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Abstract: Thermal infrared imaging is fundamental to architectural heritage non-destructive
diagnostics. However, thermal sensors’ low spatial resolution allows capturing only very localized
phenomena. At the same time, thermal images are commonly collected with independence of
geometry, meaning that no measurements can be performed on them. Occasionally, these issues have
been solved with various approaches integrating multi-sensor instrumentation, resulting in high
costs and computational times. The presented work aims at tackling these problems by proposing
a workflow for cost-effective three-dimensional thermographic modeling using a thermal camera
and a consumer-grade RGB camera. The discussed approach exploits the RGB spectrum images
captured with the optical sensor of the thermal camera and image-based multi-view stereo techniques
to reconstruct architectural features’” geometry. The thermal and optical sensors are calibrated
employing custom-made low-cost targets. Subsequently, the necessary geometric transformations
between undistorted thermal infrared and optical images are calculated to replace them in the
photogrammetric scene and map the models with thermal texture. The method’s metric accuracy
is evaluated by conducting comparisons with different sensors and the efficiency by assessing how
the results can assist the better interpretation of the present thermal phenomena. The conducted
application demonstrates the metric and radiometric performance of the proposed approach and the
straightforward implementability for thermographic surveys, as well as its usefulness for cost-effective
historical building assessments.

Keywords: infrared thermography; thermal modeling; structure-from-motion; multi-view stereo;
texture mapping; building diagnostics; non-destructive testing; architectural heritage

1. Introduction and Background

Infrared thermography (IRT) is a well-established close-range sensing technique for historical
building diagnostics. IRT is an imaging approach that records the emitted thermal radiation from a
surface and enables the analysis of surface temperature patterns, revealing existing anomalies. In other
terms, IRT aims to identify surface and subsurface areas of interest—through the observation of local
temperature differences—using thermal sensors. Passive IRT is often applied when the measurement
of temperature differences is a parameter for evaluating an existing structure’s state of preservation or
energy efficiency. The documentation of abnormal temperature distributions on a surface may help
detect potential problems or damages by evaluating the surficial temperature changes compared with
assigned reference values [1,2]. Recent critical developments in thermal sensor technology, together
with the fact that IRT consists a non-invasive and non-distractive testing (NDT) technique, have
led to its extensive application on structural surveys of traditional and historical architecture [3-5].
Some applications of IRT regarding the investigation of historic buildings include the identification of
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the distribution of original and replacement materials [6-8], the study of the plaster conditions [9,10],
the assessment of cracks [11,12], the evaluation of the extent of detachments, material loss-induced
features on architectural surfaces, discolorations and deposits [8,13,14], the documentation of
moisture [15,16], the identification of hidden defects and subsurface construction [17,18], as well as
the evaluation of restoration and consolidation interventions [19]. The thermal data can be integrated
with other information concerning the historical materials and their decay inside a heritage geographic
information system (HGIS) or heritage building information modeling (HBIM) environment [20-24].

Built heritage thermographic applications are commonly implemented with the independence of
geometry in such a way that only the qualitative localization of the thermal phenomena is possible,
using two-dimensional (2D) thermograms. However, the importance of geometry in the field of
diagnostics of historical structures is high when an accurate quantification of the investigated thermal
anomalies is required. In thermographic surveys, the geometric, and subsequently, the topological
information is generally neglected for two main reasons: the low spatial resolution and the complexity
of required calibration procedures. Thermal infrared three-dimensional (3D) modeling of historic
structures has been explored with vastly different approaches during the last two decades of research.

1.1. Related Work

The most frequently applied 3D thermal mapping approach for historical architecture has been
the integration of thermal imagery and metric products, collected with separate sensing techniques.
This often refers to the co-registration of point clouds (or derivative 3D products) captured by terrestrial
laser scanning (TLS)—which contain metric spatial information—and thermograms, and has been
considered as the most cost-effective approach, especially when the thermal mapping of a complete
facade or historic structure is needed. The estimation of the geometric relation between the metric
data and an IRT image (relative position and orientation matrix) is realized through the definition of
common features, which allows for the accurate projection of the IRT values on the point cloud to
create a thermal texture. The first approaches for thermal texturing were developed on a manual basis,
through the visual identification and matching of common points. This method has been implemented
by Lerma et al. [16] to assess the state of preservation of a sandstone tomb at the Petra Archaeological
Park in Jordan, Spano et al. [25] to study the surfaces of the Church of the Beata Vergine dei dolori in
Villastellone (Italy), Costanzo et al. [26], to detect thermal anomalies and to improve the knowledge
on the health state of a masonry building at the St. Augustine Monumental Compound in Cosenza
(Italy), Zalama et al. [27] to perform analysis of humidity, microorganisms, and stained-glass window
breaks for the Church of Santa Maria in Palencia (Spain), and Mileto et al. [28], to localize stone
degradation and humidity at the Castle of Monzén in Huesca (Spain). Manual product registration
has the significant drawback that enough feature correspondences may not be visible on the thermal
imagery to perform the necessary matching. More advanced approaches have been devised to perform
automatic registration by identifying correspondences between features on the 2D IRT images and
features on 3D metric products. Lagtiela et al. [29] performed line segment detection on IRT images
and then classified and intersected the detected horizontal and vertical lines to compute intersection
points, corresponding mostly to corners. They used curvature analysis to extract 3D features from
a TLS point cloud and computed each image’s orientation with respect to the point cloud through
an iterative process using RANdom Sample Consensus (RANSAC) and the collinearity equations.
Gonzalez-Aguilera et al. [30] generated and radiometrically improved range images from a TLS point
cloud. Using the Harris operator for feature extraction, and subsequently hierarchical image matching
between IRT and range images with constraints based on epipolar geometry, they performed the spatial
resection of the thermographic cameras, supported by statistical tests. After the thermographic images’
robust orientation, they obtained a thermographic dense surface model by a pair-wise matching process
supported by the semi-global matching technique and applying a projective equation.

Methodologies for simultaneous measurement of thermal and 3D metric data have also been recently
developed to facilitate massive and more agile thermographic modeling. Commercial integrated or
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custom-made multi-sensor instrumentation has been employed in this direction, requiring co-registration
between different sensors used during the acquisition. Sensor co-registration parameters consist of the
vector of differences in the sensors’ position and the rotation angles between them and are necessary
to transform and integrate measurements into the same coordinate system. Alba et al. [31] set up a
bi-camera system coupling an AVIO IRT camera and a Nikon RGB camera and used the latter imaging
sensor to create a photogrammetric network for multi-view image-based 3D recording, strengthened
with additional camera stations. Then the photogrammetric and TLS-produced point clouds were
registered, and the thermal intensities were mapped on building models. Borrmann et al. [32] used
a pre-calibrated robotic moving system combining an Optris PI 160 IRT camera, a Riegl VZ-400 laser
scanner, and a Logitech QuickCam Pro 9000 webcam mounted on a modified VolksBot RT 3 platform
to perform simultaneous metric and thermal acquisition. Merchan et al. [33] developed a hybrid
scanning system employing a Riegl VZ-400 scanner, a Nikon D90 RGB camera, and a FLIR AX5 thermal
camera. The hybrid sensor was calibrated with the help of targets incorporating both optical and
thermal reflectance discriminants, distributed over a wide area of the scene. Yang et al. [34] used two
iPhone SE smartphones and a FLIR ONE camera for iOS sturdily placed on a tripod. They utilized
the Normalized Cross-Correlation (NCC) technique to register the optical images of the IRT camera
attached on one smartphone, with the optical images captured with the other smartphone camera,
in order to project the thermal images on the 3D model produced with a multi-view stereo-based
approach. In general, sensor co-registration that includes thermal cameras is not common due to IRT
measurements’ requirements regarding the angle and distance of acquisition [35].

Workflows that make use of a single IRT instrument have been recently considered for the
thermographic 3D modeling. Gonzéalez-Aguilera et al. [36] and Dlesk et al. [37] performed image-based
modeling directly using thermal images, captured with NEC TH9260 and FLIR E95 IRT cameras
respectively, to reconstruct digitally and to inspect architectural surfaces. Other approaches have taken
advantage of both the optical and thermal sensors integrated into the IRT cameras. Macher et al. [38]
used the RGB images from an IRT instrument to create a point cloud of an internal space and
superimposed the thermal images on the RGB images for the purpose of coloring the point cloud
with thermal data. Then they used the thermal product to transfer the information of the thermal
intensities to a laser-scanned point cloud with BIM enrichment purposes. Previtalli et al. [39] developed
a hybrid approach to compute photogrammetrically the orientation of both thermal and RGB images
together in a combined bundle adjustment, improving the reconstruction accuracies and mapped the
infrared images on 3D models of building facades. More complex thermal modeling methodologies
have included the reconstruction of 3D point clouds from RGB images and precise registration of the
thermal image sequences using geometric constraints and feature matching. Hoegner and Stilla [40]
included a priori knowledge of the existing mesh into the estimation of the camera orientations and
then extracted the thermal 3D point cloud directly from the TIR images. Dino et al. [41] used a cascade
method to identify potential matches between TIR and RGB images and removed those incorrect using
a RANSAC version. After a multi-view image-based reconstruction, they performed plane fitting to
define the reconstructed walls’ geometry to apply the thermal texture. Finally, Lin et al. [42] used
independent datasets of RGB and TIR images to generate point clouds. They utilized the Fast Point
Feature Histogram feature as initial correspondence between the point clouds, reciprocity test to find the
mutual nearest correspondences, tuple test to verify the compatibility of the correspondences to remove
the outliers from the correspondence set, and Fast Global Registration (FGR) and RANSAC to estimate
the coarse alignment. After having determined the best IR-T-RGB image pairs based on the lowest
Euclidean distance, they used radiation-invariant feature transform (RIFT), normalized barycentric
coordinate system (NBCS), and RANSAC to extract reliable matches. Afterward, they performed a
fine registration by mono-plotting of the RGB images, followed by image resection of the thermal
images. Finally, they proposed a global image pose refinement approach to minimize temperature
disagreements from different images of the same points eliminating blur effects [42].



Buildings 2020, 10, 187 40f18

1.2. Research Aims and Paper Structure

The research presented in this paper takes into consideration the advantages and disadvantages
of the approaches described in Section 1.1 to design and implement a cost-effective workflow for
3D temperature mapping, easily replicable for various case studies of heritage value that can assist
rapid non-destructive assessments. The proposed workflow aims to tackle the problems induced to
3D temperature mapping by the technical characteristics of thermal sensors and the restrictions of
thermographic acquisition, employing: (a) acquisition of datasets appropriate for photogrammetric
digitization purposes, (b) calibration of thermal and optical sensors, (c) image-based recording
techniques, and (d) adaptive texture mapping. The methodology is metrically evaluated using
different sensors and strategies. Furthermore, the authors are qualitatively accessing the workflow’s
capacity to produce accurate records of the thermal anomalies towards rapid non-destructive testing
of architectural heritage stock.

The structure for the rest of the paper is as follows. In Section 2, the methodology is illustrated.
Afterward, the experimental results are presented in Section 3 and validated in Section 4. Section 5 is
left for conclusions and outlook.

2. Materials and Methods

This section presents the methodology followed to overcome the significant limitations that occur
from the photogrammetric processing of IRT imagery and registration of metric and thermal products.
The implemented thermographic modeling workflow is briefly sketched in Figure 1.
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[ RGB imagery J L from TIR camera from IRT camera
Geometric Geometric
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[RGB point cloud] [ Undistorted } [ Undistorted ]
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Figure 1. Three-dimensional temperature mapping workflow.
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2.1. Materials

The principal instrument used in this paper was a FLIR (FLIR Systems Inc., Wilsonville, OR, USA)
T1030sc high-definition thermographic camera with an uncooled 1024 x 768 Long-Wavelength Infrared
(LWIR) detector array, focal length 36 mm (28° X 21° FOV), pixel size 17 um, spatial resolution
1024 x 768 pixels, measurement accuracy was +1 °C, thermal sensitivity/noise equivalent temperature
difference (NETD) was 20 mK at +30 °C, and the spectral range was 7.5-14 um (Figure 2). Additionally,
an uncooled FLIR SC660 camera was used for further testing with focal length 40 mm (24° x 21° FOV),
pixel size 17 um, spatial resolution 640 X 480 pixels, measurement accuracy +1 °C, NETD 45 mK at
+30 °C, and spectral range 7.5-13 pm. Both cameras are purposed for building diagnostics and have
built-in optical sensors, 1.2 and 3.2 MPixels, respectively. The thermal-infrared images were edited
with the ThermaCAM Researcher to apply the same temperature scales. IRT and RGB images were
with exported FLIR Tools+ 5.X at the same 1024 X 768-pixel resolution (JPEG format).

Figure 2. Instrumentation used (from left to right): FLIR T1030sc, FLIR SC660, and Canon Rebel-SL1.

A consumer-grade digital single-lens reflex (DSLR) camera Canon (Canon Inc., Tokyo, Japan)
Rebel-SL1 was used for the 3D geometry generation and to enhance the geometric strength of the
optical imagery dataset acquired with the thermal camera. The focal length was 35 mm, pixel size was
4.4 pum, spatial resolution was 3456 x 5184 pixels, and a UV/NIR-cut filter was used for RGB imaging.
Pre-signalized control and check points were measured with a total station theodolite (TST) GeoMax
(GeoMax AG is a part of Hexagon AB, Stockholm, Sweden) Zoom30 with 3” angular accuracy and
3 mm =+ 2 ppm reflectorless distance measurement accuracy.

Camera calibrations and image undistortion were realized with MATLAB R2020b’s Camera
Calibrator App. The manual identification of the matching features between IRT and RGB images,
the calculation of the necessary transformation parameters (and their errors), and the subsequent
geometrical registration of the IRT images were implemented in the HyperCube freeware (Version 11.52).
SIM/MVS-approach based model generation—including the orientation of the images from the T1030sc
camera—and texturing were performed in Agisoft Metashape Pro 1.5.1. However, given how standard
is the employed type of multi-view image-based 3D reconstruction, the workflow presented here can be
applied with any other free, open, or commercial software available, which employs similar algorithmic
implementations. The export of optical and thermal images at the same resolution simplifies the process
after data collection, as it makes them interchangeable for the texturing phase when the appropriate
geometric corrections have been introduced.

The workflow proposed here was implemented using as a case study the west facade of the Castle
of Valentino, a historic building in the north-west Italian city of Turin. Valentino Castle is located in
Parco del Valentino. It was one of the Royal House of Savoy residences and has been included in
the UNESCO World Heritage Sites list since 1997. The first structure on the present castle site was
a four-story palace built around the middle of the 16th century. Since then, it has been subject to
numerous interventions, extensions, and transformations. The building reached its present size under
Vittorio Amadeo of Savoy in the 17th century, becoming the royal family’s country seat. Two new
wings, the French Pavilions, were added in this period, forming a large internal courtyard. In the
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late 19th century, the whole building underwent a radical transformation, both external and internal.
Numerous interventions involving strengthening work and partial restoration, including replacement
of some of the plasterwork, were carried out.

2.2. Image Acquisition

The method described here employs two instruments (Figure 3). The acquisition employs a
high-definition IRT camera and takes advantage of the integral optoelectronic RGB and thermal sensors.
As the RGB sensor images are purposed for photogrammetric processing, and with the intention
of acquiring high-resolution thermal textured products, a dense and robust geometry with proper
overlaps is maintained during the image acquisition phase. Imagery is acquired in (overlapping) strips,
which consist of images captured from the same distance of the object, with a similar angle between
the camera’s optical axis and the plane of the object. However, the dataset’s geometry still depends
largely on the planarity of the facade, architectural component, or structure. Capturing additional
oblique images assists the accurate implementation of the photogrammetric principles. Optical images
are also acquired with a high-resolution RGB camera to improve the geometry of the photogrammetric
sequences and acquire more accurate orientation results for the thermo-camera poses. Low-cost targets
identifiable both in the visible and thermal infrared spectra are placed in the scene to be used as
control points with known coordinates during photogrammetric reconstruction and facilitate RGB
and IRT image registration. Imagery acquired with optoelectronic (RGB) and thermal sensors of the
thermal-camera is exported at the same resolution, to simplify the image registration and texturing
phases on a later stage.

E~ )
Sl P

IR R e R L e

b

Figure 3. Schematic representation of the acquisition which employs two cameras; RGB and thermal-infrared
(TIR) images are captured with the integrated sensors of a thermal camera, and high-resolution RGB images
are captured with a high-resolution optical camera.

2.3. Camera Calibration and Image Registration

The thermal sensor of the thermo-camera is calibrated using a custom-made low-cost target from
cardboard and aluminum foil. The calibration, which estimates the values of intrinsic parameters,
extrinsic parameters, and distortion coefficients, is computed in a two-step process: (1) solving for the
parameters in a closed form, assuming lens distortion as zero, and (2) using the closed-form solution
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as the initial estimate of the intrinsic and extrinsic to estimate all parameters—including the distortion
coefficients—with nonlinear least-squares minimization (Levenberg-Marquardt algorithm) [43,44].
The camera parameters are then used to undistort the thermal images, which are exported with the
same resolution as the original ones, as shown in Figure 4. The calibration takes place before any other
processing of the images, as many photogrammetric software cannot estimate the intrinsic camera
parameters (self-calibrate) of the thermal sensors. The optical sensor of the IRT camera is also calibrated
with the same approach, then RGB images are undistorted and exported with the original resolution.

Delecled poinls
Checkerboard origin
+ Reprojected points.

(a) (b)

Figure 4. (a) Original thermal image with detected the checkerboard points and (b) undistorted

thermal image.

The two sets of estimated parameters about the cameras’ internal geometry are used to undistort
both RGB and IRT images, collected with the integrated sensors of the IRT camera. For each acquisition
strip, one pair of undistorted RGB and IRT images is used to calculate the geometric relation between
them, as the acquisition geometry remains unchanged throughout every strip. By manually identifying
at least four common points on both images, a projective transformation can be calculated to warp
the thermal image to match the system of the RGB image (Figure 5). This enables the accurate
thermal texture mapping of the metric products by replacing the oriented optical images from the
thermo-camera with the corresponding corrected thermal ones. The selected points should be on the
flatter area of the object, and if possible, on the same plane to avoid inaccuracies on the transformation.
The use of more than four points allows for the calculation of errors for the projective transform.
The existence of targets easily detectable on the thermal images facilitates the manual matching in case
common features cannot be identified. Each thermal image of the strip is transformed using the same
projection parameters, and the same procedure is repeated for all acquired image-strips.

Figure 5. Matched features on RGB and thermal image-pair.
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2.4. Image Pose Computation and Model Generation

A standard multi-view reconstruction pipeline [45,46] is followed. The geometry of the acquisition
is reconstructed with a Structure-from-Motion (SfM) algorithmic implementation, using the dataset
containing RGB images from the two optical cameras. In this way, both accurate external orientation
information is obtained for the RGB sensor of the thermo-camera, and a sparse reconstruction of the
scene is created. The geometry and the orientation parameters of the cameras are then optimized using
points with measured coordinates. The produced 3D point cloud is then densified on a Multiple View
Stereo (MVS) procedure, excluding the low-resolution images from the IRT instrument’s optoelectronic
sensor to reduce noise. Finally, the dense point cloud is meshed into a 3D model, using Delaunay
triangulation. If necessary, the surface is smoothed or otherwise optimized with denoising techniques.

2.5. Thermal Texture Mapping

For the final step of the 3D temperature mapping workflow, the high-resolution RGB images
previously used to generate the dense geometry are not used. Instead, during the process of texture
mapping, the RGB images from the thermo-camera are replaced with the same-resolution undistorted
and geometrically corrected IRT images—maintaining the estimated orientation from the StM phase—to
apply thermal texture accurately. The texture is applied with an ortho-photo adaptive algorithm so
that for each part of the model’s surface, only the most parallel images are used for texturing, avoiding
the inclination and convergence effects. When pixel values from multiple overlapping pixels are used
to texture a single triangle of the model, these values are averaged to improve the visual result of the
textured product.

3. Experimental Results

3.1. Data Collection

The thermal imagery was densely captured with the T1030sc camera (Figure 6), as described in
detail in Section 2.1, maintaining approximately a 90% side overlap and a 70% overlap between the
image-strips, over a part of the main facade measuring 14 x 7.5 m?. All thermal imagery captured for
this work’s purposes was recorded passively, without artificial heating, and thus captures long-infrared
signatures derived from the predominating environmental conditions. RGB images were also captured
from the same positions through the optoelectronic sensor of the FLIR instrument. Forty-two RGB and
IRT image-pairs were collected from an average distance of 11.6 m. An additional 72 RGB image dataset
was captured with the SL1, resulting in a combined optical dataset of 144 images. Twenty pre-signalized
and feature points were measured with the TST, scattered over the study area, with a resulting accuracy
of half a centimeter at the x and y-axis, and at the z-axis.

Figure 6. Visualization of the thermal image acquisition geometry.
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3.2. Thermographic 3D Mapping Results

The resulting total Root-Mean-Square Error (RMSE) for the control points on the reconstructed
fagade was 9 mm, and for the check points 7 mm. A high-resolution 3D model was produced (Figure 7),
consisting of approximately 10 million triangles with average edge size 2 mm, while the spatial
resolution of the thermal data was approximately 6 mm. Thus, the model was reduced to have a dense
cloud grid of 10 mm so that metric and thermal data would have compatible resolutions.

19.1°C
19

16,3°C

Figure 7. View of the facade’s model with thermal texture.

No significant problems were observed on the stitching of the thermal texture, apart from the
small arches’ occluded cornices above the large windows and the floral decorative sculptures with the
irregular geometry (Figure 8). The model was used for visual inspection, and it was further processed
to create a 1 cm resolution thermal orthophoto-mosaic, a product easily exploitable for quantitative
thermal analyses and other visual analytics. Although no significant degradation was observed, due to
frequent restoration interventions, the plaster integration could be observed in many areas, along with
the underlying structure and at specific areas remaining moisture.

Figure 8. Close-up view of occluded areas with blurred thermal texture.
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4. Validation and Discussion

4.1. Evaluation and Comparison with Other Methods

The workflow applied in Section 3 was assessed during the IRT image-correction, geometry reconstruction,
and texture mapping phases in the interest of providing a detailed metric and visual validation for the
complete methodology. A comparative analysis between the methods described in Section 2 and other
cost-effective techniques, which have also been adopted for thermal 3D mapping (see Section 1), is also
carried out.

As previously discussed, during the matching phase, between RGB and IRT images, the selection
of at least four corresponding features are required to estimate the transformation parameters in order
to project the thermal data into the optical imagery correctly. By including more than four features,
an error of the transform was calculated, which was approximately equal to 1.5 pixels on the image
plane (for all strips), meaning less than 9 mm RMSE in the transformation of the IRT images, on the
surface of the architectural fagade. More tests applied by measuring the difference of corresponding
points in RGB-IRT image-pairs, which were not included in the initial calculations of the transform,
showed similar errors.

Aiming to perform metric comparisons about the facade’s reconstructed geometry, the surface was
additionally reconstructed according to two different scenarios. In the first scenario, the uncalibrated
thermal images were used directly for the point cloud and 3D model generation inside the
photogrammetric software. The second scenario concerned the use of the low-resolution RGB
images, derived from the optical sensor of the FLIR T1030sc thermo-camera, as the photogrammetric
block to generate the metric 3D products. As presented in Table 1, the investigated methodology
significantly improved the reconstruction density, accuracy, and surface quality. Results from the
reconstruction using only the SL1 images are also presented in the same table as reference values.
Figures 9 and 10 further showcase how the lower-resolution RGB images and the IRT have affected
the reconstruction. The mean distance between the model produced from the SL1 images and the
T1030sc RGB images was 3.2 cm, and the standard deviation 3.3 cm. The same values regarding the
distance between the model produced from the SL1 images and the T1030sc RGB images were 5.8 cm
and 5.4 cm, respectively, meaning observable geometric errors on the model. The 3D model produced
by thermal imagery had significant discrepancies within the areas lacking photogrammetric control
points and at the edges of the fagade.

In order to obtain comparative results for the thermal textures of the created 3D models, the model
generated by the FLIR T1030sc optical imagery was textured by replacing the RGB images with the
corresponding IRT images, thus maintaining the position, orientation, and calibration parameters of
the original images, without applying any additional correction. In addition to that, the 3D model
generated by the FLIR T1030sc thermal imagery was textured without any intervention, applying
the self-calibration and orientation parameters estimated during the sparse reconstruction phase in
the photogrammetric software. The results are shown in Figure 11, where overlays of the thermal
orthophoto-mosaics on the RGB orthophoto-mosaics are provided to visualize any spatial error between
the two types of textured products. As is evident, the implementation of the integrated workflow was
extraordinarily successful in this aspect. The ortho-product of directly involving the thermal imagery
in the photogrammetric process resulted in remarkably similar results, visually, despite the geometric
inaccuracies described above. However, the mapping result involving 3D reconstruction from the FLIR
T1030sc camera’s RGB sensor has evident flaws.
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Table 1. Comparison between photogrammetric reconstructions from different datasets.

. . Point Cloud Density
*_ *_
Imagery Dataset RMSE *-Control Points (cm) = RMSE *-Check Points (cm) (Millions of Points)

thermal images-FLIR T1030sc 1.0 1.8 1
optical images-FLIR T1030sc 1.8 2.8 1
optical images-FLIR T1030sc

and Canon Rebel-SL1 09 07 1

optical images Canon

Rebel-SL1 04 04 10

Note—*: Root-Mean-Square Error.

Figure 9. Fagade models produced by Canon Rebel-SL1 and FLIR T1030sc optical imagery (a),
FLIR T1030sc optical imagery (b), and FLIR T1030sc thermal-infrared imagery (c).
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Figure 10. Absolute distances between reference model produced by Canon Rebel-SL1 optical imagery
and FLIR T1030sc optical imagery (a), and FLIR T1030sc thermal-infrared imagery (b).

(a) (b)

Figure 11. Thermal orthophoto-mosaics of the fagade (a) and overlay on RGB mosaic (b)—produced

with the proposed workflow (top), produced using imagery from both thermal and optical sensors of
the thermo-camera (middle), and using only thermal imagery (bottom).
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4.2. Application with a Medium-Resolution Thermal Camera

The whole procedure described in Section 2 was also implemented employing the FLIR SC660
IRT camera (640 x 480 spatial resolution), with the intention of testing its applicability with lower-cost
sensors. In this instance, the matching errors on the RGB-IRT image-pairs were approximately 2 pixels
(2 cm), the image-based reconstruction RMSEs combining optical imagery from the REBELI-SL1
camera were 4 mm for the control pints and 4 mm for the check points, and similarly to the
previous case, there were no visible texturing problems. The apparent difference was the spatial
resolution of thermal texture (1 cm), which meant that at least 2-3 cm per pixel should be shown
in the final thermal orthophoto-mosaic, considering the metric accuracy. A comparison between
partial thermal orthophoto-mosaics is presented with Figure 12, while Figure 13 shows the full
thermal-orthophoto-mosaic produced with imagery from the FLIR T1030sc. Although similar
radiometric differences could be observed, the mapping result from the lower-resolution FLIR
appears more blurred, and faint traces of the texture-stitching procedure can be observed. However,
the results of employing a medium-resolution camera, more common for general building inspections,
showcase an essential potential of involving low-cost IRT sensors for thermographic 3D modeling [47].

(@) (b)

Figure 12. Comparison between orthophoto-mosaic for part of the fagade produced with the discussed
workflow using the sc1030 camera (a) and the 660SC camera (b).

163°C

Figure 13. Thermal orthophoto-mosaic produced with FLIR 660SC imagery.
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4.3. Application for Complex Geometries

An essential advantage of the presented workflow is that it can easily be adapted for the thermal
evaluating of fagades and flat architectural elements and for geometrically more complex building
elements. As an example, Figure 14 shows the results of applying the workflow for a part of a column
on the main facade of the Castle of Valentino, which assisted the 3D localization of the previous
restoration interventions.

Figure 14. View of final 3D thermal model of a column’s base, where the position of restoration
materials can be observed.

4.4. Extraction of Temperature Measurements

Since original temperature values are maintained when mapping the 3D model or when generating
the thermal orthophoto-mosaics, temperature can be easily measured at specific points on the final
textured products (on the surface of a material). By identifying the gray-intensity values and adjusting
them according to the minimum and maximum temperature of the reference thermal scale, temperature
values and local differences can be easily estimated (the same applies when other color palettes have been
used for the thermal textures instead of grayscale). The gray-intensities can be measured in any image
processing software. Some image processing software (for example, Image]) also allows for selecting an
area about which statistics can be presented regarding the color values—minimum, maximum, mean,
standard deviation—which can also be translated to temperature values following the same correction
procedure. Figure 15 illustrates the measurement of gray values, which, when corrected according
to the temperature range, show a local mean temperature of 17.0 °C, local minimum temperature of
16.9 °C, and maximum temperature of 17.3 °C.
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Figure 15. Measurement of thermal intensity values in Image].
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5. Conclusions

The presented workflow operates as a cost-effective approach purposed for the assessment
of architectural heritage assets. The evaluated methodology, based on semi-manual image
matching, SfM/MVS digitization, and adaptive orthophoto-mapping, not only successfully adds
a spatial dimension to the thermographic results but also metric qualities. The accuracy of the
thermal-textured 3D models is not affected by the quality of the IRT images. In fact, it depends
primarily on the RGB imagery collected with the high-resolution camera, the geometry of the
photogrammetric dataset, and the algorithms involved in the process. Disadvantages induced by
thermal sensors’ technical characteristics are overcome, producing high-resolution 3D thermographic
models where direct measurements can be performed. Additionally, the generation of derivative
high-quality thermal orthophoto-mosaics with spatial reference can serve as the starting point for
further experimentation—through qualitative analyses [48], visual analytics [13], integration with
high-resolution orthophoto-results at the near-infrared spectrum [49] that assists the classification
of materials and decay [50]—and to identify areas of interest for further non-invasive and invasive
diagnostical testing. The produced methodology is easily reproducible, accurate, and adaptable for
various geometries of historic structures. As proven, it can be even implemented by only involving the
integral sensors of a thermal camera (with lower accuracy) when additional imagery cannot be collected.
The proposed approach can compete with multi-sensor registration techniques described in recent
bibliography and can serve as a lower-cost alternative to the recently available TLS instrumentation
with integrated thermographic sensors. Finally, it should be mentioned that for practical and rapid
applications, the acquisition step described in Section 2.2 can be partially avoided, as only a few
thermograms may be acquired to cover a heritage structure or architectural element completely,
with spatial resolution sufficient for qualitative evaluation, making the process much faster. The few
corresponding RGB images of the thermal camera can be inserted in a pre-existing photogrammetric
project to obtain their orientation, and then the rest of the processing steps can follow, as proposed,
to generate the thermal texture.
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