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Abstract: Study on the resource utilization of CO2 is important for the reduction of CO2 emissions
to cope with global warming and bring a beneficial metallurgical effect. In this paper, research on
CO2 utilization in the sintering, blast furnace, converter, secondary refining, continuous casting,
and smelting processes of stainless steel in recent years in China is carried out. Based on the
foreign and domestic research and application status, the feasibility and metallurgical effects of CO2

utilization in the ferrous metallurgy process are analyzed. New techniques are shown, such as (1)
flue gas circulating sintering, (2) blowing CO2 through a blast furnace tuyere and using CO2 as a
pulverized coal carrier gas, (3) top and bottom blowing of CO2 in the converter, (4) ladle furnace and
electric arc furnace bottom blowing of CO2, (5) CO2 as a continuous casting shielding gas, (6) CO2

for stainless steel smelting, and (7) CO2 circulation combustion. The prospects of CO2 application in
the ferrous metallurgy process are widespread, and the quantity of CO2 utilization is expected to be
more than 100 kg per ton of steel, although the large-scale industrial utilization of CO2 emissions is
just beginning. It will facilitate the progress of metallurgical technology effectively and promote the
energy conservation of the metallurgical industry strongly.
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1. Introduction

Almost two tons of carbon dioxide (CO2) is exhausted per ton of steel in the ferrous industry
because of its energy-intensive feature [1]. Carbon dioxide utilization is beginning to attract worldwide
attention, because it transmits CO2 waste emissions into valuable products [2–6]. Study on the resource
utilization of CO2 in the ferrous metallurgy process is important for the reduction of CO2 emissions to
cope with global warming and bring a beneficial metallurgical effect. There are three main methods of
emission reduction or utilization of CO2. The first is the use of new technology or energy to reduce
the use of fossil energy, the second is CO2 storage technology, and the last is using CO2 as a recycling
resource. Currently, however, CO2 emission reduction in metallurgical processes mainly relies on
energy saving and waste heat utilization.

Carbon dioxide is a linear three-atom molecule, which is a weak acid, colorless and tasteless
at room temperature. Its isobaric heat capacity is about 1.6 times that of nitrogen at steelmaking
temperature and its infrared radiation ability is strong. CO2 with CO generated from CO2 can play a
role in stirring in the ferrous metallurgy process. It can also play a role in controlling the temperature
of the molten bath because of the carbon endothermic reaction, which protects molten steel from being
oxidized and dilutes oxidants in the combustion. In the realization of CO2 emission reduction, it is
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possible to save energy and reduce costs, and at the same time, dephosphorize and remove inclusions
in steel.

CO2 is a weaker oxidizing agent compared with O2. The reactions of CO2 oxidizing carbon,
iron, silicon, or manganese in a molten bath may occur at steelmaking temperature, and the reactions
are endothermic or slightly exothermic reactions, respectively. Therefore, it is possible to control the
temperature and atmosphere by adopting CO2 in the steelmaking process, hence realizing the aims
of (1) reducing dust generation by reducing the temperature in the fire zone, (2) purifying the liquid
steel by promoting dephosphorization, (3) minimizing the loss of valuable metals by low oxidation,
(4) saving energy by increasing gas recovery, and (5) reducing the total consumption. The current CO2

applications in the ferrous metallurgy process are shown in Figure 1.
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Figure 1. Carbon dioxide utilization in the ferrous metallurgy process.

2. Application in the Steelmaking Process.

2.1. Top-Blowing Carbon Dioxide in Converter

As Table 1 shows, compared with pure oxygen, the chemical heat release decreases when CO2 is
used in the steelmaking process as an oxidizing agent due to the endothermic or micro exothermic
reaction of CO2 in the molten bath, which may mean a reduced capacity for scrap melting. Therefore,
when a certain proportion of CO2 is blown into the converter in the dephosphorization process,
the temperature is controlled, and suitable thermodynamic conditions for the dephosphorization
reaction are created. At the same time, the reaction produces more stirring gas, which is conducive
to strengthen bath stirring and creates favorable dynamic conditions for the dephosphorization
reaction too.

Since 2004, Zhu Rong et al. [7–14] have carried out basic exploration research and industrial tests
involving CO2 utilization in steelmaking. After researching this area for a decade, they applied CO2

in the top-blowing of the Basic Oxygen Furnace (BOF) and researched the CO2 injection technology
involved in top-blowing in the converter. When blowing CO2 in the converter, the dust is reduced by
19.13%, the total Fe in the dust decreases by 12.98%, and the slag iron loss is reduced by 3.10%. As an
agitation effect achieved from the temperature controlling improvement, the dephosphorization rate
increases by 6.12%, and the nitrogen content of the molten steel reduces too, which leads to a higher
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quality of the molten steel. According to some test results, about 80~90% of CO2 blown into the BOF
participates in the chemical reaction at 1600 ◦C [15].

Table 1. Chemical reaction thermodynamic data of CO2 with elements in the molten iron.

Elements Chemical Reactions ∆Gθ (J/mol) ∆Gθ (kJ/mol) 1773 K ∆H (kJ/mol) 298 K

C
1/2O2 + [C] = CO(g) −140,580 − 42.09 T −215.21 −139.70

O2 + [C] = CO2(g) −419,050 + 42.34 T −343.98 −393.52
CO2(g) + [C] = 2CO(g) 137,890 − 126.52 T −86.43 172.52

Fe
1/2O2(g) + Fe(l) = (FeO) −229,490 + 43.81 T −151.81 −272.04

CO2(g) + Fe(l) = (FeO) + CO(g) 48,980 − 40.62 T −23.04 40.37

Si
O2 + [Si] = (SiO2) −804,880 + 210.04 T −432.48 −910.36

2CO2(g) + [Si] = (SiO2) + 2CO(g) −247,940 + 41.18 T −174.93 −344.36

Mn
1/2O2 + [Mn] = (MnO) −412,230 + 126.94 T −187.17 −384.93

CO2(g) + [Mn] = (MnO) + CO(g) −133,760 + 42.51 T −58.39 −101.91

Top-blowing CO2 in the converter is a major innovation in China and has been applied in
Shougang Jingtang Company, who have achieved good results. CO2 sources are wide in the iron and
steel enterprises, providing a convenient condition for the converter blowing CO2.

2.2. Bottom-Blowing Carbon Dioxide in the BOF

In the 1970s, the scholars began to study bottom-blowing CO2 in the converter steelmaking
process and found [9] that CO2 can participate in the bath reaction, and its bottom-blowing agitation
ability is stronger than that of Ar and N2, when compared with blowing N2/Ar from the bottom,
which is an easy way to make [N] increase, and blowing O2/CxHy from the bottom, which is an easy
way to make [H] increase. CO2 is an effective alternative to high-cost Ar and potentially harmful
N2 [16–18].

In the 1990s, researchers from AnGang Company [19] studied the bottom blowing of CO2 in
the top and bottom blowing converter and found that CO2 can be used for bottom blowing of the
top-bottom blowing converter. To prevent the strong cooling effect of the bottom blowing CO2 gas
from the nozzle being clogged, some oxygen was mixed in the bottom blowing gas. Unfortunately,
the use of this technique was stopped due to issues with the blowing brick’s life.

Recent studies have found that by bottom blowing CO2, the slag iron loss can be reduced, the bath
stirring can be strengthened, and the dephosphorization rate can be improved. In 2009, industrial
experiment of bottom-blowing CO2 on the 30 t converter was conducted in Fujian Sanming Steel
company (Sanming, Fujian, China). The results showed that the converter with CO2 bottom blowing
is feasible, with no obvious erosion of the hearth [20].

2.3. Bottom-Blowing Stirring in the Ladle Furnace

Previously, to avoid re-oxidation and hydrogen and nitrogen absorption, the bottom blowing
of CO2 instead of Ar for stirring in a ladle was studied. The stirring mechanism of CO2 bottom
blowing during the ladle furnace (LF) refining process was studied [21]. As an exploratory industrial
experiment, different proportions of CO2 and Ar gas mixtures were bottom blown in a 75 t LF.
The results showed that the stirring was reinforced when blowing CO2, and the desulfurization rate
was increased from 49.7% to 65.1%, and the average slag (FeO) content was less than 0.5%, which
meets the oxidizing slag requirements. Though the type, the morphology, and the composition of the
inclusions in molten steel changed little, the average number of inclusions per analyzed area decreased,
which means the cleanliness of the liquid steel improved. The tests showed that the LF furnace can use
CO2 gas for refining.
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2.4. Bottom-Blowing Stirring in the Electric Arc Furnace

Since the emergence of Electric Arc Furnace (EAF) bottom blowing technology in the 1980s,
scholars have studied and found that the EAF bottom blowing technology can improve the bath
agitation ability, promote the inter-slag reaction, uniform bath temperature, and composition,
and improve the alloy yield. It is of great significance to improve the furnace dynamics.

Industrial experiments [21] of bottom-blowing CO2 in a 65 t Consteel EAF verified that
bottom-blowing CO2 instead of Ar is feasible. The studies showed that compared with the conventional
bottom-blown Ar process, bottom-blowing CO2 increases the end [C] content and oxidizes a small
amount of [Cr], but the contents of [Mn], [Mo], [O] and [N] are not influenced. This method can
also enhance the bath stirring, raise the basicity, and reduce the slag (FeO) content. It provides
a suitable kinetic and thermodynamic condition for EAF desulfurization and dephosphorization,
with the desulfurization degree increasing by 7%.

2.5. Shielding Gas in Continuous Casting Process

In 1989, reference [22] stated that a US company applied CO2 instead of Ar to protect the injection
flow when casting special steel rod. Benefiting from a higher density, CO2 will fall in parallel with the
injection flow through the upper portion of the upper casing or spiral holes, maintaining the positive
pressure of the stream around to prevent air suction. It shows a great effect in cutting off the liquid
steel from the air and preventing the oxidation of the molten steel.

To solve problems of using CO2 with specific process issues, our team conducted experiments
and found that when using CO2 instead of Ar in submerged nozzle seal protection, the [N] content
increased. When bottom blowing Ar for 40Cr steel and 45 steel, the [N] content increased by 10.4%
and 53.6%, respectively. While bottom blowing CO2, the [N] content increased by 17.6% and 54.4%,
respectively. When observing CO2-protected steel, the [O] content was shown to be decreased. CO2 can
play a protective role in casting, which can reduce secondary oxidation.

The amount of CO2 emission utilization in the BOF steelmaking process will be greater than
40 kg/ton of steel. Unfortunately, reports of sustainable utilization of CO2 emissions in the steelmaking
industry are almost non-existent, because the industrial supply of CO2 gas has not yet been
established yet.

3. Application in Sintering and Blast Furnace

3.1. Flue Gas Recirculation (FGR) Sintering

The main combustion produce gas in sintering is CO2. Typical Flue Gas Recirculation (FGR,
Figure 2) sintering [23] includes the waste gas regional recirculation process developed by Nippon
Steel [24], and similar technologies have been developed now, such as the Exhaust Gas Recirculation
(EGR) sintering technology developed by Hata [25], the Emission Optimized Sintering (EOS) process
developed by Corus Ijmuiden in Netherlands [26], the LEEP (low emission and energy optimized
sintering process) developed by HKM [24] and the EPOSINT (environmental process optimized
sintering) process developed by Siemens VAI [27–29].

The existing recycling technology still has the following disadvantages [23,24]:(1) In the Nippon
Steel recycling process, only high oxygen flue gas is circulated. The flue gas emission reduction rate
is relatively low, about 28%. The circulation process is complex, and it is difficult for modifying a
sintering machine. (2) EOS technology has not considered the characteristics of sintering flue gas
emissions, and the effect of dealing with different components in the flue gas is not the best. (3) For the
LEEP technology, the heat of the high temperature flue gas is not fully utilized. The rear part of the
flue gas has a high content of SO2, which results in the sintering ore [S] content increasing. (4) The
EPOSINT process only makes a high sulfur gas cycle, and the reduction in emission rates is small,
only 28~25%, and the sintering ore [S] content increases too. In addition, the high temperature flue gas
is not circulating, and the energy saving rate and the dioxin emission reduction rate are both low.
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3.2. CO2 Injection Through the Blast Furnace Tuyere

In 2010, Fu Zhengxue [30] et al. developed a method of injecting carbon dioxide into a Blast
Furnace (BF). Blowing CO2 or the exhaust gas containing CO2 into BF can effectively solve some
problems, such as resource saving, CO2 emissions reduction, and environmental pollution elimination.
The technical scheme is as follows: Firstly, CO2 or waste gas containing CO2 is blown into BF cold air
pipes. After heating in the hot blast stove, CO2 is blown or sprayed into the BF tuyere zone by the
hot air pipeline. Blown oxygen and CO2 react with the burning carbon in the tuyere zone, and then
CO is generated. Because of CO2 absorbing part of the exhausted heat of oxygen, a higher oxygen
enrichment can be achieved, and the CO generated is the smelting reduction agent, so the reductant
rate of the Blast Furnace is increased, and the production efficiency of BF will be improved. However,
the technology has not been applied industrially.

3.3. Carrier Gas of Pulverized Coal Injection

In 2011, Chinese researchers [31] invented a method to use CO2 as the transmission medium of
pulverized coal injected into BF (Figure 3). Mixed coal powder was used in BF tuyere to replace coke,
provide heat, and act as a reducing agent.

Pulverized coal in the tuyere zone reacts not only with the enriched CO2, but also with the
oxygen from hot air. It is necessary to adjust the amount of pulverized coal injection and the oxygen
enrichment level to achieve the best ratio and promote complete combustion of the pulverized coal in
front of the tuyere. Due to the use of CO2 instead of compressed air or nitrogen as the transmission
medium, the total amount of exhaust gas through BF should be reduced, which will significantly
reduce the nitrogen content and increase the amount of CO2 + CO. Therefore, the purity and calorific
value of BF gas increase.

So far, there has been no industrial application reported for the above two patents. CO2 injection
through a Blast Furnace tuyere creates a new route of CO2 utilization. The amount of CO2 utilization
in the BF process will be greater than 50 kg/ton of iron, but the utilization of CO2 emissions in the BF
process is still being researched.
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4. Applications in Other Ferrous Metallurgy Processes

4.1. Application in Smelting Stainless Steel

In 2011, Anshan Iron and Steel Co., Ltd. [32] invented a smelting method of AOD by blowing
CO2 to produce stainless steel, which is mainly about injecting CO2 into molten steel to enhance
the decarburization. This suits smelting steel whose carbon content ranges from 0.001% to 0.3%.
CO2 injected into the molten steel not only can decarburize, but can also enhance the bath stirring, and
it can promote the oxygen reaction and cool the oxygen lance, whose life is improved by 20%.

Our team studied the mechanism of Cr retention and decarburization when injecting CO2 to AOD
from the aspects of thermodynamics and kinetics. In the laboratory, tube furnace experiments found
that the Cr retention and decarburization effects of CO2 are very good, and the carbon content can
reach 0.5% with little chromium oxidation occurring [33]. When the O2 proportion of smelting gas
was increased, large amounts of chromium oxidation occurred, and the decarburization was relatively
reduced. An analysis of the changes in materials and energy balance found that it could meet the
requirements for refining the temperature when the CO2 injection ratio was less than 9.13%. As the
proportion of CO2 increased within this range, the AOD furnace surplus heat reduced, and the CO
proportion of furnace gas increased.

4.2. CO2 Circulation Combustion

CO2 circulation combustion technology uses recycled flue gas to replace the nitrogen in the
air (Figure 4), which can reduce nitric oxide emissions and improve the thermal efficiency of
combustion [34]. Its application in steel rolling heating furnaces and pit furnaces can reduce fuel
consumption, shorten the heating time, and reduce emissions.
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In the 1920s, the Linde Group [35] tried applying flameless combustion for heating in the ferrous
industry, reducing fuel consumption and emissions of NOx and CO2 through the development of a
special burner to achieve a special method of combustion. In addition, the Swedish Hofors works
Ovako also used the technology in the heating furnace, finding that the production increased by 30–50%
and the fuel reduced by 30–45% with more uniform heating and reductions in CO2 and NOx emissions.

5. Conclusions

There are many methods of CO2 utilization in the ferrous metallurgy process, such as directly
being blown in the BF and Converter, serving as a carrier gas for coal injection in BF, use as a shielding
gas and mixing gas in refinement, the continuous casting process and stainless steelmaking, and use in
circulation in the exhaust gas of the steel rolling heating furnace. All of these uses reflect the special
role that CO2 plays in the ferrous metallurgy process.

In China, policies of CO2 utilization and emission reduction are actively carried out. The historical
carbon emissions are being investigated to build a unified nationwide carbon emissions trading
system. Meanwhile, some Chinese steel plants have carried out procedures involvingCO2 utilization.
The technology of top and bottom blowing CO2 in the 300 t converter has been applied, which achieved
good results.

With the continuous improvement and further expansion of CO2 application in the ferrous
metallurgy process, carbon dioxide usage in the ferrous metallurgy process is expected to be more
than 100 kg per ton of steel. At present, the annual steel output of China is about 800 million tons, and
the annual amount of recycled CO2 utilization is around 80 million tons in metallurgical processes,
which could effectively facilitate the progress of metallurgical technology, strongly promoting energy
conservation in the metallurgical industry. It meets the need for sustainable development in China.
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