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Abstract: In this work, a Fe-23Mn-0.3C-1Al high manganese twinning-induced plasticity (TWIP) steel
is subjected to varying warm rolling procedures in order to increase the yield strength and maintain a
notable ductility. A comprehensive material characterization allows for the understanding of the
activated deformation mechanisms and their impact on the resulting microstructure, texture, and
mechanical properties. The results show a significant enhancement of the yield strength compared to
a fully recrystallized Fe-23Mn-0.3C-1Al steel. This behavior is mainly dominated by the change of
the active deformation mechanisms during rolling. Deformation twinning is very pronounced at
lower temperatures, whereas this mechanism is suppressed at 500 ◦C and a thickness reduction of up
to 50%. The mechanical properties can be tailored by adjusting rolling temperature and thickness
reduction to desired applications.

Keywords: high manganese steel; warm rolling; processing; microstructure; texture; mechanical
properties; deformation behavior

1. Introduction

High manganese twinning-induced plasticity (TWIP) steels are well known for their excellent
mechanical properties in terms of exceptional ductility and high tensile strength, which is of high
relevance for crash relevant automotive applications. Compared to industrially applied advanced
high strength steels, e.g., dual phase steels, fully recrystallized high manganese steels exhibit a
comparatively low yield strength, which represents a decisive disadvantage of this class of steel.
In order to substantially increase the yield strength of high manganese TWIP steels, numerous
approaches have been discussed in the literature such as prestraining [1], grain refinement [2], micro
alloying [3], partial recrystallization [4], severe plastic deformation [5], reversion annealing [6] and
recovery annealing [7]. Present limitations of these approaches, such as precise temperature control,
pronounced anisotropy, or extraordinary degrees of deformation, prevent the use for industrial
production routes.

Warm rolling represents a promising alternative processing method to substantially increase
the yield strength of high manganese steels [8]. Hence, the impact of warm rolling parameters on
microstructure, texture and mechanical properties of a high manganese TWIP steel is investigated in
the present study.
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The concept of warm rolling takes advantage of the temperature dependence of the stacking
fault energy (SFE), which determines the activated deformation mechanisms in high manganese steels.
In addition to temperature, the SFE is mainly dependent on chemical composition and grain size.
Deformation twinning is the predominant deformation mechanism in the SFE range of 20 to 60 mJ/m2,
in addition to dislocation glide. Above 60 mJ/m2 the deformation mechanism changes mainly to slip [9].
This dependency in behavior on temperature and therefore the SFE of the deformation mechanisms in
high manganese TWIP steels was also reported by [10–12]. The presented results indicate a change
of the predominant deformation mechanism from mechanical twinning to dislocation glide with
increasing temperature. By rolling at elevated temperatures (higher SFE) and applying the warm-rolled
material at room temperature (lower SFE), the contribution of mechanical twinning and dislocation
slip can be tailored in both temperature-deformation regimes in order to achieve superior mechanical
properties. In order to accomplish this, it is necessary to prevent dynamic recrystallization during
rolling, which is typically observed during hot deformation of austenitic TWIP steels at temperatures
above ~750 ◦C [8,13].

Texture evolution in austenitic steels such as TWIP steels strongly depends on the SFE. Alloys with
low SFE values, e.g., α-brass, develop a so-called brass-type rolling texture, which is characterized by a
strong {110}<112> brass and weak {552}<115> copper twin (CuT), {110}<100> goss, and {123}<634>

S texture components, as well as a weak γ-fiber (<111>//ND) [14,15]. A brass-type texture is caused
by latent hardening due to planar dislocation glide and the activation of mechanical twinning [16].
In contrast, medium to high SFE materials like copper tend to form a texture consisting of pronounced
{112}<111> copper (Cu), brass and S texture components. Therefore, such type of texture is called
copper-type texture [17–19]. In previous works the texture evolution during cold rolling of different
TWIP steels was investigated. In general, TWIP steels have the tendency to develop a brass-type rolling
texture [18–22].

In order to investigate the impact of warm rolling parameters, such as temperature and thickness
reduction on microstructure, texture and deformation behavior, a Fe-23Mn-0.3C-1Al TWIP steel was
chosen for this study. The steel was processed at warm rolling temperatures ranging from 200 ◦C to
500 ◦C with thickness reductions ranging from 50% to 80%. Mechanical properties were analyzed by
uniaxial tensile tests, whereas the resulting microstructure and texture evolution was characterized by
electron backscatter diffraction (EBSD) and X-ray diffraction (XRD) measurements.

2. Materials and Methods

2.1. Material Processing

The chemical composition of the investigated Fe-23Mn-0.3C-1Al high manganese steel is given
in Table 1. The material was ingot-cast in a vacuum induction furnace. The 100 kg ingot was then
forged at 1150 ◦C to reduce the thickness from 140 mm to 50 mm. A subsequent homogenization
annealing at 1150 ◦C for 5 h in an argon atmosphere was applied in order to reduce micro-segregations.
The homogenized ingot was subsequently hot-rolled at 1150 ◦C to further reduce the sheet thickness to
4.0 mm, followed by air cooling.

Table 1. Chemical composition of the investigated Fe-23Mn-0.3C-1Al high manganese steel.

Element Fe C Si Mn P S Al Ni Mo Cr

wt.% Bal. 0.322 0.053 22.45 0.008 0.008 0.995 0.027 0.008 0.020
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Afterwards, the hot strips were warm-rolled in 7–10 passes in the temperature range between
200 ◦C and 500 ◦C on a four-high rolling mill. The rolling degree was varied from 50% to 80%.
In addition, a cold rolled strip with 2.0 mm thickness and 50% rolling degree achieved in seven
rolling passes was used for comparison of microstructure and mechanical properties. Table 2 gives an
overview of the process parameter combinations and the process scheme of the warm rolling process.
In order to compensate the temperature loss due to transport of the strip from furnace to rolling
mill, the furnace temperature (TF) was set 20–70 ◦C higher than the designated rolling temperature
(TR). Consistent rolling temperatures were achieved by reheating of the strips for 5 min in between
consecutive rolling passes.

Table 2. Process parameter combinations (marked with an x) and process scheme of warm rolling.

Temperature (◦C) Thickness Reduction (%) Process Scheme

TR TF 50 60 70 80
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2.2. Sample Preparation and Characterization

EBSD and XRD specimens with the dimensions 10 × 12 mm2 (transverse direction (TD) and rolling
direction (RD)) were waterjet cut from the cold-rolled and warm-rolled sheets. Both EBSD and XRD
specimens were ground utilizing SiC-paper up to 4000 grit followed by mechanical polishing using
diamond suspension up to 1 µm. Finally, the XRD samples were electropolished at room temperature.
EBSD samples were mechanically polished to 0.25 µm and subsequently electropolished.

The resulting microstructure in the RD-TD section of the cold-rolled and warm-rolled strips was
examined by EBSD using a JEOL JSM 7000F scanning electron microscope (JEOL Ltd., Tokyo, Japan)
equipped with an EDAX Hikari EBSD detector (EDAX Inc., Mahwah, NJ, USA). The measurements
were performed with an acceleration voltage of 20 kV and a step size of 200 nm. EBSD data was
analyzed using the EDAX OIM Analysis 8 software (EDAX Inc., Mahwah, NJ, USA).

Macro-texture measurements were conducted in a Bruker D8 Advance diffractometer (Bruker
Corporation, Billerica, MA, USA), which was equipped with a HI-STAR area detector and operated
with iron-radiation at 30 kV and 25 mA. Three incomplete (0–85◦) {111}-, {200}-, and {220}-pole figures
were measured and the corresponding orientation distribution functions (ODF) were calculated using
the MATLAB®-based MTEX toolbox [23,24]. Besides, volume fractions of selected texture components
were computed applying a spread of 15◦ around the ideal orientation. XRD analysis was performed on
the mid-layer of the sheets in the RD-TD section.

For characterization of mechanical properties flat tensile specimens with a gauge length of 30 mm,
a gauge width of 6 mm and a fillet radius of 20 mm were waterjet cut from the rolled sheets with tensile
direction parallel to RD. After polishing of the edges, quasi-static tensile tests at room temperature
were performed utilizing a Zwick Z250 universal testing machine (ZwickRoell, Ulm, Germany) at a
constant strain rate of 0.001 s−1.
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3. Results

3.1. Microstructure

An EBSD inverse pole figure (IPF) map of the initial hot-rolled Fe-23Mn-0.3C-1Al steel is displayed
in Figure 1. Prior to cold or warm rolling the material exhibits an equiaxial grain structure with a
relatively high mean grain size of ~30 µm. Twin boundaries are not present in the hot-rolled samples.
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Figure 1. Electron backscatter diffraction inverse pole figure (EBSD-IPF) map of hot-rolled
Fe-23Mn-0.3C-1Al steel. The IPF takes the rolling direction (RD) as reference axis.

Figure 2 shows EBSD image quality (IQ) maps of the resulting microstructure of the
Fe-23Mn-0.3C-1Al high manganese steel after cold rolling and warm rolling at temperatures ranging
from 200 ◦C to 500 ◦C, respectively. Detected deformation twin boundaries (60◦ <111>) are indicated
with the color blue. For all samples, a severely deformed austenitic grain structure can be observed.
However, the fraction of detected deformation twin boundaries decreases significantly at higher warm
rolling temperatures. The material that was warm-rolled at 200 ◦C and 300 ◦C shows a high fraction of
deformation twin boundaries and is therefore comparable to the cold-rolled sample. In the material
that was warm-rolled at 400 ◦C the deformation twin boundaries decrease drastically compared to
the material rolled at lower temperatures. Despite the drastic decrease, the material still shows a
significant fraction of twin boundaries. The material which was warm-rolled at 450 ◦C exhibits an even
lower amount of deformation twin boundaries while practically no twin boundaries are present in
the material that was warm-rolled at 500 ◦C. This correlation between warm rolling temperature and
detected deformation twin boundaries indicates a change of the predominant deformation mechanism
during warm rolling from twinning to slip in the temperature range of 400 to 500 ◦C. By warm rolling
the Fe-23Mn-0.3C-1Al high manganese steel at 500 ◦C it is possible to achieve a thickness reduction of
50% primarily based on the slip mechanism.

At even higher thickness reductions at a comparably high warm rolling temperature of 500 ◦C
deformation twin boundaries can still be observed, as shown in Figure 3. The material with a thickness
reduction of 60% exhibits an amount of deformation twin boundaries comparable to the material
that was warm-rolled at 450 ◦C and 50% thickness reduction. At a higher deformation degree of
70%, the amount of deformation twin boundaries only increases slightly. The overall observed grain
structure is strongly elongated parallel to RD due to the high plastic deformation applied during rolling.
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Figure 2. EBSD-IQ maps of the investigated steel deformed to 50% thickness reduction by (a) cold
rolling and warm rolling at (b) 200 ◦C, (c) 300 ◦C, (d) 400 ◦C, (e) 450 ◦C and (f) 500 ◦C. Blue lines
indicate deformation twin boundaries (60◦ <111>).
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Figure 3. EBSD-IQ maps of the investigated steel warm-rolled at 500 ◦C to thickness reductions of
(a) 50%, (b) 60%, and (c) 70%. Blue lines indicate deformation twin boundaries (60◦ <111>).

3.2. Influence of Rolling Temperature on Texture Evolution During Warm Rolling

The texture formation of the investigated material after rolling in the temperature range between
25 ◦C and 500 ◦C to a rolling reduction of 50% is illustrated in Figure 4 by means of ϕ2 = 45◦ sections
of the ODF. The ideal location of the relevant texture components is schematically depicted (Figure 4,
top left corner) and the corresponding definition of the texture components can be found in Table 3.
In addition to the ODF sections, Figure 4h displays the calculated volume fractions of selected texture
components. The temperature dependent texture formation in the present investigation can be divided
into three stages: 25–300 ◦C (Stage I), 400 ◦C (stage II), and 450–500 ◦C (stage III). Rolling at 25 ◦C to a
deformation degree of 50% results in the development of a relatively strong brass texture component
along with weaker goss, CuT, E + F, and Cu texture components. With increasing rolling temperature,
the intensity of the brass texture component slightly decreases. This decrease is accompanied by a
stagnation in volume fractions of the Cu and CuT texture component and a steady decrease in E + F
texture components. Stage II (400 ◦C) represents an intermediate state. The brass texture component
reaches a minimum and a remarkable drop in volume fraction of the CuT texture component is detected.
Nevertheless, the volume fraction of the Cu texture component remains at a similar level. Additionally,
a small volume fraction of the cube texture component is observed. The third stage comprises the
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material states at 450 ◦C and 500 ◦C. A high intensity of Cu-oriented grains is present and the α-fiber
components (brass and goss) intensify, albeit to a smaller extent. In addition, the CuT and γ-fiber
components (E + F) weaken strongly.

Figure 5 shows the texture evolution during rolling at 500 ◦C with a thickness reduction ranging
from 50% to 80% as ϕ2 = 45◦ ODF sections and the evolution of the volume fraction of the main texture
components. With an increasing rolling degree, the volume fractions of the CuT and E + F texture
components increase, whereas the amount of Cu-oriented grains decreases. The texture evolution of
the present material during cold rolling in the deformation range between 50% and 80% has already
been investigated in [19,25,26]. Haase et al. reported about the formation of a γ-fiber accompanied by a
strengthening of the α-fiber and a constant low level of Cu-texture component [19]. In the present work,
the α-fiber intensifies with increasing rolling degree as well. However, both a stronger Cu-texture
component and an absence of the γ-fiber is observed. Therefore, it can be concluded that a temperature
increase from 25 ◦C to 500 ◦C also effects texture evolution.
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Figure 4. Texture formation of the material rolled to 50% thickness reduction at different temperatures.
(a) Schematic presentation of the ideal texture component in the orientation distribution functions
(ODF) section at ϕ2 = 45◦. ODF sections at ϕ2 = 45◦ for (b) 25 ◦C, (c) 200 ◦C, (d) 300 ◦C, (e) 400 ◦C,
(f) 450 ◦C, (g) 500 ◦C, and (h) presentation of the volume fractions of selected texture components.
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Table 3. Definition of texture components illustrated in Figures 4 and 5.

Component Symbol Miller Indices Euler Angles
(ϕ1, Φ, ϕ2) Fiber

Brass (B)
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3.3. Mechanical Properties

Figure 6 shows the engineering stress-strain curves derived from uniaxial tensile tests at room
temperature of the cold-rolled and warm-rolled material. The corresponding mechanical parameters
are summarized in Table 4. The cold-rolled high manganese steel possesses the highest strength but has
limited ductility. At a constant thickness reduction of 50% the strength level decreases with increasing
rolling temperature. A warm-rolling temperature of 200 ◦C results in a yield strength (YS) of 1092 MPa,
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whereas a warm rolling temperature of 500 ◦C leads to a significantly lower yield strength of 788 MPa.
The loss of strength is accompanied by a noticeable increase of uniform elongation (UE) and total
elongation (TE). Compared to the material warm-rolled at 200 ◦C the material warm-rolled at 500 ◦C
exhibits an almost four times higher total elongation of 38.5%.Metals 2019, 9, 797 16 of 19 
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varying rolling procedures.

Table 4. Mechanical properties of the investigated Fe-23Mn-0.3C-1Al steel depending on rolling
temperature and thickness reduction.

Rolling
Temperature

(◦C)

Thickness
Reduction

(%)

Yield Strength
(MPa)

Tensile
Strength

(MPa)

Uniform
Elongation

(%)

Total
Elongation

(%)

25 50 1274 1379 1.6 6.1
200 50 1081 1227 2.8 9.8
300 50 1054 1200 3.3 12.3
400 50 959 1103 10.2 18.9
450 50 942 1082 13.6 22.6
500 50 788 975 30.1 38.5
500 60 999 1114 10.0 17.0
500 70 1015 1144 12.7 14.1
500 80 1133 1305 1.6 1.9

By increasing the thickness reduction at a constant warm rolling temperature of 500 ◦C, the yield
and ultimate tensile strength (UTS) also increase. A thickness reduction of 80% results in an ultimate
tensile strength of 1305 MPa but poor ductility. By increasing the thickness reduction to 60%, the
ultimate tensile strength can be increased to 1114 MPa at a reasonable uniform elongation of 10.0%.
The comparison of a thickness reduction of 60% and 70% therefore shows only a slight difference
regarding strength and ductility.

In comparison to a fully recrystallized Fe-23Mn-0.3C-1Al steel (YS = 356 MPa, UTS = 787 MPa,
UE = 56.8%, TE = 62.1%, mean grain size = 3.1 µm), all warm-rolled materials investigated exhibit a
significantly higher yield and ultimate tensile strength.
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4. Discussion

The EBSD-IQ maps (Figure 2) confirm the strong temperature dependence of the activated
deformation mechanisms during rolling. Twinning is the predominant deformation mechanism in the
range of 25 ◦C to 300 ◦C, which is indicated by the high fraction of detected deformation twin boundaries.
This can also be observed in the according evolution of the crystallographic texture (Figure 4). The
CuT texture component is a texture component which is associated with planar dislocation glide and
deformation-induced twinning [19,27]. Thus, the volume fractions of the CuT component can be
correlated with the densities of deformation twins. The constant high level of CuT volume fraction in
the range from 25 ◦C to 300 ◦C indicates that twinning is the predominant deformation mechanism
during rolling, which has also been reported by Grajcar et al. [10]. The influence of this characteristic
microstructure after rolling on the mechanical properties is shown in Figure 6. Due to the strain
hardening effect of the already high fraction of deformation twin boundaries, the material exhibits a
comparably high yield, and ultimate tensile strength. Therefore, the remaining low work hardening
capacity results in a poor ductility and early fracture of the material.

Around the temperature threshold of 400 ◦C the predominant deformation mechanism shifts from
twinning to dislocation glide, which can be concluded by the small volume fractions of the CuT texture
component, as shown in Figure 4e. This correlates with the significantly lower amount of deformation
twin boundaries detected in the corresponding EBSD-IQ map in Figure 2d. This is in accordance with
Barbieri et al. [12], who report a continuous transition of the deformation mechanism with increasing
SFE. During subsequent tensile testing at room temperature of the warm-rolled material, the remaining
work hardening capacity of the twinning mechanism leads to a significant increase of uniform and
total elongation, whereas the overall strength level decreases (Figure 6).

EBSD and XRD measurements of the material 50% warm-rolled at even higher temperatures, e.g.,
500 ◦C, show that the twinning mechanism can almost be suppressed completely. This is indicated by
the negligible amount of detected deformation twin boundaries (Figure 2f) and the low fraction of the
CuT texture component (Figure 4h). The combination of the slip mechanism, also including cross slip,
activated during warm rolling and the twinning mechanism activated during room temperature tensile
testing results in excellent mechanical properties (Figure 6). It is important to note that the dynamic
recrystallization of the material during rolling, which typically occurs during hot rolling [8,13], was
successfully prevented despite the comparably high temperature.

As displayed in Figure 3b,c and Figure 5, a thickness reduction higher than 50% at 500 ◦C
warm rolling temperature without the presence of deformation twinning could not be achieved.
This behavior can be explained with the observed texture components present at higher thickness
reductions. Deformation twinning proceeds in Cu oriented grains. Consequently, a rise of the CuT
texture component effects the elimination of the Cu texture (Figure 5). At high deformation degrees
twin-matrix lamellae are rotated into the rolling plane and shear bands occur. This phenomenon is
related to the onset of the E + F texture components. By forming the E + F texture components, in turn,
the CuT texture component is consumed [19]. Hence, it must be assumed that the formation of shear
bands prohibited an even steeper rise of the CuT texture component. The presence of a significant
amount of deformation twin boundaries at higher thickness reduction again results in an increased
yield and ultimate tensile strength but a drastically decreased ductility.

Despite the high deformation applied during rolling and the different strength-ductility
combinations observed, the materials warm-rolled at temperatures higher than 300 ◦C show a significant
work-hardening behavior at room temperature. This is achieved by the activation of the twinning
mechanism during the tensile tests at room temperature, which causes the notable work-hardening.

5. Conclusions

In this work, a Fe-23Mn-0.3C-1Al high manganese TWIP steel was processed by warm rolling at
various warm rolling temperatures and thickness reductions in order to increase the yield strength
and maintain a reasonable ductility, as compared to recrystallized counterparts. The resulting
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microstructure, texture, and mechanical properties were analyzed, and their correlation was discussed.
The following conclusions can be drawn:

• The temperature dependence of the stacking fault energy can be used to control the predominant
deformation mechanism of high manganese steels during rolling. The performed EBSD
measurements and XRD texture analysis show that the formation of deformation twins can
be suppressed at 500 ◦C and thickness reduction of up to 50%.

• The specimens warm-rolled at temperatures higher than 300 ◦C exhibit exceptional mechanical
properties due to the combination of slip and twinning. The adjustment of rolling temperature
and rolling degree allows for tailoring the mechanical properties in a wide range. The resulting
uniform and total elongation can be increased by increasing the rolling temperature, whereas yield
and ultimate tensile strength decrease accordingly. The material benefits from strain hardening
due to the slip effect at elevated temperatures. The twinning mechanism during deformation at
room temperature, i.e., after prior warm rolling, accordingly enables a certain ductility and work
hardening potential of the warm-rolled high manganese steel.

• The yield strength and overall strength level of a high manganese TWIP steel could be notably
improved by warm rolling. A reasonable uniform and ultimate elongation could be maintained.
Compared to a fully recrystallized Fe-23Mn-0.3C-1Al steel, the warm-rolled material states exhibit
superior mechanical properties, especially in terms of strength.
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