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Abstract: The microstructural effects of mixed spectrum neutron irradiation at 250 ◦C and 300 ◦C,
for 2.7 dpa, 8.4 dpa, and 16.3 dpa doses, have been investigated in standard Eurofer97 (0.12 C, 9 Cr,
0.48 Mn, 0.2 V, 1.08 W, 0.14 Ta wt%) by means of small-angle neutron scattering (SANS) compared with
un-irradiated Eurofer97. The observed SANS effects are attributed to the development of micro-voids,
also detected by electron microscopy. The micro-voids distributions have been obtained by an
improved transformation method of the SANS cross-sections providing consistent results both before
and after subtraction of the un-irradiated reference. Mono-disperse micro-voids distributions are
found, with average radii increasing with the dose, namely 4.4 Å for irradiation to 2.7 dpa at 300 ◦C,
6.6 Å for 8.4 dpa at 300 ◦C, and 12.9 Å for 16.4 dpa at 250 ◦C; the corresponding volume fractions
are 0.001, 0.006, and 0.004, respectively. The differences in such distributions might reflect different
damage evolution mechanisms for the different irradiation conditions, as also suggested by the
comparison with a Eurofer97 sample irradiated under fast spectrum. A good resistance of Eurofer97
to micro-structural radiation damage, at least under these irradiation conditions, is suggested by the
analysis of these experimental results.

Keywords: small-angle neutron scattering; electron microscopy; radiation damage; ferritic/martensitic
steels

1. Introduction

The low-activation, ferritic/martensitic steel Eurofer97 (0.12 C, 9 Cr, 0.48 Mn, 0.2 V, 1.08 W,
0.14 Ta wt%), European reference for near-term applications in fusion technology, has been extensively
characterized by several neutron irradiation experiments [1–5], followed by post-irradiation mechanical
testing and by micro-structural examinations, in order to predict its performance in service. This paper
refers to the investigation of Eurofer97 samples neutron irradiated in the frame of the SUMO [2,3] and
SPICE [4,5] neutron irradiation experiments. The results of post-irradiation mechanical testing and
electron microscopy observation of these samples are reported in References [4–8]. In these works,
the increase in hardening and embrittlement under neutron irradiation at temperatures lower than
350 ◦C was tentatively attributed to the observed increase in dislocation loops density. A summary of
the information gained by all these irradiation experiments is included in Reference [9], presenting
a general assessment of irradiation effects in reduced activation ferritic/martensitic steels, such as
Eurofer97: clear trends are observed concerning the impact of neutron irradiation on the mechanical
properties but detailed microstructural analysis of neutron irradiated specimens is required for deeper
understanding of the nature of the radiation damage in such steels.

Concerning more specifically the microstructural characterization, transmission electron
microscopy (TEM) has been utilized to locally investigate the defects produced under the different
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irradiation conditions [6–8]. Small-angle neutron scattering (SANS) experiments have also been carried
out [10–14], investigating samples issued from the same material utilized for post-irradiation mechanical
testing and for TEM. SANS is a useful technique for this task because it samples volumes of approximately
0.1 cm3, yielding micro-structural information more easily comparable with macroscopic properties.
Furthermore, due to their magnetic spin, moment neutron beams provide a unique probe of magnetic
micro-structural features. Finally, SANS experiments require a very limited sample manipulation,
an appreciable feature when having to test highly radioactive samples, like the neutron-irradiated
Eurofer97 ones. On the other hand, it is an indirect technique, requiring a mathematical transformation
of the data from reciprocal to real space to obtain morphological information on defect size distributions.
Therefore, SANS results on complex phenomena, like micro-structural evolution in irradiated steels,
must be compared with TEM and all other available metallurgical information.

The investigated samples were made available over several years following the development
of the irradiation experiments; therefore they were transported to the neutron source and tested
by different SANS experiments. That implied a series of unavoidable experimental uncertainties,
even selecting each time the same nominal experimental conditions on the same SANS instrument.
Recently, a new series of SANS measurements have been carried out to obtain a more homogeneous
data set and quantitatively compare the SANS cross-sections obtained for the different investigated
samples [13,14]. In this paper, defect distributions are presented, obtained by improving the previously
utilized inverse transformation method of such SANS results. Namely, the fitting parameters have
been re-defined taking into account the metallurgical features of the investigated samples and the
effect of the background subtraction has been quantitatively characterized, improving the accuracy in
the characterization of defects smaller than 10 Å.

This work is therefore intended as a contribution to understand better the microstructural changes
in low temperature irradiated Eurofer97 and also because TEM observations of this steel are limited,
quantitatively and qualitatively, as mentioned in the next section. Furthermore, an accurate and reliable
determination of the defect distribution is necessary also to try and develop theoretical models of
radiation damage evolution in such complex materials. As shown in the following two sections, TEM
observations and SANS data analysis suggest that the defects originating the observed SANS effects
are micro-voids. However, the microstructure of the investigated samples is complex; therefore this
is not to be considered as a conclusive interpretation, but as a tentative one, based on the current
metallurgical knowledge of the investigated material.

2. Material Characterization

The three investigated standard Eurofer97 samples had been neutron irradiated to dose levels of
2.7 dpa (displacement per atom) at 300 ◦C, 8.4 dpa at 300 ◦C, and 16.3 dpa at 250 ◦C. The irradiations
had been carried out at the high flux reactor (HFR)—Petten, the first one in the frame of the “SUMO”
experiment [2,3] and the two others in the frame of the “SPICE” irradiation experiment [4,5]. Due to
their high activity level (20 mSv/h) and to the timing of the irradiation campaigns, the samples had to
be transported to the neutron source at different times and consequently included in different SANS
experiments. The samples utilized for the SANS measurements were cut from the KLST specimen;
after the SANS measurements were completed, they were thinned and prepared for TEM observations.
A Eurofer97 sample submitted to standard treatment (980 ◦C 0.5 h/air + 760 ◦C 1.5 h/air) was utilized
as an un-irradiated reference. All the investigated samples were approximately 1 cm2 in surface area
and 1 mm thick; their faces had been electrochemically polished.

TEM observations of these samples [6] showed the presence of dislocation loops and, for the
16.3 dpa dose level, of very few and completely non-homogeneously distributed voids or helium
bubbles, with an estimated average size of approximately 70 Å. Such micro-voids could be identified
only for irradiation temperatures of at least 350 ◦C, as shown in Figure 1; probably, for the irradiation
temperatures of 250 ◦C and 300 ◦C their size and volume fractions are below the resolution capabilities
of such observations. Furthermore, the TEM observation of these voids, embedded in a magnetic
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matrix, was very difficult due to defocusing effects and to their small size; even at 350 ◦C the detected
number of them was not sufficient to provide a size histogram.
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Figure 1. Bright field TEM observation of micro-voids in Eurofer97 steel neutron irradiated at 350 ◦C
to 16 dpa.

3. Experimental Technique

General information on SANS can be found in References [15,16]. For studying ferritic/martensitic
steels, an external magnetic field of at least 1 T is needed to saturate the magnetization in the sample
and separate the nuclear and the magnetic SANS cross-sections, as shown in Figure 2. The total SANS
cross-section is defined as follows:

d
∑

(Q)/dΩ = d
∑

(Q)/dΩnucl + d
∑

(Q)/dΩmag sin2 α (1)

where 2θ is the full scattering angle, λ the neutron wavelength, Q = 4πsinθ/λ the modulus of the
scattering vector, α the azimutal angle on the detector plane and Ω stands for the solid angle. The ratio
of the SANS components measured in the directions perpendicular and parallel to the magnetic field,
defined as follows:

R(Q) =
d
∑
(Q)/dΩnucl + d

∑
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is related to the nuclear and magnetic square differences in neutron scattering length density between
the defects and the matrix, (∆ρ)2

nucl and (∆ρ)2
mag, respectively [15,16].

It can provide information useful to identify the scattering defects: namely, for non-magnetic
defects embedded in a fully magnetized matrix, it is equal to 2, while its dependence on Q can imply
the presence of different kinds of defects. In Eurofer97, assuming for the carbides a composition
Cr14Fe8W0.7V0.3C6 [17] a nuclear contrast value of 2.13 × 1020 cm−4 is found for such precipitates;
for micro-voids, the contrast is equal to the scattering length density of Eurofer97-1 itself, that is
5.51 × 1021 cm−4, while for helium bubbles it is 4.88 × 1021 cm−4 [16]. Therefore, for comparable values
of the corresponding volume fractions, both helium bubbles and micro-voids are expected to give rise
to SANS effects one order of magnitude larger than precipitates, however, they are quite difficult to be
distinguished from one another. A summary of the SANS set-up and experimental conditions selected
to obtain the results analyzed in this paper is included in the next section.

The distributions of the scattering defects are obtained by inverse transformation of the
experimental data. Namely, if their volume fraction is low and there is no inter-particle interference,
the SANS nuclear and magnetic cross-sections can each be written as:
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Figure 2. 2D small-angle neutron scattering (SANS) pattern (neutron counts) of the un-irradiated
Eurofer97 reference sample, measured with λ = 6 Å at 2 m sample-to-detector distance; external
magnetic field direction is horizontal in the plane of the figure.

The volume distribution function D(R), average defect radius, <R>, and volume fraction, f, are
defined respectively as follows:

D(R) = N(R)R3 (4)

< R >=

∞∫
0

dRN(R)R/

∞∫
0

dRN(R) (5)

f =

∞∫
0

dRN(R)V(R)/(∆ρ)2Vtot (6)

where Vtot is the total volume of the investigated sample.
N(R) was determined by the method described in Reference [18] and successfully utilized for

several studies on technical steels, particularly those in References [19–21]. This fitting procedure
assumes no a priori shape of the defect distribution, representing it by a set of cubic B-spline functions,
with knots uniformly distributed in a log R scale and with the constraint N(R) > 0. The number of splines
is chosen taking into account the R-range Rmin − Rmax where the size distribution has to be investigated
and the shape of the experimentally determined SANS cross-section. Knots spacing, R-range, and
a constant or Q-dependent background are additional parameters, adjustable for improving the fit.
The best-fit distribution is determined within an 80% confidence band. In general, the main difficulties
in obtaining the distributions from Equation (3) arise from the fact that the SANS cross-section is
measured only on a finite Q-interval, in a limited number of points, affected by experimental errors.
Furthermore, a theoretical model distribution usually is not available for irradiation effects in such
technical steels. All this must be taken into account in selecting the fitting parameters, to obtain
plausible distributions and, at the same time, reduce their error band as much as possible.
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4. Results and Discussion

The SANS measurements were carried out utilizing the D22 instrument at the Institut Max
von Laue-Paul Langevin in Grenoble [22]. First the samples irradiated to 2.7 dpa at 300 ◦C and to
8.4 dpa at 300 ◦C were investigated [10,11]; subsequently, the sample irradiated to 16.3 dpa at 250 ◦C
was investigated [12]. To clarify some uncertainties relating to the utilized un-irradiated reference
samples [12] and to obtain a more homogeneous data set in the same experimental conditions, the two
samples irradiated at the higher dose levels were recently measured again, together with other similar
ones [13,14]. A neutron wavelength of 6 Å and sample-to-detector distances of 2 m and 11 m were
selected in order to cover a Q-interval ranging from 3.0 × 10−3 Å−1 to 2.6 × 10−1 Å−1, corresponding
to sizes 2R~π/Q varying between 10 Å and 1000 Å approximately. An external magnetic field of 1 T
was applied in the horizontal direction, perpendicular to the neutron beam (see Figure 2). The SANS
cross-sections parallel and perpendicular to the applied magnetic field were determined by selecting
on the 2D detector plane sectors 15◦ wide. Each experiment included the measurement of the same
un-irradiated Eurofer97 reference sample, to check that the cross-sections of the irradiated samples,
obtained in the different experiments, can be quantitatively compared after calibration into physical
units. Figure 3 shows the nuclear SANS cross-sections of the reference sample as measured in the first
experiment [10] and in the latest one [13]: they are in good agreement, also considering that SANS
data had been reduced by two different programs, namely the one described in Reference [23] for the
first experiment and the one described in Reference [24] for the latest experiment. The experimental
errors on the SANS cross-sections were of a few % in all these experiments.
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Figure 4. Nuclear SANS cross sections (a) and R(Q) (b) for un-irradiated reference Eurofer97 (empty
circles) and for Eurofer97 irradiated 2.7 dpa 300 ◦C (squares), 8.4 dpa 300 ◦C (crosses), 16.3 dpa 250 ◦C
(full circles); experimental results from References [10,14].



Metals 2019, 9, 552 6 of 12

The nuclear SANS cross-sections of irradiated and un-irradiated reference samples are shown
separately for each irradiation condition in Figure 5 to appreciate the changes with respect to the
reference sample more adequately and also because of the differences in Q range and cross-sections
between the 2.5 dpa irradiated sample and the two others. Similar differences are observed when
comparing the nuclear plus magnetic SANS cross-sections of these same samples.
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Figure 5. Nuclear SANS cross-sections for Eurofer97: (a) irradiated 2.7 dpa 300 ◦C (squares) and
reference (x crosses) [10], (b) irradiated 8.4 dpa 300 ◦C (+ crosses) and reference (empty circles) [14],
(c) irradiated 16.3 dpa 250 ◦C (full circles) and reference (empty circles) [14].

A small but well detectable increase in the SANS cross-section is observed after irradiation to
2.5 dpa. In the same Q range, for the samples irradiated to 8.4 dpa and 16.3 dpa the increase in SANS
cross-section is one order of magnitude higher. Furthermore, the wider Q range available for the
measurements of these two samples shows that for approximately Q < 10−2 Å−1 their cross-sections are
nearly coincident with one of the reference samples and all follow a Q−4 behavior (“Porod law” [15,16],
see also Figure 4a), determined by defects with sizes outside the experimental Q window: this
behavior is attributed to carbide precipitates larger than approximately 500 Å, generally not affected by
irradiation for such temperatures and dose levels [25]. As shown in Figure 4b, for the three irradiated
samples the R(Q) ratio is close to 2 and within the experimental uncertainties introduced by combining
the nuclear and nuclear plus magnetic SANS cross-sections as indicated in Equation (2). The slightly
higher R(Q) value measured for the sample irradiated to 8.4 dpa around approximately Q = 2.5 × 10−2

Å−1, in correspondence to the small “bump” visible in Figures 4a and 5b, could be attributed to the
presence of a different kind of defect.

The size and volume distribution functions have been determined assuming that the observed
SANS effects are determined by micro-voids as those shown in Figure 1; therefore, taking a nuclear
contrast value of 5.51 × 1021 cm−4, a spherical form factor was assumed. In the previous papers [10–14],
such distributions were obtained introducing up to 10 spline functions in order to fit the whole SANS
cross-sections at least in the higher Q-range and corresponding to 2 m sample-to-detector distance.
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Furthermore, a wide Rmin −Rmax range had been selected with Rmin = 1 Å. This approach yielded defect
distributions affected by unphysical oscillations and by a large error band, with consequent difficulties
in attempting a metallurgical interpretation: this is particularly evident in Figure 2 of Reference [14].
On the other hand, recent work carried out on SANS data obtained from other irradiated Eurofer97
samples [21] has shown that more accurate and significant distributions are obtained reducing the
number of splines to a maximum of 7, setting Rmin to the more realistic value of 3 Å and excluding
from the fitting procedure those points clearly affected by the “Porod background” at low Q’s and by
uncertainty on the background level at high Q’s. A constant background of few units in 10−3 cm−1

has also been introduced to improve the fit for the points at the higher Q values, particularly for the
data in Figure 5c. This way to proceed implies an unavoidable degree of arbitrariness, either in the
choice of the fitting parameters or in the selection of the points to be excluded from the fit; however,
no theoretical model is currently available for such complex samples, therefore at present only an
empirical SANS data analysis seems possible. The data shown in Figure 5 have been analyzed in
this way, determining for each irradiated sample the best-fit distributions obtained with and without
the subtraction of the reference sample’s cross-section. As the SANS cross-section (Equation (1)) is
governed by the square volume of the defects, volume distributions provide metallurgical information
that is more significant with respect to the number of distributions, as shown in previous research [21].
Therefore, the obtained volume distributions as defined in Equation (5) are presented here below.

For the sample irradiated at 300 ◦C to 2.7 dpa, a good fit with the experimental SANS cross-section
is obtained both with and without the subtraction of the reference sample’s cross-section (Figure 6a);
in both cases, it is necessary to exclude from the fit a few points at low Q’s, probably partly affected
by the “Porod background.” The corresponding distributions are shown in Figure 6b: subtracting
the reference sample yields a mono-disperse distribution of very small voids (<R> = 4.4 Å) with a
volume fraction of 0.001. Considering that interatomic distances in such steels are approximately 3 Å,
micro-voids of approximately 10 Å in diameter should be considered as very small vacancy clusters
that are close to the experimental resolution limit of the SANS and TEM techniques.
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Figure 6. Eurofer97 neutron irradiated to 2.7 dpa at 300 ◦C: (a) best fits to nuclear SANS cross-section
without (full squares) and with (empty squares) subtraction of the reference sample’s cross-section,
(b) best-fit micro-void distributions (Å-1) obtained without (continuous line) and with (dashed line)
subtraction of reference sample’s cross-section. The 80% confidence bands are indicated by the
dotted lines.

Also for the sample irradiated at 300 ◦C to 8.4 dpa a good fit is obtained both with and without
subtraction of the reference sample’s cross-section (Figure 7a). The corresponding distributions
(Figure 7b) are very similar, with volume fraction and average radius values around 0.007 and 6.5 Å
respectively. A secondary population of defects one order of magnitude larger is also observed after
subtraction of the reference sample: it is correlated with the cross-section’s trend in the Q range
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approximately 3.5–2 × 10−2 Å−1 and its size corresponds to the larger micro-voids shown in Figure 1
and in Reference [6]. However, as pointed out above, the R(Q) value is significantly higher than 2,
suggesting the presence of a different kind of defect.
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Figure 7. Eurofer97 neutron irradiated to 8.4 dpa at 300 ◦C: (a) best fits to nuclear SANS cross-section
without (crosses) and with (empty squares) subtraction of reference sample’s cross-section, (b) best-fit
micro-void distributions (Å−1) obtained without (continuous line) and with (dashed line) subtraction
of reference sample’s cross-section. The 80% confidence bands are indicated by the dotted lines.

For the sample irradiated at 250 ◦C to 16.3 dpa, the subtraction of the reference’s sample cross-section
is possible only in a restricted Q range, where the effect of the irradiation is detected (Figure 5c), but a
good fit is anyhow obtained (Figure 8a). Similar mono-disperse distributions are obtained (Figure 8b)
with volume fraction and average radius values around 0.004 and 12.9 Å, respectively.
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Figure 8. Eurofer97 neutron irradiated to 2.7 dpa at 300 ◦C: (a) best fits to nuclear SANS cross-section
without (full circles) and with (empty circles) subtraction of reference sample’s cross-section, (b) best-fit
micro-void distributions (Å−1) obtained without (continuous line) and with (dashed line) subtraction
of reference sample’s cross-section. The 80% confidence bands are indicated by the dotted lines.

The distributions obtained for these three samples after reference subtraction are compared in
Figure 9; Table 1 lists the obtained average radii and volume fractions. The uncertainty bands visible
in Figures 6–8 and the corresponding errors on the values of Table 1 are smaller than 10%. These errors
result from the best fits obtained under the assumptions described here above. An estimate of the
uncertainties resulting from different methodological assumptions and choice of the fitting parameters
is provided for example by the comparison with the distributions previously obtained for these same
samples [14]. Consistently higher values of volume fraction and lower values of average radii had
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been obtained with the already mentioned larger error bands and unphysical oscillations (Figure 2 in
Reference [14]): in fact in the previous works, the cross-section considered for the fit was not solely
determined by the effect of the irradiation, but partly contaminated by the spurious effects described
here above. Furthermore, the previous SANS data analysis lead to some incorrect conclusions about
the shape of the distributions, appearing bi-modal as particularly evident in Figure 4 of Reference [11],
with no change in the average radii; however, this result was obtained because spurious effects related
to the background noise and asymptotic contribution of large carbide precipitates were included in the
fit. On the contrary, genuine information on the irradiation effects is provided by the new distributions
presented in this paper, summarized in Figure 9. They are mono-disperse and the micro-void radius
increases with the dose. In fact, after subtraction of the reference samples, an average radius of
4.4 Å is found for 2.7 dpa, 6.6 Å for 8.4 dpa, and 12.9 Å for 16.3 dpa. Furthermore, the previous
SANS data analysis did not allow any clear conclusion on the effect of subtracting the reference
sample’s cross-section nor a reliable determination of the average radii, while the volume fractions
were overestimated. These problems are solved by the new data analysis presented in this paper and
summarized in Table 1.
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Figure 9. Best-fit micro-voids volume distributions for Eurofer97 neutron irradiated to 2.7 dpa at
300 ◦C (continuous line), 8.4 dpa at 300 ◦C (dashed line), 16.3 dpa at 250 ◦C (dash-dotted line). The
distributions are those shown in Figures 6b, 7b and 8b, respectively after reference sample subtraction.

Table 1. Micro-voids volume fractions and average radii in neutron irradiated Eurofer97; the values
obtained after subtracting the un-irradiated reference sample’s cross-section are marked in parenthesis
and italics.

Sample Volume Fraction, f Average Radius, <R>

2.7 dpa 300 ◦C 0.002 (0.001) 6.8 Å (4.4 Å)

8.4 dpa 300 ◦C 0.007 (0.006) 6.5 Å (6.6 Å)
sec. ~100 Å

16.4 dpa 250 ◦C 0.005 (0.004) 12.8 Å (12.9 Å)

The obtained results suggest first of all that up to 16.3 dpa only low volume fractions of small
micro-voids are produced in Eurofer97 under neutron irradiation at low temperature; this is consistent
with resistance to irradiation expected for this steel [9]. It is difficult to establish clear trends of
microstructural damage evolution with dose or temperature, also because only three irradiated samples
were investigated—although even for such a limited number a consistent effort was needed for sample
transportation and experiment organization, given the high activity of the samples. However, a significant
increase of the micro-voids average radius with the dose is observed and, most importantly, well defined
mono-disperse distributions are found after subtraction of the reference sample. This is potentially quite
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useful for modeling purposes of radiation damage evolution in this steel. The secondary population
observed in the sample irradiated to 8.4 dpa, consistent with the measured SANS cross-section could be
originated by a different kind of defect (see also Figure 4b) and in this case, the volume distribution
should be determined again introducing a model with two different contrast values for two different
kinds of defects. No such evidence is provided by the currently available TEM observations [6].

Additional information on the microstructural evolution in low-temperature neutron irradiated
Eurofer97 is obtained comparing the distributions of these samples with the one obtained for a
Eurofer97 sample irradiated to 32 dpa at 330 ◦C at the BOR60 reactor [13]; also, in this case, the observed
SANS effects are tentatively attributed to micro-voids. Figure 10 shows the volume distribution of
this sample re-calculated by the procedure described here above (without reference subtraction) and
compared to the distributions shown in Figure 9 for HFR irradiation at 8.4 dpa and 16.4.Metals 2019, 9, x FOR PEER REVIEW 11 of 13 

 

 
Figure 10. Best-fit micro-voids volume distributions of Figure 9 for Eurofer97 neutron irradiated to 
8.4 dpa 300 °C (dashed line) and 16.3 dpa 250 °C (dash-dotted line) compared with best-fit 
distribution of Eurofer97 neutron irradiated at BOR60 reactor to 32 dpa at 330 °C (corresponding 
SANS measurements shown in Reference [13]). 

Despite the higher irradiation dose, the obtained average radius (6.5 Å) and volume fraction 
(0.007) of the BOR60 sample are the same as those found for the 8.4 dpa HFR irradiated sample. It is 
noted that also in this case, the previous SANS data analysis yielded unclear conclusions 
concerning the comparison between the HFR and the BOR60 irradiated samples (Figure 6 Reference 
[13]). In fact, a more appropriate choice of the fitting parameters provides a well-defined 
mono-disperse distribution also for the first one. As suggested in Reference [13], the very low 
helium production under fast neutron irradiation could partly explain this effect because the 
helium produced under mixed spectrum plays an important role in stabilizing the micro-voids and 
promoting their growth. A more systematic investigation of samples irradiated for the same dose 
and temperature at the two neutron sources would be necessary to come to some conclusions. It is 
noted that the BOR60 sample also shows a secondary population of very large defects (in addition 
to a mono-disperse distribution) suggesting that this effect related to the higher irradiation 
temperature for the higher dose levels; in fact, it was not observed in the sample irradiated to 2.7 
dpa at 300 °C, although it was measured in a more limited Q range. 

5. Conclusions 

SANS measurements carried out on three different neutron irradiated Eurofer97 steel have been 
analyzed by improving a previously utilized inverse transformation method. The spurious effects 
determined by large carbides and by background noise have been evaluated both by subtracting the 
reference sample’s cross-section and by excluding from the fitting procedure the experimental 
points contaminated by such effects. Consistent results have been found in these two ways; 
information as genuine as possible has been obtained on the microstructural effect of the irradiation, 
with more accurate and realistic distributions potentially useful also for theoretical modeling. 
Furthermore, these methodological improvements of the SANS data transformation procedure 
allow for a clearer comparison of the micro-void distributions produced under the mixed and fast 
spectrum. 

Mostly based on the TEM results, the observed SANS effects and obtained distributions are 
attributed to low volume fractions of small micro-voids, probably below the resolution capability of 
TEM in a magnetic matrix. An increase in micro-void size with irradiation dose is observed with a 
well-defined mono-disperse distribution (Figure 9). However, the higher micro-void volume 
fraction is found for the sample irradiated at the intermediate dose of 8.4 dpa, suggesting the 
presence of a secondary population of defects as large as the micro-voids shown in Figure 1; the 
information currently provided by TEM does not allow any conclusion on this specific point. The 
comparison with another Eurofer97 sample irradiated at 330 °C (Figure 10) suggests that this effect 
might be related to the higher irradiation temperature. These experimental results also show that the 

100 101 102 103
102

103

104

D
(R

) Å
-1

R  (Å)

 HFR 8.4 dpa 300°C 
 HFR 16.3 dpa 250°C
 BOR60 32 dpa 330°C

Figure 10. Best-fit micro-voids volume distributions of Figure 9 for Eurofer97 neutron irradiated to 8.4
dpa 300 ◦C (dashed line) and 16.3 dpa 250 ◦C (dash-dotted line) compared with best-fit distribution of
Eurofer97 neutron irradiated at BOR60 reactor to 32 dpa at 330 ◦C (corresponding SANS measurements
shown in Reference [13]).

Despite the higher irradiation dose, the obtained average radius (6.5 Å) and volume fraction
(0.007) of the BOR60 sample are the same as those found for the 8.4 dpa HFR irradiated sample. It is
noted that also in this case, the previous SANS data analysis yielded unclear conclusions concerning
the comparison between the HFR and the BOR60 irradiated samples (Figure 6 Reference [13]). In fact, a
more appropriate choice of the fitting parameters provides a well-defined mono-disperse distribution
also for the first one. As suggested in Reference [13], the very low helium production under fast
neutron irradiation could partly explain this effect because the helium produced under mixed spectrum
plays an important role in stabilizing the micro-voids and promoting their growth. A more systematic
investigation of samples irradiated for the same dose and temperature at the two neutron sources
would be necessary to come to some conclusions. It is noted that the BOR60 sample also shows a
secondary population of very large defects (in addition to a mono-disperse distribution) suggesting
that this effect related to the higher irradiation temperature for the higher dose levels; in fact, it was
not observed in the sample irradiated to 2.7 dpa at 300 ◦C, although it was measured in a more limited
Q range.

5. Conclusions

SANS measurements carried out on three different neutron irradiated Eurofer97 steel have been
analyzed by improving a previously utilized inverse transformation method. The spurious effects
determined by large carbides and by background noise have been evaluated both by subtracting the
reference sample’s cross-section and by excluding from the fitting procedure the experimental points
contaminated by such effects. Consistent results have been found in these two ways; information
as genuine as possible has been obtained on the microstructural effect of the irradiation, with more
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accurate and realistic distributions potentially useful also for theoretical modeling. Furthermore,
these methodological improvements of the SANS data transformation procedure allow for a clearer
comparison of the micro-void distributions produced under the mixed and fast spectrum.

Mostly based on the TEM results, the observed SANS effects and obtained distributions are
attributed to low volume fractions of small micro-voids, probably below the resolution capability of
TEM in a magnetic matrix. An increase in micro-void size with irradiation dose is observed with a
well-defined mono-disperse distribution (Figure 9). However, the higher micro-void volume fraction
is found for the sample irradiated at the intermediate dose of 8.4 dpa, suggesting the presence of
a secondary population of defects as large as the micro-voids shown in Figure 1; the information
currently provided by TEM does not allow any conclusion on this specific point. The comparison with
another Eurofer97 sample irradiated at 330 ◦C (Figure 10) suggests that this effect might be related
to the higher irradiation temperature. These experimental results also show that the influence of
the neutron irradiation spectrum must be thoroughly investigated to understand radiation damage
evolution in this steel fully. Work is underway to characterize, by new SANS measurements, Eurofer97
irradiated at 250 ◦C for 16 dpa at HFR and at BOR60 neutron sources.

The detected SANS effects, shown in Figure 4; Figure 5, are quite clear and the obtained
distributions are consistent with them. With respect to the previous efforts to analyze such SANS effects,
significant improvements have been obtained particularly concerning the shape of the distributions
and their metallurgical interpretations; the results presented in this manuscript provide a new insight
into microstructural radiation damage evolution in low temperature irradiated Eurofer97 steel. The
microstructure of the investigated samples is very complex; therefore the proposed interpretation in
terms of micro-void development is intended as a tentative one based on the metallurgical information
currently available. Concerning the correlation between post-irradiation mechanical testing [4–9] and
microstructural observations, it would be quite unsafe to make general conclusions based on the SANS
analysis of only three irradiated samples of such a complex steel. In any case, taking into account that
macroscopic sample volumes have been investigated, these SANS measurements confirm the good
resistance of Eurofer97 to irradiation for the considered dose and temperature range.
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