability analysis of the museum “Massimo Pallottino” is performed
both at a local and global level by using a linear kinematic analysis and non-linear static (pushover)
analysis, respectively, according to the recommendations of the Italian “Guidelines for the evaluation
and reduction of seismic risk of buildings of the architectural heritage” [6]. A more refined and complete
approach (i.e., nonlinear dynamic analysis) would have required a detailed model and, consequently,
deeper knowledge of the mechanical properties of materials and of construction details. In addition,
the numerical modeling of masonry walls used in this study follows a macro-modeling (or continuum)
approach, thus assuming that the complete masonry wall is homogeneous. A micro-modeling
(discontinuous or discrete) approach is computationally expensive for large masonry structures and
requires very thorough knowledge of the masonry mechanical properties [10–12]. The approach
followed in the present paper, despite some inevitable approximations, still provides an efficient way to
verify the safety of the masonry structure to extensive damage and collapse. All retrofitting interventions
performed on the structure until now must be investigated in detail. The analysis of past interventions
helps the structural analysis as it sheds light on the structural characteristics of all structural elements,
without performing destructive testing on the building. Moreover, a safety assessment performed
according to these principles supports the design of any strengthening intervention of the architectural
heritage in order to enhance the structural safety of a structure that is structurally dated and hosts a
large number of visitors, whose safety must be guaranteed.

2. Building Knowledge

According to [6], the seismic safety evaluation of heritage buildings can be performed defining
a confidence factor CF as a function of the knowledge level achieved on the building. This factor is
computed through the following equation:

CF = 1 +
4∑

k=1

CFk (1)

where the four different partial confidence factors CFk (k = 1,4) are evaluated as a function of the
knowledge level for each of the following aspects: geometric survey, material survey and constructional
details, mechanical properties and soil and foundations. A more accurate knowledge acquisition
phase generates a lower CF to use in the structural analysis as the mean values of the masonry
mechanical properties are divided by the CF and by the material partial safety factor. The structural
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analysis of existing buildings is indeed deeply connected to the knowledge of the building. Moreover,
it encourages the designer to reach in-depth knowledge of the building in order to use higher
mechanical characteristics of the structural materials. The knowledge path proposed in this work
for heritage buildings is based on the same principles used for the identification of CF. In this work,
they are analyzed in detail in order to define a specific and rational procedure characterized by five
different steps: (1) critical-historical analysis, (2) photographic documentation and geometrical survey,
(3) material survey (in situ diagnosis and laboratory tests), (4) foundation and soil survey and (5)
cracking pattern and structural integrity analyses.

Figure 1 shows the general scheme of the procedure necessary to perform a complete structural
behavior analysis of a historical structure. It shows that, as indicated by [13–17], the structural analysis
of these structures should follow a multidisciplinary approach involving a wide variety of activities
and the collaboration of different professionals such as architects, civil engineers, restorers, historians,
archaeologists and building managers, among others. The structural behavior analysis (Step 2) can be
performed only when all the phases required to attain good building knowledge (Step 1) are completed.
For historical buildings, the time required to complete the different steps and sub-steps may vary
significantly based not only on the skills of the professionals involved in this complex process (architects,
engineers, restorers, test labs, etc.), but also on the time needed to find the historical documentation
related to the building. Finding this historical documentation can be very time-consuming. In the case
of the museum “Massimo Pallottino”, some historical documents were provided directly by MiBACT,
while others were found at the competent local offices.
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Figure 1. General scheme of the procedure necessary for a complete structural behavior analysis of a
historical structure.

In the following paragraphs, each of the points needed to perform a complete structural behavior
analysis is analyzed in detail for the case study of the medieval Castle of Melfi (PZ). The Castle of
Melfi is one of the most important medieval castles in Southern Italy. Its origin dates back to the late
11th century and is attributed to the arrival of the Normans in Italy. The building knowledge phase is
extended to the whole castle, while the structural behavior analysis is performed only for the central
portion that today hosts the “M. Pallottino” museum. Figure 2 shows the site plan of the castle with the
location of the museum and different three-dimensional views.
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2.1. Critical-Historical Analysis

Historical information about a building is essential to understand the architectural and structural
building evolution, the structural assembly of its different parts and the material differences. The history
of the castle recounted by [18] reveals four constructive phases corresponding to the construction of
the following castle portions (Figure 3):

Norman Building (1043–1199): Central core of the castle with three existing towers and the fourth
no longer identifiable (it may have been destroyed or collapsed as a result of the continuous invasions
and sieges during the Norman period).
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Swabian Building (1199–1266): (a) Marcangione Tower attached to the old Norman core and
the “Parvula” Tower (or Nord-Est Tower) through a long corridor for the patrol route; (b) Emperor
Tower (or Seven Winds Tower) connected to the Armigeri room by narrow passages; (c) Armigeri
Room which linked the Nord-Est Tower to the Emperor Tower.

Angevin Building (1266–1333): (a) Increase in height of the Nord-Est and Marcangione Towers;
(b) connection between the Nord-Est and the Emperor Towers through the construction of the “Diruta”
Tower; (c) increase in height of the Emperor Tower and the Armigeri Room; (d) construction of six
towers (three pentagonal and three rectangular): West Tower, Terrace Tower, Clock Tower, Tower of
Cypresses, Entrance Tower and Church Tower; (e) construction of a room dedicated to the collection of
water (cistern) and creation of a wall connecting this cistern to the West Tower.

Doria Building (1531–1954): (a) Entrance Portal to the Castle; (b) last span of the masonry bridge
of the castle entrance; (c) Dorian Chapel with an annexed guardhouse; (d) construction of internal and
external rooms located against the castle walls between the Tower of Cypresses and the Terrace Tower.

The portion of the castle that currently hosts the museum (Figures 2 and 3) has mainly Norman
origins, except from the entrance and two bodies attached to the north and west elevations, which
probably date back to the 16th century. The above information is essential from a structural point of
view, as it suggests checking the connections between the masonry walls built in different periods.
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Figure 3. Constructive phases of the Castle of Melfi—axonometric view adapted from [9].

2.2. Photographic Documentation and Geometric Survey

The photographic survey can be used in each step of the building analysis and can often show
details neglected during the first on-site visit. All images should be numbered, filed with relevant
notes and include the photographer’s position and the picture direction. The geometric survey should
graphically describe the principal geometric characteristics of the construction.

Generally, survey drawings include plans, sections and elevations with the corresponding
measurements. In order to perform a detailed geometric survey of the structure under study,
an accurate inspection of the entire castle was performed, and a meticulous archive and documentation
search was carried out in the competent public offices. This investigation revealed different geometrical
surveys performed within the consolidation projects that involved the Castle of Melfi up to the
beginnings of the 1990s. As an example, Figures 4 and 5 show geometric surveys dating back to the end
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of the 1980s within the project of post-earthquake consolidation designed and directed by Giuseppe
Zampino. More specifically, Figure 4 shows the perspective view of the Nord-Est Tower and two
internal sections of the Church Tower, while Figure 5 shows the perspective view of the West Tower
and its geometric survey.

The comparison between the numerous surveys drafted during past consolidation interventions
and the on-site surveys performed during this work enabled the authors to trace a complete geometric
survey of the entire Castle of Melfi (Figure 6).
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2.3. Structural Identification and Material Survey

A heritage building often consists of different parts erected in different historical periods and
characterized by different structural characteristics and material properties. This phase is carried
out after or alongside an accurate historical-critical analysis, during which all information on the
construction and transformations undergone by the building is collected. Furthermore, the building
may have been subjected to consolidation interventions in recent times, but these interventions may
not be documented and are not found during the critical-historical analysis. These interventions can
deeply modify the original material characteristics and constructive systems; thus, their identification
is indispensable to reach adequate knowledge of the building.
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The historical-critical analysis of the Castle of Melfi showed four different construction ages of
the castle but did not provide any information on the recent consolidation interventions. Further,
earthquakes in 1694, 1731, 1805, 1857, 1930 and 1980 caused widespread damage to the city and
the castle. Table 1 reports all earthquakes with an intensity greater or equal to seven on the
Mercalli–Cancani–Sieberg macroseismic MCS scale that affected the site. The data on the event and the
intensity I at the site are derived from the Italian Parametric Earthquake Catalogue CPTI15-DBMI15 [19],
while the epicentral distance to the castle is calculated in relation to the specific coordinates of the
castle (Latitude 40.998; Longitude 15.653).

Table 1. List of the earthquakes felt in Melfi with intensity I ≥ 7. The seismic events are extracted
from [19]: I = intensity in Melfi (scale MCS); I0 = epicentral intensity; Mw = moment magnitude.

I
Event Coordinate Epicentral

Distance (km) Year Month Day Epicentral Area I0 Mw
Lat. Long.

8 41.302 14.711 85.79 1456 12 05 Appennino
centro-merid. 11 7.19

8 40.862 15.406 25.68 1694 09 08 Irpinia-Basilicata 10 6.73

7 41.274 15.757 31.88 1731 03 20 Tavoliere delle
Puglie 9 6.33

10 40.96 15.669 4.47 1851 08 14 Vulture 10 6.52
8–9 40.994 15.653 0.48 1851 08 14 Vulture 7–8 5.48
7 40.352 15.842 73.61 1857 12 16 Basilicata 11 7.12
7 40.898 15.421 22.44 1910 06 07 Irpinia-Basilicata 8 5.76
9 41.068 15.318 29.14 1930 07 23 Irpinia 10 6.67

Ref. [20] reported that the castle was damaged by the 1456 earthquake, too. More detailed
information on damage caused by earthquakes is available starting from the 1694 Irpinia earthquake.
Ref [9,21] reported that the castle was severely damaged by this earthquake. The Doria family called
Genoese Francesco Canevaro to repair the castle and reinforce the building. F. Canevaro introduced
pillars and walls and added tie-bars, mainly in the central core of the castle. The tie rods are intended
to equilibrate the thrust forces (for example, the vaults’ unequilibrated forces) that could otherwise
destabilize, out of plane, the external walls or columns. The double earthquake of 1851 induced the
collapse of the Seven Winds Tower and caused severe damages to the Marcangione Tower and the
Throne Hall [20,22]. These collapses were followed by demolitions and reconstructions, including some
of the walls of the Throne Hall. The 1930 earthquake caused significant damage to the Castle (Figure 7),
more specifically in the vaults, in the Seven Winds, Cypresses, Clock and Church Towers, in the façade
on the cistern courtyard and on the east end of the main façade [18]. Following the quake, the Doria
family commissioned Architect L. Lenzi to restore the castle to its original architectural splendor.
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The restoration works reported by [18] are the following: (a) liquid cement injections into the
masonry cracks; (b) demolition and reconstruction of the unstable and unsafe walls with stone and
cement-based mortar, including courses of bricks; (c) introduction of longitudinal and transversal
tie-rods in the central part of the castle; (d) substitution of the damaged vaults with horizontal slabs
consisting of iron girders and hollow clay floor slab blocks; (e) construction of reinforced concrete ring
beams under part of the roof; (f) demolition and substitution of the stairs at the second floor with a
large ramp and (g) construction of stone parapets on the bridge and the courtyards. During these
works, L. Lenzi found in the archives of the Doria family the oldest drawings of the castle by the
topographer F. Canevaro (Figure 8) dating back to 1695. These drawings are still today a fundamental
instrument to understand the castle structural configuration in the second half of the 17th century.
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The first important structural intervention was carried out after the donation of Prince Andrea
Doria Pamphilj to the Italian State in 1952 took place between 1965 and 1968. The walls surrounding
the castle, the Armigeri Room, the overhead Throne Room and the older central part of the castle with
Norman origin were restored. Historical sources reported an accurate description of the work carried
out in these years for the Throne Room. More specifically, in 1968, the barrel vault that supported
the floor level was completely demolished. A new two-pitched roof was built, and the original
nineteenth-century transverse wall was demolished and rebuilt following the walls at the lower level.
Moreover, the jambs of several large windows were discovered under the plaster.

In 1970, the castle became host to a museum. This change required the structural consolidation
and restoration of the castle’s central core. Retrofitting on this portion of the castle was performed
from the late 1970s to the early 1990s and included: (1) a new roof with double steel girders, corrugated
sheets and reinforced concrete slabs and ring beams connected to the masonry walls, (2) grout injections
of the masonry walls, (3) strengthening of the vaults, (4) masonry corner reinforcement with steel
bars and (5) replacement of old floors with steel girders and reinforced concrete slabs. They were
installed independently of the old wooden beams which, after appropriate restoration, remained in
place as support for the lower wooden ceiling. Figure 9 shows a few construction details included in
the original 1988 drawings.
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During the above retrofitting, material tests were planned in different parts of the castle. The most
relevant campaigns were performed in 1990 and in 1999. In the first one, Professors P. Rocchi and
G. Morabito carried out deformation measures of cracks, in situ tests with single and double flat
jacks and laboratory compression tests on masonry specimens. The second campaign by Professor
P. Rocchi focused not only on the masonry walls, but also on the floors and vaults. The following
tests were performed: 2 flat jack tests, 5 grout injection tests, 2 floor load tests to evaluate the vault
behavior, 13 exploratory tests on masonry walls and floors and 19 endoscopic analyses performed on
the masonry walls, vaults and floor slabs at each level of the structure. Figure 10 shows the location
of each test performed during the 1999 campaign and the results of four exploratory tests. Professor
Rocchi’s report also contains photographic documentation of the castle and the images of several
tests (Figure 10 top left and Figure 11). Results of these tests are used in this work to evaluate the
construction characteristics of the castle, the permanent loads and the material mechanical properties.
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code [23,24] and were then compared with the results of the experimental tests. The safety evaluation 
of the central part of the castle is performed using a mean compression strength fm = 1.40 N/mm2, 
mean shear strength equal to 0.026 N/mm2, elastic modulus of 870 N/mm2 and shear modulus of 290 
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Figure 10. The castle during the 1999 survey (a), location of each test performed at the ground floor (b),
the first floor (c) and the second floor (d) and results from 4 exploratory tests (from e–h). The symbols
used for the location of the tests are: M = flat jack tests, I = grout injection tests, PC = floor load tests,
S = exploratory tests and E = endoscopic analyses (images adapted from the results of the 1999 survey
by the Professor P. Rocchi).
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The masonry mechanical properties of the central part of the castle, which currently hosts the
“M. Pallottino” museum, were first defined according to the recommendations of the Italian building
code [23,24] and were then compared with the results of the experimental tests. The safety evaluation
of the central part of the castle is performed using a mean compression strength fm = 1.40 N/mm2, mean
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shear strength equal to 0.026 N/mm2, elastic modulus of 870 N/mm2 and shear modulus of 290 N/mm2.
According to [6], masonry mean strength is divided by a knowledge factor CF = 1.20 and a partial
safety factor γm = 2.

2.4. Foundation and Soil Characterization

The geological and geotechnical characterization of the soil of the Castle of Melfi is based on
the soil surveys carried out during the seismic retrofitting by Professors G. Morabito and P. Rocchi
in the early 1990s. The castle foundations rest on soil characterized by a friction angle φ = 25◦–30◦

and a cohesion C = 200–300 kPa. According to the European seismic code [25], this is Ground Type B:
Deposits of very dense sand, gravel, or very stiff clay, at least several tens of meters in thickness, characterized by
a gradual increase of mechanical properties with depth. Furthermore, a topographic amplification factor
ST = 1.2—corresponding to “Isolated cliffs and slopes”—was used.

The foundation of the castle is characterized by masonry walls that extend below the ground level.
The surveys carried out to date have not given further information on their depth and width.

2.5. Cracking Pattern and Structural Integrity Analyses

The visual inspection of the Castle of Melfi showed that the central part of the castle is in
a good conservation state, thanks mainly to the restoration campaigns of the last few decades.
However, the detailed investigation of the ancient and recent castle history and its historical photos
(Figure 12) show that in the second half of the 1970s, the castle was in a very poor state of maintenance.
When historical buildings do not undergo regular maintenance, environmental actions may deteriorate
all structural components, including the roof and the walls, as indicated in [26]. It is imperative to
identify the actual sources of decay and vulnerability (such as lack of maintenance, prolonged roof
leakage, poor initial design, excessive loading, foundation settlement . . . ) in order to plan appropriate
interventions, that may be structural, such as wall reinforcement, or non-structural, such as roof fixing.
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Archives).

The distinction between different decay phenomena dates back to Alberti [27], which identifies
the causes of the different degradation processes. In this work, the decay survey was performed
according to [28], which proposes a specific decay glossary with the associated graphic symbol for each
phenomenon. The graphic decay survey was integrated with the description of the decay phenomena,
the analysis of their principal causes and their photographic reproduction. Figure 13 shows the decay
and cracks survey carried out on the central core of the castle. This survey showed that there are no major
cracks and that widespread surface deposits are present, along with different discolorations and limited
traces of moisture, washout, vegetation, biological colonization, alveolarization and disintegration.
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Figure 13. Decay and cracks survey of the east elevation and the part of the north elevation with the
greatest signs of decay.

3. Structural Behavior Analysis

Masonry walls can fail following both in-plane and out-of-plane failure mechanisms. According
to [29], the “First Damage Mode” is produced by seismic actions perpendicular to the wall (out-of-plane).
Direct observation of post-earthquake crack patterns showed that these mechanisms represent the
highest building vulnerability [30]. Only if the walls are connected with each other and with the
horizontal floors can the “Second Damage Modes”, corresponding to an in-plane failure mechanism,
be activated. The first damage modes of the museum “M. Pallottino” were analyzed through a
kinematic linear analysis on the walls most vulnerable to the activation of local mechanisms of
collapse. More specifically, the seven most vulnerable walls are identified on the external perimeter
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of the museum (Figure 14, left). For each analyzed wall, different local failure mechanisms were
considered depending on the localization, the thickness and the strengthening interventions of the
wall (Figure 14, right). As an example, Wall 1 was checked for vertical out-of-plane bending. This local
mechanism is activated when a slender wall is restrained at the ends only and is free in the central span.
The end restraints are typically effective in preventing global overturning of the wall, but a crack at the
mid-height of a slender wall may occur, inducing out-of-plane instability. In the case of Wall 1, even
though a ring beam was inserted at each floor level during the 1970s works, the out-of-plane instability
of the outer wall leaf is not prevented as the ring beams are not effectively connected to the outer leaf.

The knowledge phase showed that the structure is currently equipped with ring beams connected
to the masonry walls with steel bars having a length approximately equal to 1.20 m. This condition
inhibits the activation of the overturning mechanisms, even if the vertical out-of-plane bending
mechanisms are not excluded. Moreover, as the museum’s walls are characterized by double-leaf stone
masonry, where the wall is the thickness (e.g., at the lower levels), the steel bars might not extend until
the external wall leaf, and in this case they would be unable to prevent the activation of the vertical
out-of-plane bending of the external wall leaf for two or more levels (Figure 14, right).
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Figure 14. Identification of the walls analyzed by the kinematic linear analysis (a) and scheme for
the identification of the forces and the structural mechanisms involved in the kinematic analysis of
Wall 5 (b).

Table 2 shows the results of the kinematic analyses. For each considered wall, the following
parameters are shown: the analyzed mechanism type with the floors involved (vertical out-of-plane
bending of the whole wall or of the single external wall leaf), the peak ground acceleration (PGA)
associated with the activation of the considered kinematic mechanism (ag,ULS) at the ultimate limit
state (ULS), the seismic demand characterized by the target peak ground acceleration (PGAULS

on rigid soil) and the capacity/demand ratio. The seismic demand is computed (i.e., the expected
maximum horizontal acceleration) considering the site geographic coordinates and its stratigraphic and
topographic characterization. The strategic relevance of the building and its expected use is included
using a design ground motion return period at the ultimate limit state TR = 712 years. For the given
site and return period, the peak ground acceleration on rigid soil ag is 0.232 g.
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Table 2. Results obtained from the analysis of the out-of- plane failure mechanisms.

Wall. n. Mechanisms Type Capacity Demand Ratio

ag,ULS(g) PGAULS (g) αULS

1

Vertical out-of-plane bending of the external wall leaf (Ground Floor,
Mezzanine and First Floor) 0.474 0.232 2.043

Vertical out-of-plane bending of the external wall leaf (Ground Floor,
Mezzanine, First and Second Floor) 0.350 0.232 1.509

Vertical out-of-plane bending of the wall (Second Floor) 0.488 0.232 2.103

2 Vertical out-of-plane bending of the external wall leaf (Ground Floor and
First Floor) 0.379 0.232 1.634

3

Vertical out-of-plane bending of the wall (Ground Floor) 2.226 0.232 >>1
Vertical out-of-plane bending of the external wall leaf (Ground Floor) 2.229 0.232 >>1
Vertical out-of-plane bending of the external wall leaf (Second Floor) 0.615 0.232 2.651

in 0.181 0.232 0.780

4
Vertical out-of-plane bending of the external wall leaf (Ground Floor) 0.437 0.232 1.884

Vertical out-of-plane bending of the wall (Second Floor) 0.739 0.232 3.185

5
Vertical out-of-plane bending of the external wall leaf (Ground Floor and

First Floor) 0.335 0.232 1.44

Vertical out-of-plane bending of the wall (Second Floor) 0.660 0.232 2.845

6 Vertical out-of-plane bending of the external wall leaf (Ground Floor,
Mezzanine and First Floor) 0.584 0.232 2.517

7 Vertical out-of-plane bending of the wall (Stairwell floor) 0.144 0.232 0.621

Due to the complexity and the extension of the building under study, the analysis of the global
structural behavior was evaluated using the simplified “equivalent frame” modeling approach.
The structural model is made of beam elements with rigid links at the intersection between the masonry
piers and the horizontal spandrels [31–33]. Several studies [34,35] have investigated and verified the
suitability of linear and nonlinear equivalent frames for modeling unreinforced masonry structures.

In this work, the equivalent frame model and the global analyses were performed with the
Aedes PCM software [36]. The analytical model of the castle takes into account the experimental
mechanical properties founded in the material survey, according to a hybrid vulnerability assessment
method [37,38]. The geometric model comprises only the portion of the castle that currently hosts
the museum (Figure 15). The structural model considers the floors as rigid diaphragms. The same
modeling strategy and the same software were used for the seismic vulnerability assessment of other
relevant monumental buildings, such as the Civic Museum of Sansepolcro (Italy) that contains an
important fresco painted by Piero della Francesca [39], the Albornoz fortress, a 14th stone masonry
construction located in central Italy [40], the Palace of Priors in Perugia (Italy), a medieval monumental
building that currently hosts an important museum [41] and the Pompeii’s Stabian Baths where the
model was used to assess the mechanical behavior of selected masonry structures damaged during 1st
century seismic events [42].

Since the central core of the castle is not an isolated structure, the constraining action of the
adjacent structures was simulated restraining the horizontal translations of the nodes connected to the
adjacent building. This approximation is, however, limited to very few points, as the points of contact
with adjacent structures are few.

In the present work, vaults and domes are not explicitly included in the global model: only their
weight is considered. In order to obtain a detailed evaluation of these loads, single vaults and domes
were modeled in a separate finite element model by using two-dimensional finite element models with
the MIDAS Gen [43] software (Figure 16). The approach is on the homogenization of the material
properties of blocks and mortar [44,45]. The main scope of this detailed analysis was to determine how
the vaults and domes transmit the loads to the supporting vertical elements.
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The modal analysis of the global model shows that the first three vibration modes of the structure
are equal to T1 = 0.273 sec, T2 = 0.255 sec and T3 = 0.219 sec, respectively (Figure 17). The first two
modes are mainly translational, while the third mode is mainly torsional.
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The global analysis of the structure was performed with a nonlinear static (pushover) analysis [46].
The seismic demand was evaluated according to the N2 method as originally proposed by Fajfar [47]
and found in Eurocode 8 [25]. The bending and shear nonlinear behavior of piers and spandrels were
modeled by plastic hinges located at both ends of the elements and characterized by elasto-plastic
laws with ultimate displacements equal to 0.6% and 0.4% of the element height, respectively [23].
Following Eurocode 8 [25], the pushover analyses were performed considering two force distributions,
a “uniform” pattern proportional to the masses (distribution E) and a “modal” pattern proportional
to the lateral force distribution determined with the linear static analysis (distribution A). Each force
distribution is applied in the longitudinal (X) and transverse (Y) directions, with both positive and
negative signs. For each direction and force distribution, the corresponding shear-displacement curve
of the multi-degree of freedom (MDOF) system is obtained and then transformed into a bilinear
elasto-perfectly plastic curve corresponding to an equivalent single degree of freedom (SDOF) system.
The bilinear equivalent curve is obtained considering the building lateral capacity until a 20% reduction
in the maximum base shear. Finally, the obtained curves are compared with the seismic demand
characterized by the elastic spectrum of the reference site. Table 3 shows the results of the eight
capacity curves corresponding to each force distribution and the relevant safety indices at the ultimate
(αULS,PGA) and damage limit states (αDLS,PGA), respectively. These indices are calculated as ratios
between the PGA associated with reaching the considered limit state (seismic capacity) and the target
acceleration corresponding to the reference site and structure (seismic demand).

Table 3. Safety indices obtained for the ultimate limit state (αULS,PGA) and the damage limit state
(αDLS,PGA).

Curve n. Force Distribution Direction αULS,PGA αDLS,PGA

1 Triangular force distribution (A) +X 0.375 1.000
2 Triangular force distribution (A) −X 0.358 1.064
3 Triangular force distribution (A) +Y 0.302 0.897
4 Triangular force distribution (A) −Y 0.293 0.859
5 Uniform force distribution (E) +X 0.655 1.449
6 Uniform force distribution (E) −X 0.892 1.282
7 Uniform force distribution (E) +Y 0.453 1.231
8 Uniform force distribution (E) −Y 0.453 0.962

Considering all the combinations and all the seismic directions requested by the Italian and
European building codes [23–25], the most severe loading condition is in the y-direction (-Y seismic
action) for a triangular force distribution. Figure 18 shows the pushover curve for this load direction,
the force distribution and the shear status of the masonry walls at the step corresponding to the (a)
ULS and (b) the last step of the analysis. This result is determined by the presence of few bearing walls
in the transversal direction (y-direction), and by the dead loads on floors that are mainly distributed
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to the walls parallel to the longitudinal direction (x-direction). The central part of the castle served
as the Doria family’s residence from 1531 to 1954. During this period, the walls’ distribution of the
first floor was significantly changed, introducing a significant irregularity due to the construction of
walls in the Y direction that are not extend vertically from the ground level to the first floor but transfer
the vertical load on a barrel vault. Though this condition was partially corrected by the consolidation
works at the end of the 1980s, which involved the insertion of a double reinforced concrete beam at the
base of the wall rigidly connected at the vault, the walls’ irregular distribution is the main cause of the
structure vulnerability.Buildings 2020, 10, x FOR PEER REVIEW 19 of 23 

 
Figure 18. (Left): capacity curves from the pushover analysis with a triangular force distribution A 
negative Y direction; (Right): shear status of the masonry walls at the step corresponding to (a) the 
ultimate limit state (ULS) and (b) the last step of the analysis. 

4. Ideas for Structural Strengthening of the Castle 

Recent seismic events (e.g., Athens 1999, L’Aquila 2009, Emilia Romagna 2012, Central Italy 
2016, Lesvos 2017) have confirmed the high vulnerability of historical unreinforced masonry 
structures under horizontal actions, clearly indicating the need for interventions that would 
safeguard the lives of the users, as well as their cultural and heritage value. The retrofit of 
architectural heritage should be based on a combination of performance-based and conservation 
criteria. Retrofitting should rely on materials that are compatible with the existing ones and should 
comply with the principles of minimum intervention as defined by existing conservation guidelines 
[5]. 

As described in the previous paragraphs, the historical analysis of the expansions undergone 
over the centuries by the building that today hosts the “M. Pallottino” museum lead to the definitions 
of accurate structural models at both the local and global levels. These models consider and include 
most of the structural strengthening interventions performed during the last 500 years of the castle’s 
life, including the insertion of rod-ties to prevent the walls’ out-of-plane overturning, grout injections 
to enhance the mortar mechanical properties, insertions of floor diaphragms to ensure the building 
box-like behavior, vaults’ strengthening and masonry corner reinforcement with steel bars.  

The results of the seismic safety evaluation of the museum show that past interventions on the 
building guarantee good structural behavior of the masonry walls at the local level (prevention of 
out-of-plane mechanisms). However, some elements are still quite vulnerable. For example, the 
external leaf of Wall 3 (Table 2) appears to be vulnerable to out-of-plane bending. The external leaf 
should be connected to the other leaves and to the floor diaphragms using appropriate connectors. 
These connectors should be of materials compatible with the existing masonry of the castle such as 
steel fiber thread connectors injected with natural mortar compliant lime (see for example [49]). 

Due to the addition of a staircase inside Wall 7 (see Figure 14), the wall could be subjected to 
vertical out-of-plane bending. In this case, the two sections of the wall currently separated by the 
staircase should be connected at the intermediate staircase landings using steel connectors injected 
with natural mortar compliant lime. 

As for most heritage buildings, for earthquakes at the ULS, the global analyses show that the 
castle is vulnerable to in-plane flexural and shear failure of the walls. First of all, specific in situ tests 
are needed to confirm the presence of the consolidation interventions carried out in the 1980s, and 
their mechanical consistence assessed. If necessary, additional grouting could be injected. External 
strengthening with steel of plastic fibers is typically unpractical in this castle, because its high 
historical and cultural values prevent the use of new materials that would considerably alter the 
walls’ original stone texture. Finally, in order to redistribute structural loads and masses, the storage 
of materials in the attic could be relocated on the lower floors. The above interventions are consistent 
with the conservation principles and have a minimal impact on the architectural heritage while 
allowing an effective structural rehabilitation.  

Figure 18. (Left): capacity curves from the pushover analysis with a triangular force distribution A
negative Y direction; (Right): shear status of the masonry walls at the step corresponding to (a) the
ultimate limit state (ULS) and (b) the last step of the analysis.

According to the 2008 Italian building code [23], another useful parameter for the verification
of the structure is q*, i.e., the ratio between the demand total base shear on the building, assumed
elastic, and the yielding strength of the equivalent nonlinear system (with the limitation that q * < 3).
The q* values for the different load distributions range between 2.858 and 4.815 and, coherently with
the results obtained in terms of αULS,PGA, in this case, too, the most unfavorable condition (q * = 4.815)
is observed in the y-direction for a triangular force distribution. It is expected that when the safety
factor is less than 1, the corresponding coefficient q* is larger than 3 [48].

4. Ideas for Structural Strengthening of the Castle

Recent seismic events (e.g., Athens 1999, L’Aquila 2009, Emilia Romagna 2012, Central Italy 2016,
Lesvos 2017) have confirmed the high vulnerability of historical unreinforced masonry structures
under horizontal actions, clearly indicating the need for interventions that would safeguard the lives
of the users, as well as their cultural and heritage value. The retrofit of architectural heritage should
be based on a combination of performance-based and conservation criteria. Retrofitting should rely
on materials that are compatible with the existing ones and should comply with the principles of
minimum intervention as defined by existing conservation guidelines [5].

As described in the previous paragraphs, the historical analysis of the expansions undergone over
the centuries by the building that today hosts the “M. Pallottino” museum lead to the definitions of
accurate structural models at both the local and global levels. These models consider and include
most of the structural strengthening interventions performed during the last 500 years of the castle’s
life, including the insertion of rod-ties to prevent the walls’ out-of-plane overturning, grout injections
to enhance the mortar mechanical properties, insertions of floor diaphragms to ensure the building
box-like behavior, vaults’ strengthening and masonry corner reinforcement with steel bars.

The results of the seismic safety evaluation of the museum show that past interventions on
the building guarantee good structural behavior of the masonry walls at the local level (prevention
of out-of-plane mechanisms). However, some elements are still quite vulnerable. For example,
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the external leaf of Wall 3 (Table 2) appears to be vulnerable to out-of-plane bending. The external leaf
should be connected to the other leaves and to the floor diaphragms using appropriate connectors.
These connectors should be of materials compatible with the existing masonry of the castle such as
steel fiber thread connectors injected with natural mortar compliant lime (see for example [49]).

Due to the addition of a staircase inside Wall 7 (see Figure 14), the wall could be subjected to
vertical out-of-plane bending. In this case, the two sections of the wall currently separated by the
staircase should be connected at the intermediate staircase landings using steel connectors injected
with natural mortar compliant lime.

As for most heritage buildings, for earthquakes at the ULS, the global analyses show that the
castle is vulnerable to in-plane flexural and shear failure of the walls. First of all, specific in situ tests
are needed to confirm the presence of the consolidation interventions carried out in the 1980s, and
their mechanical consistence assessed. If necessary, additional grouting could be injected. External
strengthening with steel of plastic fibers is typically unpractical in this castle, because its high historical
and cultural values prevent the use of new materials that would considerably alter the walls’ original
stone texture. Finally, in order to redistribute structural loads and masses, the storage of materials
in the attic could be relocated on the lower floors. The above interventions are consistent with the
conservation principles and have a minimal impact on the architectural heritage while allowing an
effective structural rehabilitation.

It is easy to understand that heavy structural strengthening is not feasible for historical buildings
and therefore seismic enhancement rather than full compliance with modern seismic codes safety
levels is the goal of interventions on historical buildings of considerable cultural value such as Melfi
Castle. Strengthening is a compromise between conservation of the original architectural and structural
systems and enhancement of the building seismic safety.

5. Conclusions

The seismic safety evaluation of a heritage building should be performed using different
interrelated phases that include both the building knowledge and the investigation of its structural
behavior. The application of this approach to the museum “M. Pallottino” located in the Castle of Melfi
(Italy) pointed out that the building knowledge phase is a fundamental step toward the evaluation of
its structural behavior. An accurate critical-historical analysis, a detailed investigation on previous
geometrical, material and soil surveys and a meticulous individuation of the crack pattern allow to
minimize the structural surveys (and thus intrusive and possibly destructive tests) on the monumental
building, thus preserving its historical and cultural identity. Moreover, the accurate evaluation of the
building structural evolution over time limits the costs for the knowledge phase while leading to a
more accurate seismic analysis of the structure.

In this work, both global and local failure mechanisms of the structure under study were analyzed.
The analysis of the global failure mechanisms was performed using a simplified global model based
on the “equivalent frame” approach which was deemed applicable due to the detailed understanding
of the building overall structural behavior obtained following the initial detailed study of the building
evolution and conservation state. The behavior of the most complex structural parts, mainly vaults
and domes, was studied through a two-dimensional finite element analysis whose results (mostly
the load transferring to the vertical elements through the support reactions) were then applied to the
global simplified model (e.g., the loads on the walls).

The multi-level approach followed in this study has shown its effectiveness in the vulnerability
assessment of the Castle of Melfi, pointing to possible applications to a wide variety of cultural
heritage masonry buildings such as museums, castles, historic palaces, mansion buildings and holy
buildings, among others. The safety evaluation of all these structures needs appropriate and extensive
building knowledge, both in terms of building historic reconstruction and past restoration interventions
and of material characterization. The approach was further extended to include possible structural
rehabilitation techniques that follow the principles of minimum intervention that should always be
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followed when dealing with cultural heritage. Materials and interventions should be compatible with
the architectural heritage of the castle and easily removable. This phase is typically lead by restorers,
whose main interest is to preserve the original architecture and structure of the historical building.
More recently, the seismic safety of historical buildings has also seen the involvement of structural
engineers whose main interest is to increase the seismic safety of architectural heritage. Often times,
architectural heritage is characterized by construction techniques considered dated according to today’s
building standards. The contrast between the needs for strengthening on one side and conservation
on the other becomes evident. Minimal invasive interventions are preferred (e.g., insertion of new
tie-rods, grout injections with lime mortar, local dismantling and reconstruction, mortar replacement),
with the aim to improve the mechanical quality of the walls while preventing them from overturning,
thus inducing a box-like behavior of the building.
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31. Tomaževič, M. The Computer Program POR, Report ZMRK; Institute for Testing and Research in Materials and

Structures; Institute for Testing and Research in Materials and Structures: Ljubljiana, Slovenia, 1978.
32. Dolce, M. Schematizzazione e modellazione degli edifici in muratura soggetti ad azioni sismiche. L’Industria

delle Costruzioni 1991, 242, 44–57. (In Italian)
33. Magenes, G.; Della Fontana, A. Simplified non-linear seismic analysis of masonry buildings. Proc. Br. Mason.

Soc. 1998, 8, 190–195.
34. Kappos, A.J.; Penelis, G.G.; Drakopoulos, C.G. Evaluation of simplified models for lateral load analysis of

unreinforced masonry buildings. J. Struct. Eng. 2002, 128, 890–897. [CrossRef]
35. Roca, P.; Cervera, M.; Gariup, G. Structural analysis of masonry historical constructions. Classical and

advanced approaches. Arch. Comput. Methods Eng. 2010, 17, 299–325. [CrossRef]
36. PCM. Aedes Software snc, Pisa. 2014. Available online: www.aedes.it (accessed on 1 April 2014).
37. Dolce, M. Vulnerability and risk analysis. In Proceedings of the 10th European Conference on Earthquake

Engineering, Vienna, Austria, 28 August–2 September 1994.
38. Preciado, A.; Ramírez-Gaytán, A.; Salido-Ruiz, R.; Caro-Becerra, J.L.; Lujan-Godinez, R. Earthquake risk

assessment methods of unreinforced masonry structures: Hazard and vulnerability. Earthq. Struct. 2015, 9,
719–733. [CrossRef]

http://dx.doi.org/10.1061/(ASCE)0733-9445(2005)131:10(1601)
http://dx.doi.org/10.3221/IGF-ESIS.46.22
http://dx.doi.org/10.1007/s10518-018-0448-z
http://dx.doi.org/10.6092/INGV.IT-CPTI15
http://dx.doi.org/10.4401/ag-3365
http://dx.doi.org/10.12989/eas.2012.3.1.083
http://dx.doi.org/10.1061/(ASCE)0733-9445(2002)128:7(890)
http://dx.doi.org/10.1007/s11831-010-9046-1
www.aedes.it
http://dx.doi.org/10.12989/eas.2015.9.4.719


Buildings 2020, 10, 158 22 of 22

39. Castori, G.; Borri, A.; De Maria, A.; Corradi, M.; Sisti, R. Seismic vulnerability assessment of a monumental
masonry building. Eng. Struct. 2017, 136, 454–465. [CrossRef]

40. Castori, G.; Corradi, M.; De Maria, A.; Sisti, R.; Borri, A. A numerical study on seismic damage of masonry
fortresses. Bull. Earthq. Eng. 2018, 16, 4561–4580. [CrossRef]

41. Castori, G.; Sisti, R.; Borri, A.; Corradi, M.; De Maria, A. Seismic Assessment of the Palace of Priors in Perugia.
In Structural Analysis of Historical Constructions; Springer: Cham, Switzerland, 2019; pp. 1182–1190.

42. Ruggieri, N.; Galassi, S.; Tempesta, G. Pompeii’s Stabian Baths. Mechanical behavior assessment of selected
masonry structures during the 1st century seismic events. Int. J. Archit. Herit. 2018, 12, 859–878. [CrossRef]

43. Midas Gen. 2014. Available online: http://www.cspfea.net/midas_gen.php (accessed on 1 April 2014).
44. Lourenço, P.B. Computational Strategies for Masonry Structures. Ph.D. Thesis, Delft University of Technology,

Delft, The Netherlands, 1996.
45. Calderini, C.; Lagomarsino, S. A micromechanical inelastic model for historical masonry. J. Earthq. Eng. 2006,

10, 453–479. [CrossRef]
46. Krawinkler, H.; Seneviratna, G.D.P.K. Pros and cons of a pushover analysis for seismic performance.

Eng. Struct. 1998, 20, 452–464. [CrossRef]
47. Fajfar, P.; Fischinger, M. N2—A method for non-linear seismic analysis of regular buildings. In Proceedings

of the Ninth World Conference in Earthquake Engineering, Tokyo, Japan, 2–9 August 1988; pp. 111–116.
48. Formisano, A.; Marzo, A. Simplified and refined methods for seismic vulnerability assessment and retrofitting

of an Italian cultural heritage masonry building. Comput. Struct. 2017, 180, 13–26. [CrossRef]
49. Kerakoll Structural Systems. Guidelines for Consolidation, Structural Strengthening and Seismic Safety with

New Green Technologies. 2020. Available online: https://area-download.kerakoll.com/index.php?lang=it
(accessed on 1 August 2020).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.engstruct.2017.01.035
http://dx.doi.org/10.1007/s10518-018-0390-0
http://dx.doi.org/10.1080/15583058.2017.1422571
http://www.cspfea.net/midas_gen.php
http://dx.doi.org/10.1080/13632460609350605
http://dx.doi.org/10.1016/S0141-0296(97)00092-8
http://dx.doi.org/10.1016/j.compstruc.2016.07.005
https://area-download.kerakoll.com/index.php?lang=it
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Building Knowledge 
	Critical-Historical Analysis 
	Photographic Documentation and Geometric Survey 
	Structural Identification and Material Survey 
	Foundation and Soil Characterization 
	Cracking Pattern and Structural Integrity Analyses 

	Structural Behavior Analysis 
	Ideas for Structural Strengthening of the Castle 
	Conclusions 
	References

