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Abstract: The Cr-rich precipitates at the interphase boundary in stainless steels not only lead to the
sensitization, which further induces the intergranular corrosion and intergranular stress corrosion
cracking, but also significantly deteriorate the ductility and toughness. In this work, the formation of
Cr-rich precipitates at the interphase boundary in type 430 stainless steel was investigated from the
perspective of austenite–ferrite transformation kinetics. Cyclic heat treatment was firstly conducted
to reveal the kinetic mode of transformation behavior, i.e., local equilibrium or para equilibrium.
Subsequently, interrupted quenching during continuous cooling was carried out, which illustrated
clearly the relevance of the formation of interphase Cr-rich precipitates to the Cr enrichment adjacent to
the interphase boundary as revealed by line scanning of energy dispersive spectroscopy (EDS). Finally,
this enrichment of Cr was interpreted by DICTRA simulation, which is based on the determined
kinetic mode for austenite–ferrite transformation. This work has, for the first time, established
the correlation between the formation of interphase Cr-rich precipitates and the austenite–ferrite
transformation kinetics.

Keywords: transformation kinetics; local equilibrium; para equilibrium; Cr-rich precipitate;
interphase boundary; type 430 stainless steel

1. Introduction

Intergranular corrosion (IGC) and intergranular stress corrosion cracking (IGSCC) are the main
corrosion modes of stainless steels when exposed to an aggressive environment. They have been long
recognized to be induced by the boundary sensitization, i.e., the existence of a chromium (Cr) depleted
zone adjacent to boundaries [1–3]. Even though other underlying mechanisms [4–6] for the formation
of a Cr-depleted zone are found, the precipitation of Cr-rich carbide and nitride at boundaries is
certainly the major one [7,8]. Provided a sufficient chemical driving force for precipitation, this is
conceivable since the interface energy for nucleation is comparatively large at boundaries and the
subsequent growth would drain Cr atoms from neighboring areas alongside the boundaries [9]. Thus,
from the kinetic perspective, the precipitation of Cr-rich precipitates would be easier in ferritic stainless
steel (FSS) [10] or at the ferrite side of the interphase boundary in duplex stainless steel (DSS) [11] due
to the lower solubility of C and N and the fast diffusivity of Cr in the ferrite phase.

In contrast to the well-investigated IGC and IGSCC, the loss in ductility and toughness caused by
the Cr-rich precipitates at boundaries has drawn much less attention. Shankar et al. [12] attributed the
deterioration of ductility in 316LN stainless steel to the Cr-rich precipitates at grain boundaries, their
interaction with dislocations, and the associated stress buildup at the grain boundaries. Ghosh [13]
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found that the fracture mode changed from transgranular to intergranular with increasing formation
of grain boundary precipitates, and the ductility and fracture toughness decrease significantly. Hilders
et al. [14] also related the decrease in toughness of 304L stainless steel to the increasing volume fraction
of voids nucleated at the grain boundary precipitates formed during sensitization. Kumar Subodh and
Shahi [15] revealed the detachment at heavily precipitated grain boundaries in the heat-affected zone
of AISI 304L welds after post-weld thermal aging.

Considering the adverse effect on the in-use properties of stainless steels, investigation on the
mechanism for the formation of Cr-rich precipitates would be of great importance. The present work
focuses on two aspects, i.e., the austenite–ferrite transformation kinetics and the formation of Cr-rich
precipitates at prior austenite/ferrite interphase boundaries in type 430 stainless steel. The experimental
studies and DICTRA simulation have, for the first time, enabled the establishment of the correlation
between these two physical metallurgical behaviors.

2. Materials and Experiments

Two steels obtained from a steel company, i.e., type 430 (8 mm hot-rolled plate) and 410S (6 mm
hot-rolled plate) stainless steel were used in this study. Type 410S stainless steel was selected as
a comparison for the investigation of continuous cooling transformation kinetics. Their chemical
compositions are listed in Table 1.

Table 1. Chemical composition of experimental steels (wt %).

Stainless Steel C N Si Mn Cr Ni

430 0.04 0.04 0.25 0.32 16.32 0.16
410S 0.026 0.025 0.28 0.27 12.6 0.15

Similar constituent phases appear on both phase diagrams in Figure 1 which include ferrite,
austenite, chromium nitride, and carbide with body-centered cubic (BCC), face-centered cubic (FCC),
hexagonal close packed (HCP), and M23C6 crystal structure, respectively. The enlarged lower left
region of the phase diagram is shown in the inset. Chromium nitride and carbide would precipitate at
~850 ◦C and below. Formation of cementite is thermodynamically unfavorable. The most noticeable
difference in the phase diagram was the austenite single phase region between 901 and 1037 ◦C in type
410S stainless steel while the maximum volume fraction of austenite in the dual phase region is 44.7%
in type 430 stainless steel.
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Figure 1. Phase diagram of type 430 and 410S stainless steels. 
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Figure 1. Phase diagram of type 430 (a) and 410S (b) stainless steels.

The heat treatment experiments in this work were conducted on a DIL 805A/D dilatometer (TA
Instruments, New Castle, DE, USA). The sample size was Φ 4 mm × 10 mm. After machining, samples
were all homogenized in a sealed quartz tube at 1200 ◦C for 120 min. Figure 2 shows the employed
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heat treatment procedure. The sample was firstly held at 1200 ◦C for 5 min. Then, in the cyclic heat
treatment where austenite–ferrite transformation kinetics were studied, a 30 min isothermal holding
at 950 ◦C was carried out to create a “ferrite + austenite” dual-phase microstructure. Subsequently,
one cycle of heating and cooling between 950 and 1150 ◦C was applied to the sample before quenching
to room temperature. The corresponding rate of temperature change (RTC) was 10, 100, and 200 ◦C/min.
In the continuous cooling experiment, which was targeted for the investigation on the formation
of interphase Cr-rich precipitates, the sample was cooled at 30 ◦C/min from 1200 ◦C. Interrupted
quenching was respectively conducted at 850 and 200 ◦C to examine the resulted microstructure.Metals 2019, 9, x FOR PEER REVIEW 3 of 12 
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Figure 2. Schematic illustration of heat treatment procedure for (a) cyclic and (b) continuous
cooling experiments.

Microstructure examination was made by optical microscopy (OM) and scanning electron
microscopy (SEM, GeminiSEM 300, ZEISS, Oberkochen, Germany) with energy dispersive spectroscopy
(EDS, Ultim Max, Oxford Instruments, Abingdon, UK). The heat-treated samples have gone through
the standard metallographic preparation procedure, including grinding, polishing, and etching with
2% Nital solution.

3. Modeling of Austenite–Ferrite Transformation Kinetics

Over the past few decades, extensive research has been devoted to the study of austenite–ferrite
transformation kinetics. Among the several proposed theories, diffusion-controlled theory is the most
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important one. For the Fe-C-M (M stands for the substitutional element) system, there are two proposed
thermodynamic equilibrium conditions, i.e., para equilibrium (PE) and local equilibrium (LE).

3.1. Para Equilibrium

PE [16] describes the equilibrium state where only interstitial atoms are free to redistribute while
substitutional atoms remain configurationally frozen during transformation, i.e.,

uαM
uαFe

=
uγM
uγFe

=
u0

M

u0
Fe

(1)

where uFe and uM are molar fractions of Fe and M with respect to substitutional sites which are termed
u-fraction. The superscript 0 stands for bulk concentration and α or γ denotes the ferrite or austenite
phase. PE is a constrained equilibrium which is defined as

µαC = µ
γ
C(

µ
γ
Fe − µ

α
Fe

)
+

u0
M

u0
Fe

(
µ
γ
M − µ

α
M

)
= 0

. (2)

3.2. Local Equilibrium

In LE [17], the chemical potential µ of carbon and substitutional element across the interface is
constant, i.e.,

µαi = µ
γ
i (3)

where µ is the chemical potential; the subscript i represents C or M. Due to the large difference in
diffusivity between C and M, the LE is further classified into two types: negligible partition local
equilibrium (NPLE) and partition local equilibrium (PLE). The Fe-C-Cr system, where Cr is a ferrite
stabilizer, is used here for further elaboration.

In NPLE, as shown in Figure 3, the specific tie-line always connects the product phase with the Cr
concentration of uCr0. Therefore, the product phase achieves the same Cr content as that in the bulk of
the parent phase, and a positive or negative “spike” exists in front of the moving interface. When the
interface is under NPLE, only local redistribution of Cr is required, and the transformation kinetics are
controlled by carbon diffusion in the parent phase.
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Figure 3. Schematic isotherm and concentration distributions depicting the (a) austenite-to-ferrite; (b)
ferrite-to-austenite transformation under the negligible partition local equilibrium (NPLE) condition.
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On the contrary, when partition of Cr takes place between the parent and product phase, as shown
in Figure 4, long diffusion of Cr in the parent phase is necessary while a constant carbon activity is
achieved from the interface to the bulk of the parent phase. In this case, the transformation is under
PLE mode and the sluggish diffusion of Cr in the parent phase becomes the decisive step in controlling
the kinetics.
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4. Results and Discussion

4.1. Determination of Austenite–Ferrite Transformation Kinetic Mode

Figure 5 shows the interruptedly quenched microstructure of type 430 stainless steel from the
cyclic heat treatment with the RTC of 10 ◦C/min. The observed martensite, as indicated by the arrow,
was transformed from the prior austenite by quenching. It is seen that, at each stage, i.e., 1O, 2O, 3O,
and 4O in Figure 2a, the prior austenite existed in the form of strips or islands in the ferritic matrix.
The measured area fraction of austenite phase at 1O, 2O, 3O, and 4O is 13.6%, 27.3%, 12.8%, and 23.7%,
respectively. When the RTC increased to either 100 ◦C/min or 200 ◦C/min, the area fraction of austenite
at the end of cyclic heat treatment decreased largely to about 16.5%, as shown in Figure 6, which
suggests the characteristic RTC dependence of phase transformation kinetics.

To interpret the observed results, DICTRA simulation [18–20] under the assumption of
one-dimensional planar geometry was carried out, where Tcfe9 thermodynamic and Mob4 mobility
databases were used. In order to reduce the amount of calculation while ensuring the quality of
simulation, type 430 stainless steel was simplified to the Fe-C-N-Cr system. The simulation was
initiated from the beginning of isothermal holding at 950 ◦C and a domain size of 50 µm was used.
The equilibrium constituent phases at 1200 ◦C were set as the starting point, i.e., ferrite and austenite
with a chemical composition of Fe-0.039C-0.038N-16.34Cr (wt %) and Fe-0.118C-0.198N-14.837Cr (wt
%), respectively. The initial ferrite/austenite interface was located globally at 49.35 µm. The simulation
was carried out under both LE and PE conditions.

Figure 7 presents the evolution of a Cr profile during the heating and cooling stage under the LE
condition. By the end of isothermal holding at 950 ◦C, the Cr profile exhibited a zigzag shape at the
interface position, suggesting partitioning behavior of Cr from austenite to ferrite. During heating to
1150 ◦C, the zigzag shape of the Cr profile shrank when the interface migrated towards the austenite
region. Even though the rate of change in the Cr gradient at the interface decreases with the increasing
of the heating rate, a negative Cr spike in front of the moving interface was formed by the end of the
heating stage, i.e., at 1150 ◦C, indicating a shift in transformation kinetics from a slow PLE mode to a
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fast NPLE mode. A similar ferrite/austenite interface location was achieved irrespective of the heating
rate. In contrast, the enrichment of Cr at the ferrite side and the depletion of Cr at the austenite side of
the interface gradually built up when the interface was moving backward during the cooling stage,
suggesting the transformation kinetics switched from fast NPLE mode to slow PLE mode. At this
stage, the cooling rate exerts a noticeable effect on the interface migration since the diffusion of Cr is
very time-consuming compared with that of C. Finally, the one-dimensional austenite fraction, which
is defined as the length of the austenite region divided by total domain size, reached 29.1%, 24.3%, and
23.6% at the RTC of 10, 100, and 200 ◦C/min, respectively.Metals 2019, 9, x FOR PEER REVIEW 6 of 12 

 

 

. 

Figure 5. Optical micrograph showing the microstructure of an interruptedly quenched sample at (a) 
①; (b) ②; (c) ③; (d) ④ during the cyclic heat treatment with the RTC of 10 °C/min. 

 
Figure 6. Optical micrograph showing the final microstructure of cyclic heat treatment with the RTC 
of (a) 100 °C/min; (b) 200 °C/min. 

To interpret the observed results, DICTRA simulation [18–20] under the assumption of 
one-dimensional planar geometry was carried out, where Tcfe9 thermodynamic and Mob4 mobility 
databases were used. In order to reduce the amount of calculation while ensuring the quality of 
simulation, type 430 stainless steel was simplified to the Fe-C-N-Cr system. The simulation was 
initiated from the beginning of isothermal holding at 950 °C and a domain size of 50 µm was used. 
The equilibrium constituent phases at 1200 °C were set as the starting point, i.e., ferrite and 
austenite with a chemical composition of Fe-0.039C-0.038N-16.34Cr (wt %) and 
Fe-0.118C-0.198N-14.837Cr (wt %), respectively. The initial ferrite/austenite interface was located 
globally at 49.35 µm. The simulation was carried out under both LE and PE conditions. 

Figure 7 presents the evolution of a Cr profile during the heating and cooling stage under the 
LE condition. By the end of isothermal holding at 950 °C, the Cr profile exhibited a zigzag shape at 
the interface position, suggesting partitioning behavior of Cr from austenite to ferrite. During 
heating to 1150 °C, the zigzag shape of the Cr profile shrank when the interface migrated towards 

100μm

100μm

100μm 100μm

Figure 5. Optical micrograph showing the microstructure of an interruptedly quenched sample at (a)
1O; (b) 2O; (c) 3O; (d) 4O during the cyclic heat treatment with the RTC of 10 ◦C/min.

Metals 2019, 9, x FOR PEER REVIEW 6 of 12 

 

 

. 

Figure 5. Optical micrograph showing the microstructure of an interruptedly quenched sample at (a) 
①; (b) ②; (c) ③; (d) ④ during the cyclic heat treatment with the RTC of 10 °C/min. 

 
Figure 6. Optical micrograph showing the final microstructure of cyclic heat treatment with the RTC 
of (a) 100 °C/min; (b) 200 °C/min. 

To interpret the observed results, DICTRA simulation [18–20] under the assumption of 
one-dimensional planar geometry was carried out, where Tcfe9 thermodynamic and Mob4 mobility 
databases were used. In order to reduce the amount of calculation while ensuring the quality of 
simulation, type 430 stainless steel was simplified to the Fe-C-N-Cr system. The simulation was 
initiated from the beginning of isothermal holding at 950 °C and a domain size of 50 µm was used. 
The equilibrium constituent phases at 1200 °C were set as the starting point, i.e., ferrite and 
austenite with a chemical composition of Fe-0.039C-0.038N-16.34Cr (wt %) and 
Fe-0.118C-0.198N-14.837Cr (wt %), respectively. The initial ferrite/austenite interface was located 
globally at 49.35 µm. The simulation was carried out under both LE and PE conditions. 

Figure 7 presents the evolution of a Cr profile during the heating and cooling stage under the 
LE condition. By the end of isothermal holding at 950 °C, the Cr profile exhibited a zigzag shape at 
the interface position, suggesting partitioning behavior of Cr from austenite to ferrite. During 
heating to 1150 °C, the zigzag shape of the Cr profile shrank when the interface migrated towards 

100μm

100μm

100μm 100μm

Figure 6. Optical micrograph showing the final microstructure of cyclic heat treatment with the RTC of
(a) 100 ◦C/min; (b) 200 ◦C/min.



Metals 2019, 9, 1045 7 of 12

Metals 2019, 9, x FOR PEER REVIEW 7 of 12 

 

the austenite region. Even though the rate of change in the Cr gradient at the interface decreases 

with the increasing of the heating rate, a negative Cr spike in front of the moving interface was 

formed by the end of the heating stage, i.e., at 1150 °C, indicating a shift in transformation kinetics 

from a slow PLE mode to a fast NPLE mode. A similar ferrite/austenite interface location was 

achieved irrespective of the heating rate. In contrast, the enrichment of Cr at the ferrite side and the 

depletion of Cr at the austenite side of the interface gradually built up when the interface was 

moving backward during the cooling stage, suggesting the transformation kinetics switched from 

fast NPLE mode to slow PLE mode. At this stage, the cooling rate exerts a noticeable effect on the 

interface migration since the diffusion of Cr is very time-consuming compared with that of C. 

Finally, the one-dimensional austenite fraction, which is defined as the length of the austenite 

region divided by total domain size, reached 29.1%, 24.3%, and 23.6% at the RTC of 10, 100, and 

200 °C/min, respectively. 

0 10 20 30 40 50
14

15

16

17

18

19

C
r%

, 
w

t%

Interface position, m

 950
o
C

 1050
o
C

 1100
o
C

 1150
o
C

(a)

0 10 20 30 40 50
14

15

16

17

18

19

C
r%

, 
w

t%

Interface position, m

 1150
o
C

 1140
o
C

 1050
o
C

 950
o
C

(b)

 

0 10 20 30 40 50
14

15

16

17

18

19

C
r%

, 
w

t%

Interface position, m

 950
o
C

 1050
o
C

 1100
o
C

 1150
o
C

(c)

0 10 20 30 40 50
14

15

16

17

18

19

C
r%

, 
w

t%

Interface position, m

 1150
o
C

 1140
o
C

 1050
o
C

 950
o
C

(d)

 

0 10 20 30 40 50
14

15

16

17

18

19

Interface position, m

C
r%

, 
w

t%

(e) 950
o
C

 1050
o
C

 1100
o
C

 1150
o
C

0 10 20 30 40 50
14

15

16

17

18

19

Interface position, m

C
r%

, 
w

t%

(f) 1150
o
C

 1140
o
C

 1050
o
C

 950
o
C

 

Figure 7. The evolution of the Cr profile during cyclic heat treatment at the RTC of (a,b) 10 °C/min; 

(c,d) 100 °C/min, and (e,f) 200 °C/min, where (a,c,e) and (b,d,f) correspond to the heating and cooling 

stage, respectively. 
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(c,d) 100 ◦C/min, and (e,f) 200 ◦C/min, where (a,c,e) and (b,d,f) correspond to the heating and cooling
stage, respectively.

Simulation results from the PE condition are presented in Table 2. Under the PE condition, carbon
diffusion plays a determining role for interface migration while the substitutional element Cr does
not redistribute among ferrite and austenite at the interface. Therefore, the RTCs employed in this
study have negligible effect on the transformation kinetics. Results from experiments and DICTRA
simulation are all summarized in Table 2. It is seen that, when the RTC increases from 10 to 200 ◦C/min,
the one-dimensional austenite fraction at the end of the cyclic heat treatment from PE simulation
decreases marginally by 0.4%, in contrast to the noticeable decrease of 7% from LE simulation. From
the above experimental study and DICTRA simulation, one could summarize that the transformation
kinetics in type 430 stainless steel can be better captured by the simulation under the LE condition
even though the Fe-C-N-Cr system is only a simplified representative of type 430 stainless steel.
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Table 2. Measured and simulated austenite fraction by the end of cyclic heat treatment in type 430
stainless steel.

Stainless Steels Value Type 10 ◦C/min 100 ◦C/min 200 ◦C/min

430 Measured 1 23.7% 16.3% 16.7%

Fe-C-N-Cr system simulated (LE) 2 29.1% 24.3% 23.6%
simulated (PE) 2 28.4% 28.2% 28.0%

1 area fraction; 2 one-dimensional fraction. LE: local equilibrium; PE: para equilibrium.

4.2. Mechanism for the Formation of Cr-Rich Precipitates at the Interphase Boundary in Type 430 Stainless Steel

Figure 8 shows the interruptedly quenched microstructure of the sample from the continuous
cooling experiment, as shown in Figure 2b. Type 410S stainless steel is included here for comparison.
The cooling rate employed, i.e., 30 ◦C/min was the same as the on-site measured value during the
hot-rolling process. As the same as Figure 5, the observed martensite was transformed from the prior
austenite by quenching. It is seen that, when samples were quenched at 850 ◦C, as shown in Figure 8a,c,
ferrite and martensite were the only two constituent phases. After further slow cooling to 200 ◦C,
the interphase precipitates as indicated by the arrow in Figure 8b were formed in type 430 stainless
steel in contrast to its absence in type 410 stainless steel, as shown in Figure 8d, under the same heat
treatment condition. Based on the calculated phase diagram in Figure 1, it is proposed that the Cr-rich
precipitates at the interphase boundary were formed during the slow cooling process from 850 to
200 ◦C.
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Figure 8. Optical micrographs showing the microstructure quenched from (a,c) 850 ◦C and (b,d) 200 ◦C,
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The samples quenched at 850 ◦C from the continuous cooling experiment were subsequently
re-examined by SEM with EDS to reveal the Cr profile across interphase boundaries. Figures 9
and 10 present the line scanning results at interphase boundaries in type 430 and 410S stainless
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steel, respectively. The line scanning was conducted at a sampling rate of 6 nm/point and under a
magnification of ×20,000. The black rectangular data points in Figures 9 and 10 were the raw data from
line scanning. Using the “adjacent-averaging method”, where 50 neighboring data points included in
the adjacent 0.3 µm length line were averaged to substitute the original data point, the Cr profiles were
smoothed and more clearly presented in red lines. In type 430 stainless steel, as shown in Figure 9a,b,
a substantial enrichment of Cr existed in the ferrite adjacent to the interphase boundary, i.e., 17.59%
relative to 15.78% at the far-end of the ferrite matrix. While, in type 410S stainless steel, as shown
in Figure 10a,b, the maximum Cr% in ferrite adjacent to the interphase boundary and at the far-end
of the ferrite matrix was 12.77% and 12.52%, respectively. When ferrite is enclosed by austenite,
soft impingement occurs. As illustrated in Figure 9c,d and Figure 10c,d, the average Cr% in ferrite
enriched to 17.2% and 12.85% in type 430 and 410S stainless steel, respectively. Thus, the formation
of Cr-rich precipitates at the interphase boundaries were facilitated by the segregated Cr in type 430
stainless steel. In type 410S stainless steel, the enrichment level, if represented by the difference of
Cr% in the neighboring area of interphase boundaries from the far end of the ferrite region, was much
lower, i.e., 0.25% in contrast to 1.8% in type 430 stainless steel.
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In order to further interpret the formation of Cr enrichment, DICTRA simulation under the
pre-determined LE condition in Section 4.1 is carried out where the Fe-C-N-Cr system was used as a
representative of type 430 or 410S stainless steel as well. As shown in Figure 11, when the temperature
decreases from 1200 to 900 ◦C, the interface is migrating toward the ferrite region and partitioning of Cr
from austenite to ferrite can be seen. Further temperature decreases led to the backward migration of
the interface and a switch of transformation kinetics to NPLE mode where a Cr spike exists in front of
the interface. There are two interesting characteristics in this simulation. Firstly, the interface velocity
during earlier austenite formation or the later austenite-to-ferrite transformation is much faster in type
410S stainless steel, possibly due to a large driving force as suggested by the phase diagram in Figure 1.
Secondly, by the end of the simulation, a substantial Cr enrichment remains at the ferrite side of the
interphase boundary in type 430 stainless steel. Compared with the line scanning results in Figures 9
and 10, an astonishing agreement has been achieved in terms of not only the shape of the Cr profile
but also the Cr% in the adjacent region of the interphase boundary. Therefore, the experiment and
simulation results have strongly supported the correlation between the formation of Cr-rich precipitates
at the prior austenite/ferrite interphase boundary and the austenite–ferrite transformation kinetics.
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5. Conclusions

The formation of Cr-rich precipitates at the interphase boundary in type 430 stainless steel,
which not only induces intergranular corrosion and intergranular stress corrosion cracking but
also significantly deteriorates the ductility and toughness, was investigated from the perspective of
austenite–ferrite transformation kinetics. The following conclusions were drawn from this work.

1) The microstructure from cyclic transformation was largely affected by the rate of temperature
change, which is in well accordance with the DICTRA simulation of austenite–ferrite
transformation under the LE condition.

2) In contrast to type 410S stainless steel, a noticeable enrichment of Cr adjacent to the interphase
boundary which facilitated the formation of interphase Cr-rich precipitates in type 430 stainless
steel was revealed by EDS analysis and interpreted by DICTRA simulation under the LE condition.
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precipitates and austenite–ferrite transformation kinetics.
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