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Abstract: Grain structure and macrosegregation are two main factors determining mechanical
properties of components and are strongly coupled during alloy solidification. A two-dimensional
(2D) cellular automaton (CA)–finite element (FE) model is developed to achieve a direct macroscopic
modeling of grain structure and macrosegregation during the solidification of binary alloys. With the
conservation equations of mass, momentum, energy, and solute solved by a macroscopic FE model
and the grain structure described by a microscopic CA model, a two-way coupling between the
CA and FE models is applied. Furthermore, the effect of the fluid flow on the dendrite tip growth
velocity is considered by modified dendrite tip growth kinetics. The CAFE model is applied to a
quasi-2D benchmark solidification experiment of a Sn–3.0wt.%Pb alloy, and the grain structure and
macrosegregation are predicted simultaneously. It is demonstrated that the model has a capacity
to describe the undercooling ahead of the growth front. The growth directions of columnar grains,
grain sizes, and columnar-to-equiaxed transition (CET) position are obviously modified by the fluid
flow, and obvious segregated channels almost aligned with the orientations of the columnar grains
are found. Qualitatively good agreement is obtained between the predicted segregation profiles and
experimental measurements.
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1. Introduction

Solidification is a process to fabricate raw materials or even products, playing an important role in
the manufacturing industry. Macrosegregation (i.e., composition heterogeneities of alloying elements
over a larger scale than the microstructure) and grain structure are two main factors determining
mechanical properties of components, and they are strongly coupled during the solidification of
alloys. On one hand, the distributions of the temperature and solute concentrations have a significant
influence on the development of the grain structure. On the other hand, the undercooling and interface
morphology during the development of the grain structure remarkably affect the fluid flow, thus the
heat and mass transfer. In order to achieve a deep understanding of the interaction between the grain
structure and macrosegregation and to give an accurate prediction, numerical models are required to
give a coupling between the solution of conservation equations of mass, momentum, energy, and solute,
and the development of the grain structure.

Several modeling approaches were developed in the past decades: direct microscopic modeling,
indirect microscopic modeling, indirect macroscopic modeling, and direct macroscopic modeling.
Direct microscopic modeling tracks the development of phase interfaces by methods of front
tracking [1], phase field [2,3], cellular automaton [4,5], volume averaging with interface tracking [6,7],
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or level set [8]. Although precise distributions of phases and compositions can be obtained, it is difficult
for them to be applied to industrial-scale castings due to the extremely high computation cost. Indirect
microscopic modeling depicts the average phase fractions and compositions by volume averaging over
each independent phase. It can be embedded in direct macroscopic modeling to simplify the inner
microstructure of each grain. Indirect macroscopic modeling is currently the most popular approach to
industrial-scale castings [9–14]. It solves one or several sets of conservation equations averaged over a
representative elementary volume for the heat and mass transfer with thermodynamic considerations
of the solidification [15], but the microstructure is not directly simulated. As a consequence, direct
macroscopic modeling has been proposed to make a compromise between such a coupling and the
computation cost. It solves the conservation equations at the macroscopic scale, and tracks the limit
of the mushy zone and the liquid at the mesoscopic scale, rather than the phase interfaces. Thus,
the macrostructure and macrosegregation can be predicted simultaneously. Although the complicated
morphology of phase interfaces is not described, the crystallographic orientation and the effect of
the fluid flow can be well incorporated into the grain growth, making it sufficiently advanced and
applicable to industrial applications [16–18].

Recently, a new quasi-2D benchmark experiment model was designed to accurately control
the cooling rate and horizontal temperature gradient using a closed-loop controlled temperature
measurement system [19]. Various solidification experiments [20–22] were performed based on the
tin–lead (Sn–Pb) alloys due to their strong segregation tendency and operability in the laboratory,
giving better experimental benchmarks for numerical validation. This contribution is devoted to
achieving a direct macroscopic modeling with a 2D cellular automaton–finite element (CAFE) model,
which is an extension of a newly developed FE model by the authors [23] for the prediction of
macrosegregation during the solidification of binary alloys. The CAFE model is applied to the
solidification benchmark experiment of a Sn–3wt.%Pb alloy [22], in which a fully developed fluid
flow is initiated and a columnar-to-equiaxed transition (CET) occurs. The grain structure and
macrosegregation are predicted simultaneously. The interaction between the fluid flow and the
grain structure, as well as the effect of the orientations of columnar grains on the macrosegregation,
are investigated in detail.

2. Model Descriptions

The CAFE model is based on a macroscopic FE model and a microscopic CA model, and a
coupling between them is implemented. Figure 1 schematizes different length scales and their
relationship included in this model. The macroscopic scale is represented by an FE grid of triangular
elements, where macroscopic conservation equations of mass, momentum, energy, and solute are
solved (Figure 1a). The microscopic scale is expressed by a CA grid of square cells (Figure 1b), in hich
the development of the grain structure is described. Neglecting the dendrite morphology, each grain
is simplified by an envelope outlining the dendrite tip positions (Figure 1c). For cubic crystalline
materials, the grain envelope is characterized by a quadrilateral shape in 2D case and an octahedral
shape in 3D case. Only the nucleation and growth of the primary solid phase is considered, and the
grain boundary wetting [24,25] is ignored.
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Figure 1. Schematic of different length scales included in the present CAFE model: (a) macroscopic FE
grid of triangular elements, (b) microscopic CA grid of square cells, and (c) grain envelope described
in each cell.

As shown in Figure 1b, the CA and FE grids are completely superimposed. In present formulation,
linear triangular element is used. Each cell v, located in a given triangular element F defined by nodes
nF

i
(
i =

[
1, NF

n
]
, NF

n = 3
)
, is uniquely defined by its center coordinates, cv(xv, yv). In order to exchange

information between cell v and the FE nodes nF
i , linear interpolation coefficients, c

nF
i

v
(
i =

[
1, NF

n
])

,
are defined. Thus, a variable available at the nodes of element F, ξnF

i
, can be interpolated to obtain the

corresponding value at cell v, ξv, by:

ξv =
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n

∑
i=1

c
nF

i
v ξnF

i
, (1)

Similarly, a variable calculated at the CA grid can be projected onto the FE grid. For example,
the value of a variable at an FE node n, ξn, can be obtained by the following summation over the values
at all the cells, vi(i = [1, Nn

v ]), seen by the FE node n, ξvi :

ξn =

(
Nn

v

∑
i=1

cn
vi

ξvi

)
/

(
Nn

v

∑
i=1

cn
vi

)
, (2)

For the node nF
1 shown in Figure 1b, Nn

v is the number of all the cells drawn.

2.1. Macroscopic FE Model

In present formulation, a “minimal” model [26] is considered for the solidification of binary alloys.
It requires the solution of coupled conservation equations averaged over a representative elementary
volume considering a mixture of the solid and liquid phases. With no other phase being present,
the volume fractions of the liquid, gl , and the solid, gs, always satisfy the correlation gl + gs = 1.
Furthermore, the solid phase is fixed and nondeformable. Thus, the system of macroscopic equations
is defined by the conservations of the total mass, momentum of the liquid phase, energy, and solute
as follows:

Total mass concentration:
∇ · v = 0, (3)

where v is the volume-averaged velocity. In this case, it reduces to v= glvl , with vl being the
volume-averaged intrinsic velocity of the liquid phase.

Momentum conservation for the liquid phase:

ρ
∂v
∂t

+
ρ

gl (∇v)v = ∇ ·
(

µl∇v
)
− gl∇p− µl

K
glv + glρbg, (4)



Metals 2019, 9, 177 4 of 18

where p is the intrinsic liquid pressure, t the time, µl the dynamic viscosity of the liquid, and g
the gravity. Assuming constant densities, ρl and ρs, for the liquid and solid phases, respectively,
the density, ρ, is given by ρ = glρl + gsρs. The density in the buoyancy term, ρb, is defined by the
Boussinesq approximation:

ρb = ρl
[
1− βT

(
T − Tre f

)
− βw

(
wl − wre f

)]
, (5)

where βT and βw are thermal and solutal expansion coefficients, respectively. Tre f and wre f are reference
temperature and reference composition, respectively. The isotropic permeability in the mushy zone, K,
is assumed and defined by the Carman–Kozeny relation:

K =
λ2

2

180
gl3(

1− gl
)2 , (6)

where λ2 is the secondary dendrite arm spacing.
Energy conservation:

ρ
∂H
∂t

+ ρcp∇T · v−∇ · (λ∇T) = 0, (7)

where H is the volume-averaged specific enthalpy per unit mass, and T the volume-averaged
temperature. The average thermal conductivity, λ, and the average specific heat, cp, are given by
λ = glλl + gsλs and cp = gscl

p + gscs
p, respectively. Thus, the relation between the volume-averaged

specific enthalpy and temperature can be expressed as:

H = cpT + gl∆
l
sH f , (8)

where ∆l
sH f is the latent heat of fusion per unit mass.

Solute conservation:
∂w
∂t

+∇wl · v−∇ ·
(

gl Dl∇wl
)
= 0, (9)

where w is the volume-averaged mass concentration, wl the volume-averaged mass concentration in
the liquid phase, and Dl the diffusion coefficient of the solute element in the liquid phase.

In addition, a microsegregation model is used to close the above conservation equations. Here,
the lever rule is applied and given as follows:

ws = kpwl , (10)

w = glwl + gsws, (11)

T = Tm + mlwl , (12)

where ws is the volume-averaged mass concentration in the solid phase, kp the partition coefficient,
Tm the melting temperature of pure solvent, and ml the liquidus slope.

2.2. Microscopic CA Model

2.2.1. Nucleation

A state index, IS
v is defined for each CA cell v to identify the phase and neighborhood of cell v.

By modifying the index, the development of the grain structure during solidification can be tracked.
The state index IS

v is defined as follows:

IS
v = 0, when cell v is liquid;

IS
v = +1, when cell v is not liquid, but at least one of its nearest neighboring cells, µi(i = [1, Nv]),

is still liquid;
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IS
v = −1, when cell v is not liquid, and all its nearest neighboring cells, µi(i = [1, Nv]), are not liquid;

where Nv is the number of the first and second nearest neighboring cells of cell v, thus Nv = 8.

In present formulation, only the nucleation and growth of the primary solid phase are accounted
for. Nucleation sites defined by a Gaussian distribution [27] are considered for the bulk melt and the
surfaces in contact with the melt, for which the three adjustable nucleation parameters are denoted by
(∆TV

N , ∆TV
σ , nV

max) and (∆TS
N , ∆TS

σ , nS
max), respectively. As a result of 2D approximation, the maximum

volume density nV
max (m−3) and maximum surface density nS

max (m−2) are converted into the maximum
surface density nV∗

max (m−2) and maximum linear density nS∗
max (m−1), respectively, by stereological

relationships [28]. For a cell v containing a nucleation site, a critical nucleation undercooling, ∆Tnucl
v ,

and a random crystallographic orientation, θv, are attributed according to the corresponding Gaussian
distribution. During solidification, if a cell v containing a nucleation site is still liquid (IS

v = 0) and its
undercooling is greater than the critical nucleation undercooling ∆Tnucl

v , a nucleation event will take
place. Then, the state indexes of all CA cells are updated according to the definition given above.

2.2.2. Growth

Once a CA cell is nucleated or engulfed by a growing grain envelope, it becomes mushy and a
mushy zone starts to develop within the cell. In present 2D case, the decentered quadrilateral growth
algorithm proposed by Guillemot and Gandin [16,17] is adopted. The evolution of a grain envelope is
reduced to the capture of the neighboring cells. For a growing cell v, a quadrilateral growth shape is
defined by the lengths of four half-diagonals corresponding to the four 〈10〉 preferential orientations
and the angle θv between the [10] preferential orientation and the ox axis. Assuming that the areas of
the current growth shape, the minimal growth shape, and the maximal growth shape are Av, Amin

v ,
and Amax

v , respectively, the volume fraction of the mushy zone within cell v is calculated by:

gm
v = min

(
Av − Amin

v
Amax

v − Amin
v

, 1
)

, (13)

Then, the volume fraction of solid within cell v can be expressed by:

gs
v = gm

v gsm
v , (14)

where gsm
v is the internal volume fraction of solid within the current growth shape.

2.2.3. Dendrite Tip Growth Kinetics

The dendrite tip growth kinetics proposed by Gandin et al. [29], which is an extension of the
well-known Lipton-Glicksman-Kurz (LGK) model [30], is adapted to calculate the growth velocities of
the four half-diagonals of a growth shape in the presence of fluid flow independently. For a growing
cell v, the total undercooling ∆T is calculated firstly by:

∆T = Tm + mlwl∞
v − Tv, (15)

where wl∞
v is the liquid composition far from the solid/liquid interface, and Tv the temperature.

Assuming that the kinetics undercooling is negligible, the total undercooling ∆T can be split into three
contributions, namely:

∆T = ∆Tt + ∆Tc + ∆Tr, (16)

where ∆Tt, ∆Tc and ∆Tr represent the thermal undercooling, solutal undercooling, and curvature
undercooling, respectively, which are expressed as follows [30]:

∆Tt =
∆l

sH f

cp
Ωt, (17)
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∆Tc = mlwl∞

{
1− 1

1−
(
1− kp

)
Ωc

}
, (18)

∆Tr =
2Γ
rp

, (19)

where Ωt = ∆Ttcp/∆l
s H f is the dimensionless thermal supersaturation, Ωc =(

wl
v

s/l − wl∞
v

)
/
(

wl
v

s/l(1− kp
))

the dimensionless solutal supersaturation, rp the dendrite tip

radius, Γ the Gibbs–Thomson coefficient, and wl
v

s/l the liquid composition at the solid/liquid interface.
For the thermal supersaturation Ωt, Ivantsov correlation [30] is used:

Ωt = Pt exp(Pt)E1(Pt), (20)

where Pt = rpvp/2α is the thermal Peclet number, E1(Pt) =
∞∫

Pt

exp(−τ)
τ dτ the exponential integral

function, vp the dendrite tip velocity, and α = λ/ρ0cp the thermal diffusivity. For the solutal
supersaturation Ωc, the boundary layer correlation proposed by Gandin et al. [29] is applied:

Ωc = Pc exp(Pc)

[
E1(Pc)− E1

(
Pc

(
1 +

4
AReBScC sin(φ/2)

))]
, (21)

Re =
2rp‖vl∞

v ‖
ν

, (22)

Sc =
µl/ρ

Dl , (23)

with A = 0.5773, B = 0.6596, C = 0.5249, where Pc = rpvp/2Dl is the solutal Peclet number, Re the
dimensionless Reynolds number, Sc the Schmidt number, ‖vl∞

v ‖ the magnitude of the fluid flow
velocity far from the interface vl∞

v , φ the angle between the fluid flow direction and the four 〈10〉
preferential orientations, and ν = µl/ρl the kinematic viscosity. It is notable that a purely diffusive
regime is retrieved when the magnitude of the fluid flow velocity ‖vl∞

v ‖ or the angle φ is reduced to
zero, which is the case of the LGK model [30].

The marginal stability criterion is used to approximate the dendrite tip radius by the minimum
stable wavelength [30], resulting in the following relationship between the dendrite tip radius rp and
the dendrite tip velocity vp:

rp =
Γ/(2σ∗)

Pt ·∆l
s H f

cp
− Pcml wl∞

v (1−kp)
1−(1−kp)Ωc

, (24)

where σ∗ is the marginal stability constant taken as 1/4π2.
The temperature Tv, the liquid composition far from the interface wl∞

v and the fluid flow velocity
far from the interface vl∞

v are interpolated at cell v from the corresponding entities at the nodes of
element F containing cell v. Based on the above equations, an iterative method is used to calculate the
dendrite tip growth velocity.

2.3. Coupling Strategy

Due to the different stability requirements, a large time step, ∆t, is used for the macrocalculations,
and another small time step, δt, for the microcalculations. Two time-stepping loops with different time
steps are used for the FE and CA calculations. The micro time step δt is adjusted automatically to
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make sure that the growth of the dendrite tip within one micro time step does not exceed one CA cell
size, lCA, resulting in the following limitation:

δt = min
(

αlCA/v[ij]p
max
v , ∆t

)
with α ∈ [0, 1] , (25)

where v[ij]p
max
v is the maximum of the dendrite tip growth velocities in the four 〈10〉 preferential

orientations over all the growing cells (IS
v 6= 0 and gm

v < 1.0), and α is a parameter introduced to ensure
a correct prediction for the growth competition of columnar grains [31].

The macroscopic equations are solved according to the literature [23]. Once the variations of
the master variables, such as the average enthalpy, ∆Hn, composition, ∆wn, and liquid velocity, ∆vv,
over one macro time step ∆t at the FE nodes are available, the corresponding variations of the average
enthalpy, δHn, composition, δwn, and liquid velocity, δvn, over one micro time step δt are firstly
interpolated in time by:

δξn =
δt
∆t

∆ξn, (26)

where ∆ξn and δξn are the variations over the macro and micro time steps, respectively. Then, a
two-way coupling between the FE and CA models is applied. On one hand, the variations of the
master variables, such as the average enthalpy δHv, composition δwv, and liquid velocity δvv at the
CA cells are interpolated from the corresponding entities (i.e., ∆Hn, ∆wn and ∆vn) at the FE nodes
using Equation (1) at the start of each micro time step. The conversion of the new enthalpy, Htm+δt

v ,
and composition, wtm+δt

v , to the average temperature, Tv
tm+δt, and the internal volume fraction of solid,

gsm
v

tm+δt, are performed at the CA cells with Equation (8) and the lever rule Equations (10)–(12). On the
other hand, the volume fraction of liquid, gl

n
tm+δt, and average temperature, Ttm+δt

n , at the FE nodes
are fed back from the CA calculations at the end of each micro time step. With the new calculated
volume fraction of liquid gl

n
tm+δt, the liquid composition wl

n
tm+δt at the FE nodes is updated using

Equation (11).

3. Results and Discussion

A quasi-2D benchmark solidification experiment of a Sn–3wt.%Pb ingot under natural
convection [22] is considered in this section. As shown in Figure 2, an ingot with 100 mm in
length (along the x axis), 60 mm in height (along the y axis), and 10 mm in thickness (not shown in
present 2D case) was melted and solidified under the controlled thermal conditions by left-hand-side
(LHS) and right-hand-side (RHS) heat exchangers, with the opposite greatest surfaces of the ingot,
with dimensions of 60 mm × 10 mm, placed vertically. Assuming that a quiescent melt with
homogeneous temperature and composition is first obtained at 260 ◦C, the experimental procedure is
simplified for a better description as follows: (1) setting the temperatures of the LHS and RHS heat
exchangers with 270 ◦C and 250 ◦C, respectively, to apply a temperature difference of 20 ◦C, suggested
by Boussaa et al. [22]; (2) holding the temperatures of the two heat exchangers for 1000 seconds to
obtain stabilized temperature and fluid flow fields in the melt; (3) cooling both the LHS and RHS heat
exchangers with a cooling rate CR = 0.03 ◦C/s, until the ingot is completely solidified. The cooling
rate is selected as slow enough to form a significant segregation. The parameters used in present
simulations are given in Table 1.
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Table 1. Parameters used in simulations for the solidification of a Sn–3wt.%Pb alloy [18,21,22].

Parameter Description Symbol Value Unit

Phase diagram
Melting temperature Tm 232.0 ◦C
Eutectic temperature TE 183.0 ◦C
Eutectic composition wE 38.1 wt.%
Partition coefficient kp 0.0656 -

Physical properties
Reference density ρ 7130.0 kg·m−3

Solutal expansion coefficient βw −5.3 × 10−3 wt.%−1

Thermal expansion coefficient βT 9.5 × 10−5 K−1

Specific heat of the liquid cl
p 265.0 J·kg−1·K−1

Specific heat of the solid cs
p 226.0 J·kg−1·K−1

Latent heat ∆l
s H f 57,512.0 J·kg−1

Thermal conductivity of the liquid λl 55.0 W·m−1·K−1

Thermal conductivity of the solid λs 33.0 W·m−1·K−1

Diffusion coefficient of Pb in liquid Sn Dl 3.0 × 10−9 m2·s−1

Dynamic viscosity of the liquid µl 2.0 × 10−3 Pa·s
Initial and boundary conditions

Nominal composition w0 3.0 wt.%
Initial temperature T0 258.6 ◦C

Initial velocity v0 0 m·s−1

Initial temperature of the LHS wall Tle f t,0 270.0 ◦C
Initial temperature of the RHS wall Tright,0 250.0 ◦C

Cooling rate on the LHS and RHS walls CR −0.03 ◦C·s−1

Nucleation and grain growth
Gibbs–Thomson coefficient Γ 2.0 × 10−7 m·K

Gaussian distribution nucleation parameters on the RHS wall
Average undercooling ∆TS

N 1.0 K
Standard deviation ∆TS

σ 0.5 K
Density of nucleation sites nS

max 1.0 × 106 m−2

Gaussian distribution nucleation parameters in the bulk melt
Average undercooling ∆TV

N 2.5 K
Standard deviation ∆TV

σ 0.5 K
Density of nucleation sites nV

max 1.0 × 108 m−3

Additional parameters
FE mesh size lFE 1.0 × 10−3 m
FE time step ∆t 0.05 s
CA cell size lCA 2.0 × 10−4 m

Figure 2. Schematic of the solidification configuration of a Sn–3wt.%Pb ingot. The coordinates of
locations P1–P4 are expressed in millimeters.
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3.1. Dendrite Tip Growth Velocity in the Presence of Fluid Flow

Since the temperature, composition, and liquid velocity change with time and space during the
solidification of alloys, the dendrite tip growth kinetics are required to give a dendrite tip growth
velocity based on the local temperature, composition, and liquid velocity of each growing CA cell.
In order to ensure the reliability of the present CAFE model, the modified dendrite tip growth kinetics
defined by Equations (15)–(24) are first validated with respect to Sn–Pb alloys with fluid flow. Figures 3
and 4 show the comparisons of the dendrite tip growth velocity of Sn–Pb alloys calculated by present
correlation and the correlation given by Ananth and Gill [32], which yield exact solutions based on
several flow approximations. A good agreement is obtained. In addition, the effect of the angle
between the dendrite growth direction and the liquid velocity vector on the dendrite tip growth
velocity is shown in Figure 5. It is notable that the maximal and minimal growth velocities are obtained
in the upstream direction (φ = π) and downstream direction (φ = 0) in the presence of fluid flow,
respectively. In the absence of fluid flow, the growth velocity is equivalent in all directions.

Figure 3. Variations of the dendrite tip growth velocity of Sn–Pb alloys with the Pb composition for
different values of the undercooling in the presence of fluid flow (vl = 0.01 m/s, φ = π).

Figure 4. Variations of the dendrite tip growth velocity of Sn–3wt%Pb alloy with the undercooling for
different values of the fluid flow velocity (φ = π).
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Figure 5. Polar plot of the dendrite tip growth velocity of Sn–3wt%Pb alloy with ∆T = 1.0 K as
a function of the angle φ between the preferential orientations and the liquid velocity vector in the
presence and absence of fluid flow.

3.2. Evolution of the Temperature and Solid Fraction Fields

The temperature and solid fraction fields obtained by the present CAFE model are illustrated in
this section. Figure 6 shows the temperature distributions at selected instants. At 1000 s (Figure 6a),
that is, the end time of stage (2) for the stabilization of the temperature and fluid flow fields,
the isotherms present a stratified core at the center and vertical layers near the LHS and RHS walls.
In the stratified core, the temperature increases with the increasing height, indicating a clockwise
circulation of the fluid flow because of high temperature on the LHS wall. With both the LHS and
RHS heat exchangers cooling down since 1000 s, the stratification characteristic of the isotherms is
maintained until 1750 s (Figure 6b), when a solidification front starts to develop from the RHS wall to
the left. With the solidification front developing, the isotherms in the right half and those in the left half
become denser and sparser, respectively, which indicates a large temperature gradient in the mushy
zone and a small one in the liquid zone, respectively, as shown in Figure 6c,d. Due to the instability of
the growth front, the isotherms near the RHS wall are less smooth. At 2500 s (Figure 6e), the number
of the isotherms in the left half of the ingot is very few, and the highest temperature appears at the
position about a third of the length to the LHS wall, indicating that another solidification front will
develop from the LHS wall to the right. Upon further cooling, the isotherms in the left part of the ingot
become denser gradually and merge with the isotherms in the right part of the ingot finally at the
position about a third of the length to the LHS wall, as shown in Figure 6f.
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Figure 6. Temperature fields predicted at selected instants during solidification of the Sn–3wt.%Pb
ingot: (a) 1000 s, (b) 1750 s, (c) 2000 s, (d) 2300 s, (e) 2500 s, and (f) 2700 s.

The solid fraction fields predicted at selected instants after the solidification are given in Figure 7.
It is clearly shown that the first solidification front is initiated on the RHS wall and develops toward the
left (Figure 7a,b), and the second solidification front starts to progress from the LHS wall to the right
(Figure 7c,d). The two solidification fronts impinge at the position about a third of the length to the
LHS wall, where the liquid is the last to solidify. The solid fraction profiles are also unsmooth. In order
to compare the positions of the solidification fronts with those obtained in equilibrium solidification
without the undercooling, a purely macroscopic FE simulation is also performed with the CA model
disabled. The profiles corresponding to the solid fraction of 0.0001 obtained by the present CAFE
model and the FE simulation are drawn in white and red to trace the solidification fronts, respectively.
As shown in Figure 7a–c, the solidification fronts given by the present CAFE model (white profiles)
overall fall behind those predicted by the FE simulation (red profiles) due to the presence of the
undercooling. In Figure 7d, however, the solidification fronts given by the present CAFE model
(white profiles) advance faster than those obtained by the FE simulation (red profiles), which may be
attributed to a quite different distribution of Pb concentration.
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Figure 7. Solid fraction fields predicted at selected instants during solidification of the Sn–3wt.%Pb
alloy: (a) 2000 s, (b) 2300 s, (c) 2500 s, and (d) 2700 s. The white and red profiles correspond to the
solid fraction of 0.0001 predicted by the present CAFE model and a purely macroscopic FE simulation
disabling the CA model (equilibrium solidification), respectively.

In order to give a closer insight into the solidification process, the cooling curves and the solid
fraction evolutions obtained by the present CAFE model at the four locations P1–P4 (shown in Figure 2)
are compared with those given by the FE simulation, as shown in Figure 8. In both simulations,
the solidification starts in the sequence of P4, P3, P1, and P2, and finishes in the sequence of P4, P3, P2,
and P1. For the cooling curves, little difference is shown between the two simulations. The cooling
curve at each location shows a great oscillation when it is in liquid state, which indicates a significant
oscillation in the fluid flow. For the solid fraction evolutions, however, the results predicted by the
present CAFE model at all the four locations P1–P4 obviously fall behind those given by the FE
simulation, and a little more liquid undergoes the eutectic transformation finally.

Figure 8. Comparisons of the cooling curves and the solid fraction evolutions obtained by the present
CAFE model and a purely macroscopic FE simulation disabling the CA model at the four locations
P1–P4 of the Sn–3wt.%Pb ingot.
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3.3. Interaction between the Fluid Flow and Grain Structure

In order to clarify the effect of the fluid flow on the dendrite tip growth kinetics, the grain
structure and fluid flow obtained by the present CAFE model are compared with those given by
a degenerated CAFE simulation, in which the effect of the fluid flow on the dendrite tip growth
kinetics is disabled. The results are presented in Figure 9 with a strong interaction between the grain
structure and fluid flow. At 2000 s (Figure 9a1,a2), the fluid flow is characterized by a main clockwise
convection circulation at the center of the liquid zone and several small convection circulations at the
corners of the liquid zone and inside the main convection circulation. The maximal velocity is about
0.024 m/s. Columnar grains in an array have been nucleated on the RHS wall and develop toward the
left. With the columnar grains advancing, the main convection circulation also moves toward the left,
as shown in Figure 9b1,b2 at 2300 s. With further cooling, new equiaxed grains nucleate ahead of the
columnar grains or on the LHS wall due to the decreasing temperature gradient in the liquid zone
and the increasing volume of undercooled liquid, as shown in Figure 9c1,c2 at 2500 s. At the same
time, the maximal velocity decreases from about 0.012 m/s to about 0.003 m/s due to the increasing
permeation resistance in the mushy zone. These equiaxed grains develop quickly and impinge the
growing columnar grains finally, resulting in a CET, as shown in Figure 9d1,d2 at 3900 s.

Figure 9. Comparisons of the grain structure and the fluid flow at selected instants during solidification
of the Sn–3wt.%Pb alloy. Figure (a1–d1) and figure (a2–d2) are obtained by the present CAFE model
and a degenerated CAFE simulation disabling the effect of the fluid flow on dendrite tip growth
kinetics, respectively.



Metals 2019, 9, 177 14 of 18

Although little difference is shown in the flow fields obtained by the present CAFE model and
the degenerated CAFE simulation disabling the effect of the fluid flow on the dendrite tip growth
kinetics, two significant differences can be found in the grain structures. Firstly, an obvious upward
inclined columnar structure from the RHS wall to the left is predicted by the present CAFE model
(Figure 9a1–d1). This is attributed to the downward inclined liquid flow ahead of the growth front.
As the growth velocity in the upstream direction is greater than that in the downstream direction,
the grains with one of the four 〈10〉 preferential orientations opposite to the flow direction can adopt a
smaller undercooling and survive in the competition with other grains. Thus, the columnar grains
extend faster in the direction opposite to the fluid flow, resulting in the current grain selection.
In the degenerated CAFE simulation (Figure 9a2–d2), however, the columnar grains are only slightly
upward inclined in the lower right part of the ingot, which is caused by the slightly upward inclined
temperature gradient (as shown in Figure 6). Secondly, the final equiaxed grains are obviously finer
and the CET position is farther away from the LHS wall in the degenerated CAFE simulation. This is
because a purely diffusive regime is retrieved in the calculation of dendrite tip growth kinetics,
resulting in a smaller dendrite tip growth velocity than that in the present CAFE model. Thus, a larger
volume of undercooled liquid forms and an earlier nucleation of new equiaxed grains occurs.

3.4. Macrosegregation

The segregations maps obtained by the present CAFE model, the degenerated CAFE simulation
disabling the effect of the fluid flow on the dendrite tip growth kinetics, and the FE simulation
disabling the CA model at selected instants are compared in Figure 10. It is demonstrated that the
segregation maps are generally consistent. Once the first solidification front is initiated on the RHS
wall, a negative segregation pocket and a positive segregation band develop from the RHS wall to
the left at the top and bottom part of the ingot, respectively, as shown in Figure 10a1–b1,a2–b2,a3–b3.
Since the initialization of the second solidification front on the LHS wall, another negative segregation
pocket and another positive band develop toward the right at the top and bottom part of the ingot,
respectively, as shown in Figure 10c1–d1,c2–d2,c3–d3. The two negative segregation pockets and the
two positive segregation bands both impinge at the position about a third of the length to the LHS wall,
forming a vertical Pb-rich plume, as shown in Figure 10d1,d2,d3. Quantitatively, significant differences
can be concluded in two aspects. Firstly, comparing the segregation maps obtained by the present
CAFE model (Figure 10a1–d1) with those given by the FE simulation (Figure 10a3–d3), the segregation
maps obtained by the present CAFE model show a lower positive segregation band along the bottom
wall, and the segregated channels beside the plume and the negative segregation chunk predicted by
the FE simulation at the lower right corner are not found. Secondly, comparing the segregation maps
obtained by the present CAFE model (Figure 10a1–d1) with those given by the degenerated CAFE
simulation (Figure 10a2–d2), more obvious segregated channels almost aligned with the orientations
of the columnar grains are predicted by the present CAFE model in the right of the plume, which is
attributed to the introduction of the fluid flow in the calculation of dendrite tip growth kinetics.



Metals 2019, 9, 177 15 of 18

Figure 10. Comparisons of the segregation maps obtained by the present CAFE model (a1–d1),
a degenerated CAFE simulation disabling the effect of the fluid flow on the dendrite tip growth kinetics
(a2–d2), and a purely macroscopic FE simulation disabling the CA model (a3–d3) at selected instants
during solidification of the Sn–3wt.%Pb alloy.

More quantitatively, Figure 11 presents comparisons of the final average mass concentration
of Pb obtained by the above three simulations with the experimental measurements reported by
Boussaa et al. [22] along the three horizontal lines L1–L3 (Figure 2) at the heights of 10 mm, 30 mm,
and 50 mm in the ingots. A quite similar trend is shown between the simulated profiles and
experimental measurements. However, the peaks corresponding to the plumes predicted by the three
simulations are all smaller than their counterparts given by the experimental measurements, indicating
an underestimated positive segregation. Furthermore, the same position of the peaks, x = 0.031
m, is predicted in all the three simulations, while the position of the peaks given by experimental
measurements is about x = 0.025 m. Those differences may be caused by the simplified parameters for
physical properties on one hand. On the other hand, model limitations, such as 2D approximation,
isotropic permeability of the mushy zone, motionless equiaxed grains, and the neglected deformation
and shrinkage, should also be responsible for those differences. Finally, it is of interest to underline
that the profiles of Pb concentration predicted by the present CAFE model and the degenerated CAFE
simulation also show obvious discrepancies in the right of the plume, though a good consistency is
shown in the left of the plume.
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Figure 11. Comparisons of the final average mass concentration of Pb obtained by the present CAFE
model, a degenerated CAFE simulation disabling the effect of the fluid flow on the dendrite tip growth
kinetics, and a purely macroscopic FE simulation disabling the CA model with the experimental
measurements [22] along the three horizontal lines L1–L3 at the heights of 10 mm, 30 mm, and 50 mm
in the ingots (Figure 2).

4. Conclusions

A two-dimensional (2D) cellular automaton (CA)–finite element (FE) model has been developed
to achieve a direct macroscopic modeling of grain structure and macrosegregation during the
solidification of binary alloys. It consists of a macroscopic FE model that solves conservation equations
averaged over a representative elementary volume based on an FE grid, a microscopic CA model that
describes the evolution of the grain structure based on a CA grid, and a two-way coupling algorithm
between the two models. The fluid flow is not only considered in the solution of macroscopic
conservation equations, but also incorporated into the dendrite tip growth kinetics directly. The CAFE
model is applied to a quasi-2D benchmark solidification experiment of a Sn–3.0wt.%Pb alloy, and the
grain structure and macrosegregation are predicted simultaneously. It has been demonstrated that
the present CAFE model has a capacity to consider the undercooling ahead of the growth front,
which cannot be achieved by a purely macroscopic FE model with equilibrium solidification. Due to
the instability of the growth front, both the isotherms and the solid fraction isolines are less smooth.
Furthermore, a strong interaction between the fluid flow and grain structure is found. The growth
directions of the columnar grains, grain sizes, and columnar-to-equiaxed transition (CET) position
are obviously modified. In addition, the segregation maps obtained by the present CAFE model are
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quantitatively different from those given by a purely macroscopic FE model without consideration
of the undercooling, and obvious segregated channels almost aligned with the orientations of the
columnar grains are predicted.

It is believed that the present CAFE model gives a more reasonable prediction with profound
principle. A qualitatively good agreement is obtained between the segregation profiles given by the
present CAFE model and the experimental results. The quantitative differences may be attributed to
the simplified parameters for physical properties to a great extent. Besides, model limitations, such as
the 2D approximation, the isotropic permeability of the mushy zone, motionless equiaxed grains,
and the neglected deformation and shrinkage, may also be to blame. Thus, improvements are needed
to remove those limitations in the future.
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