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Abstract: The objective of this paper is to investigate the mechanical response of EN08 steel at
quasi-static and dynamic strain rates. Uniaxial tensile tests under quasi-static regime (from 0.0015 s−1

to 0.15 s−1) are conducted on EN08 steel at a range of temperatures between 298 K and 923 K. Dynamic
compression tests are also performed by using a drop hammer and by considering different masses
and heights to study the material response at strain rates up to 800 s−1. Through the stress-strain
responses of EN08 steel, a strong dependency of the yield stress as well as the ultimate strength on
the strain rate and temperature is recognized. Furthermore, the strain hardening is highly affected by
the increase of temperature at all levels of strain rate. The microstructure of the steel is also examined
at a fracture by using SEM images to quantify the density of microdefects and define the damage
evolution by using an energy-based damage model.
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1. Introduction

Steel, with its uses in various industrial applications, has had its behavior studied at different
temperatures and strain rates. Many researchers have experimentally quantified the parameters
controlling the thermomechanical behavior of steel [1–5] including its damage mechanisms [6–9].

As a medium, carbon steel is known for its tensile strength and toughness [10,11] and EN08
steel is widely used for manufacturing mechanical parts such as general-purpose axels, shafts, bolts,
gears, and studs. The microstructure of EN08 varies depending on the designed heat treatment [10].
Zarroug et al. [12] tested EN08 steel under combined torsion–tension loading where the specimens
were loaded either by maintaining a constant tensile load (or a constant axial displacement) and
increasing torque (or twist angle) or by maintaining a constant torque (or a constant twist angle) and
increasing the tensile load (or axial displacement). The authors concluded that, when the torsion angle
is kept constant with an increasing axial load, the carrying capacity of the torque drops rapidly as
soon as the yield strength is reached. Moreover, for maintaining the applied load on the successive
application of torque, the axial strain increases with the shear strain. For higher load cases, the axial
stress can be rapidly increased.

Haque and Hashmi [13] studied the stress-strain behavior of EN08 steel at various strain rates
and at temperatures between −30 ◦C and 235 ◦C. A strong sensitivity to strain rates between 103 and
105 s−1 was recognized for EN08 steel at various temperatures. This sensitivity, however, decreases
with the increase in the strain rate at a range of temperatures between 30 ◦C and 235 ◦C. It was
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observed that the stress values at 235 ◦C were almost equal to those obtained at room temperature
under quasi-static compression. On the other hand, at 235 ◦C, the stress values were lower than those
obtained at room temperature for higher strain rates [13].

At an elevated temperature, one of the important considered factors is the effect of holding time
(exposure time) on some metallurgical features of metals like recrystallization or grain growth, which
leads to a grain size effect on the metal response. It is well-known that certain heat treatments like
aging control of the second-phase particles coarsen significantly by affecting the mechanical behavior
of material. The interaction between the elevated temperature and the strain rate reveals a key effect
on the metal response. Accordingly, high-temperature strength should be considered with respect
to time since it becomes highly dependent on the strain rate. This dependence of strength becomes
important in different materials at different temperatures [14–16].

Most of the previous research on EN08 focused on characterization and microstructure
improvements of this material to obtain better mechanical properties. However, the literature lacks
research related to investigating the damage evolution coupled with plasticity for this steel at elevated
temperatures. Therefore, this research aims to study the mechanical response of EN08 steel under
different combinations of temperatures and strain rates in an attempt to provide more insight about its
coupled damage-plasticity response. The nature of this response is crucial in several applications in
civil and mechanical engineering for improving safety against blast loads, impacts, and crushes.

2. Experimental Results and Discussions

The experimental program conducted in this work provides significant results regarding the
description of the thermo-mechanical behavior for the EN08 steel at different loading conditions.
Table 1 illustrates the chemical composition of the tested material.

Table 1. Chemical composition of EN08 specimens.

Chemical Composition C Mn Si Al Sr Fe

EN08 0.41 0.6 0.3 0.2 0.2 balance

2.1. Quasi-Static Tests at Room and High Temperatures

A set of coupon specimens was manufactured and tested at different initial temperatures. The
specimens followed the ASTM standards, which is shown in Figure 1a except for a modification in
the gauge length. It was shortened to attain higher strain rates. A universal testing machine with a
100-kN capacity was employed for the uniaxial tensile tests along with a Zwick/Roell 3-zone high
temperature furnace (Zwick/Roell, Ulm, Germany), which is shown in Figure 1b. A furnace controller
was used to maintain the temperature within ±1 ◦C of the specified experimental temperature.

Tensile tests were conducted at room temperature (i.e., 298 K) as well as at three selected high
temperatures of 523 K, 723 K, and 923 K. For each initial temperature, the specimens were tested at
two different quasi-static strain rates of 0.0015 s−1 and 0.15 s−1 except for the room temperature where
a third strain rate of 0.015 s−1 was considered. The obtained stress-strain data were recorded and
converted into true stress-true strain curves, as illustrated in Figures 2–4. The results represent average
values of two or three specimens for each test condition.

Figure 2 shows that, at room temperature, the yield and ultimate stresses increase with increases in
the strain rate. Note that this is a typical trend of steel. It is evident from this figure that the yield stress
of the material cannot be identified due to the existence of an ambiguous yield region. Therefore, the
yield stress was taken at a 0.2% offset point. It can also be observed that the trend of strain hardening
is independent of the strain rate and the main difference is due to the initial yield. This indicates that
the quasi static response of this material at room temperature is similar to the response of BCC metals
where the flow stress is mainly controlled by the yield stress and nearly independent of the plastic
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strain rate [17]. The change in the yield stress with a strain rate may be interpreted physically since the
resistance of initial dislocations by the Peierls barriers is provided by the lattice itself [18].
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Figure 2. True stress-strain curves at room temperature and various strain rates.

Figures 3 and 4 show the steel’s behavior at three high temperatures (523 K, 723 K, and 923 K)
under two different quasi-static strain rates of 0.15 s−1 and 0.0015 s−1, respectively. To obtain these
results, the UTM machine and the Zwick/Roell 3-zone high temperature furnace were utilized in which
the furnace was controlled independently. The universal 3-zone furnace controller (model ME44-180)
was used to maintain the temperature within ±1 ◦C of the specified experiment temperature. For
each zone, a thermocouple of Ni/CrNi was available in the furnace. Three thermocouples were also
mounted on the sample. To perform the test, the samples and load train were placed within the upper
and lower cover plates. The test legitimately began once the specimens were exposed to heat and the
three thermocouples located at the top, middle, and bottom of the gauge length gave readings with
a difference not exceeding ±3 ◦C of the required temperature. This initial difference in temperature
readings could have contributed to the failure modes for most tensile specimens where the location of
necking was near one of the ends, which is shown in Figure 1c.
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Figure 3. True stress-strain curves at high temperatures at a strain rate of 0.0015 s−1.
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Figure 4. True stress-strain curves at high temperatures at a strain rate of 0.15 s−1.

For a given strain rate, yield stress decreases as temperature increases, which is shown in Figure 3
for 0.0015 s−1 and in Figure 4 for 0.15 s−1. The initial stiffness is almost the same at temperatures 523 K
and 723 K regardless of the applied strain rate. However, it decreases at the highest temperature, i.e.,
923 K. As far as the plastic region is concerned, strain hardening diminishes completely at temperatures
beyond 523 K where the softening phenomenon occurs immediately after the yield strength and where
its evolution becomes steeper due to damage-significant evolution. This indicates that there is no strain
hardening and that only athermal stresses remain. It can be deduced from the above stress–strain
results that the flow stress of EN08 steel follows the same trend of the most ferrite steel where the yield
stress becomes dependent on temperature and strain rate while the strain hardening is mainly related
to the athermal part of the flow stress [19].

The thermomechanical response of the EN08 alloy is further investigated by studying the
degradation trend of its flow stress with temperatures shown in Figure 5 for the lower and higher
quasi-static strain rates considered. In general, the yield and ultimate tensile strengths of metals
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decrease with an increasing temperature. This is due to several factors such as a rapid increase in
the atoms mobility, a greater mobility of dislocations based on the climb mechanism, the impact of
diffusion-controlled processes particularly at a high temperature, and the increase of equilibrium
concentration of vacancy. Thus, the deformation mechanisms could be changed at an elevated
temperature where the activated slip systems change and/or additional activated slips come into play.
Likewise, the higher the temperature, the greater is the possibility of deformation of grain boundaries.
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Figure 5. Stress variations with temperature at a strain rate of (a) 0.0015 s−1 and (b) 0.15 s−1.

The trend of the flow stress seems to be slightly different between the two quasi-static rates where
it becomes steeper at 523 K for the low rate (Figure 5a) and at 723 K for the higher strain rate (Figure 5b).
In addition, the variation of the flow stress with a temperature does show abnormal jumps at the lower
strain rate (Figure 5a), which indicates an existence of dynamic strain aging (DSA). This phenomenon,
however, starts disappearing at the higher strain rate (Figure 5b). The DSA phenomenon, which is
an occurrence happening when diffusing solute atoms and mobile dislocations that interact in the
material [20,21], generally occurs in high strength ferrite and austenite steel at a specific combination
of temperatures and strain rates [22].

2.2. Drop-Hammer Test

All the dynamic tests were experimentally carried out at room temperature by utilizing a dynamic
drop mass bench of a maximum impact velocity of 10 m/s and a maximum kinetic energy of 2.5 kJ. The
specimens were placed on a bench with a free end from the top and slightly gripped from the bottom
by using very soft materials (artificial clay). The bench is equipped with a dynamic load cell of 20 t,
a 5000 g accelerometer, and a laser beam displacement transducer (series M5L of international Bullier,
Nanterre, France) for a measurement bracket of 100 mm. These instruments were connected to a rapid
acquisition chain (2.5 MHz), which ensured the simultaneous recording of the following experimental
data: force, acceleration, and displacement. To ensure the synchronization of the acquisition of these
essential data, two photocells were used. For the suitability of the collected experimental data, the
positioning of these photocells was important and depended on the striker position just before the
impact. Steel samples were tested by using the drop hummer where the potential energy transforms to
kinetic energy. The falling mass strikes the sample at a specified velocity. The recording data especially
the impact force will need to go through a filtering process by using the so-called Chebyshev filter. The
inertial effect is assumed negligible since the impact velocities are relatively low (lower than 30 m/s).
EN08 cylindrical samples of 12 mm long and a 6 mm diameter were used. The samples were tested
using three different masses of 17.0 kg, 22.0 kg, and 34.6 kg with each at a different height of 4 m, 3 m,
and 2 m, respectively, to determine comparable kinetic energies. The corresponding strain rates (

.
ε)
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(
.
ε = v/l with l = (lo + l f )/2, where lo is the specimen initial length and lf is the specimen final length)

are 885 s−1, 767 s−1, and 620 s−1, respectively. The stress and strain are computed by using the force
and displacement recorded by the machine’s instruments.

Therefore, the axial stress and axial strain are computed through the filtered impact force and
displacement and converted into true stress and true strain, respectively, which is shown in Figure 6,
for the three loading scenarios. It is hard to identify a clear yield point for this material and its flow
stress behavior at this test setup. With almost the same energy applied, the dynamic response of the
material at the three different dynamic strain rates showed almost similar trends but with a slight
increase in its ultimate stress when the strain rate increased. However, the ultimate stress achieved
with the drop hammer test is higher than the one reached with the quasi-static test.
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Figure 6. True stress-true strain curves from the drop-hammer tests at various masses and heights.

The drop hammer tests may give an indication on the increase in the ultimate stresses when
compared with the tensile tests but only for the room temperature condition. The objective was also to
evaluate the damage and show the increase with a strain rate. However, SEM images of drop-hammer
specimens were not representatives, which is explained next.

2.3. Scanning Electron Microscope (SEM)

To understand the thermo-mechanical behavior of a metal, the microstructure of the material
should be studied at failure. Internal damage generated by various combinations of loading rates
and temperatures includes void nucleation, growth, and coalescence. These forms of damage are
concentrated in regions near the fracture surface where the phenomenon of plastic localization is
clearly observed via the specimen necking. In such regions, the plastic strains and their accompanying
stresses are at a maximum (Figure 1c). The Scanning Electron Microscopy (SEM, XL30, Eindhoven,
The Netherlands) is a current image analysis tool that can measure the damaged areas as interpreted
micro-graphs and produce information for qualitative and quantitative analysis.

In this study, each sample was polished with coarse and fine-grained sandpaper as well as with
diamond dust. A well-known process for SEM sample preparation was followed in order to have a
clear fractured surface without changing the mechanical property of the samples by erasing the cracks
inside the samples or even causing any further cracks. Samples were also processed using a backscatter
electron detector in order to obtain an accurate percentage of the damaged area. Figure 7 shows samples
of SEM images at the microstructure level for fractured specimens at the two quasi-static rates and
across a range of elevated temperatures. The effect of the temperature on the fracture mechanism by
cavitation for the two strain rates of 0.0015 s−1 and 0.15 s−1 is noticeable. The greater the temperature,
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the greater is the observed voids density (i.e., damage) regardless of the applied strain rate. The
damage was quantified by taking the average of up to five SEM images at the fractured surface.
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The density of micro-cracks and voids were obtained from the SEM images by developing a post
processing code using Matlab software (2017, Mathworks, Aztec, MA, USA). Figure 8 quantifies the
results of the SEM images. The charts clearly illustrate the increase of damage with a strain rate and
temperature. The results presented are used to identify the material constants for an energy-based
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Figure 8. Average damage at (a) room and (b) high temperatures for different strain rates.

3. Damage-Plasticity Description of EN08

In order to describe the flow stress of EN08 steel, coupled damage-plasticity constitutive modeling
is required. By integrating damage evolution into the constitutive relations, the mechanical behavior
of steel can be accurately depicted. Note that the anisotropic behavior induced by damage is due
to numerous micro-crack distributions and their growth within metals. Several damage models
considering isotropic and/or anisotropic expressions for the damage variable have been proposed
by many authors [23–27]. Although it is anisotropic in nature, assuming the damage isotropic is, in
many cases, not far from reality [23]. The isotropic damage evolution can then be used to relate the
undamaged and damaged states of the material [2].

3.1. Energy-Based Damage Evolution Model

Abed et al. [6] developed an energy-based model for describing the damage evolution in steel.
This was done by using the principles of continuum damage mechanics. In this model, damage is
described as the increase in the dissipated energy of a material with the model being the ratio of the
dissipated energy to the total dissipated energy. The damage at fracture is also taken into consideration
as the threshold damage value, which is both temperature-dependent and strain rate-dependent.
Equation (1) illustrates the model below.

φ = φ f

(
Up

UPT

)α

(1)

where φ is the damage at the point of interest during deformation, φ f is the damage at fracture obtained
by SEM images (Figure 8), Up is the dissipated energy at the point of interest, UPT is the total dissipated
energy, and α is a constant determining the damage evolution trend throughout deformation. The
majority of steel has similar damage evolution trends. Therefore, α can be assumed to be 2.0. This is
similar to the value retrieved by Abed et al. [6]. The dissipated plastic energy can be calculated by
using Equation (2) with σ and ε being true stress and true strain, respectively.

Up =
∫ εp

0
σdεp (2)
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Figure 9 represents the damage evolution for the EN08 steel by considering all temperatures
and strain rates. As the strain increases, the damage increases as well regardless of temperature. In
general, the results seem to follow the same trend for most alloys [8]. For each loading combination,
the damage effect is minimal at the initial stages and starts to grow on a higher scale as the plastic
strains and, accordingly, the dissipated energy evolves, which leads to the degradation of the material.
Metals 2018, 8, x FOR PEER REVIEW  9 of 12 

 

  
(a) (b) 

(c) (d) 

Figure 9. Damage ϕ evolution at quasi-static strain rates and temperatures of (a) 298 K, (b) 523 K, (c) 
723 K and (d) 923 K. 

For the tensile test specimens, SEM images were taken from the fractured surface at the necking 
zone where higher strains achieved. However, for the drop-hammer tests, the specimens were not 
fractured (only compressed) and the only way to extract the images was by cutting the specimen in 
slides at the middle. However, this approach resulted in inaccurate images, which was highly 
affected by the cutting procedure. For this reason, the energy-based damage model was not applied 
to drop-hammer test specimens.  

3.2. Flow Stress Description of EN08 

The quasi static response of EN08 steel shows strong temperature dependency of the yield stress 
while strain hardening is slightly influenced by temperature. This means that the variation of the 
thermal stresses at a given strain rate appears mainly on the initial yielding where the strain 
hardening are nearly identical. Such behavior is known for ferrite steel. The thermal stress of ferrite 
steel is interpreted physically as the resistance of dislocation motion by the Peierls barriers provided 
by the lattice itself [19]. 

Constitute modeling is deemed necessary in order to understand quantitatively the deformation 
behavior of metals. Many constitutive models have been developed to describe the flow stress of 
metals and alloys when exposed to high temperatures and strain rates [28–32]. Experimental 
observation during the plastic deformation as well as the physical basis of the microstructure inside 
the material should be considered in developing any constitutive modeling of crystalline materials 
like steel. Dislocation interactions and evolutions play a crucial role in defining the flow stress of 
metals since each type has its own behavior coupled to a strain rate and temperature. One example 
of physically-based constitutive relationships is the VA model, which was derived based on thermal 
activation analysis and dislocation interaction mechanisms. The VA model was initially developed 

0

0.05

0.1

0.15

0.2

0 0.05 0.1 0.15

Da
m

ag
e 

ϕ
 

Strain

298 K

0.015 s−1

0.0015 s−1

0.15 s−1

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.05 0.1 0.15
Da

m
ag

e 
ϕ

 
Strain

523 K0.15 s−1

0.0015 s−1

0

0.1

0.2

0.3

0.4

0 0.05 0.1 0.15

Da
m

ag
e 

ϕ
 

Strain

723 K

0.0015 s−1
0.15 s−1

0

0.001

0.002

0.003

0.004

0.005

0 0.2 0.4

Da
m

ag
e 

ϕ
 

Strain

923 K

0.0015 s−1

0.15 s−1

Figure 9. Damage φ evolution at quasi-static strain rates and temperatures of (a) 298 K, (b) 523 K,
(c) 723 K and (d) 923 K.

For the tensile test specimens, SEM images were taken from the fractured surface at the necking
zone where higher strains achieved. However, for the drop-hammer tests, the specimens were not
fractured (only compressed) and the only way to extract the images was by cutting the specimen
in slides at the middle. However, this approach resulted in inaccurate images, which was highly
affected by the cutting procedure. For this reason, the energy-based damage model was not applied to
drop-hammer test specimens.

3.2. Flow Stress Description of EN08

The quasi static response of EN08 steel shows strong temperature dependency of the yield stress
while strain hardening is slightly influenced by temperature. This means that the variation of the
thermal stresses at a given strain rate appears mainly on the initial yielding where the strain hardening
are nearly identical. Such behavior is known for ferrite steel. The thermal stress of ferrite steel is
interpreted physically as the resistance of dislocation motion by the Peierls barriers provided by the
lattice itself [19].

Constitute modeling is deemed necessary in order to understand quantitatively the deformation
behavior of metals. Many constitutive models have been developed to describe the flow stress of metals



Metals 2018, 8, 736 10 of 12

and alloys when exposed to high temperatures and strain rates [28–32]. Experimental observation
during the plastic deformation as well as the physical basis of the microstructure inside the material
should be considered in developing any constitutive modeling of crystalline materials like steel.
Dislocation interactions and evolutions play a crucial role in defining the flow stress of metals since each
type has its own behavior coupled to a strain rate and temperature. One example of physically-based
constitutive relationships is the VA model, which was derived based on thermal activation analysis
and dislocation interaction mechanisms. The VA model was initially developed to describe the flow
stress of pure metals by introducing different equations for different microstructures (i.e., BCC, FCC,
and HCP) [17,18,33] and then extended the flow stress for ferrite [19] and austenitic [22] steel as well as
titanium alloys [34]. Such models require experimental data at a wide range of temperatures and strain
rates to accurately identify its material constants, which are related to the microstructures physical
quantities. For this reason, constitutive modeling of EN08 is not presented in this study since more
thermal tests are required at higher strain rates. The temperature dependency becomes dominant
at high strain-rate deformations where the adiabatic deformation produces significant temperature
changes in ferrite steel [35–37].

4. Concluding Remarks

The thermo-mechanical behavior of EN08 steel, which is mainly used for manufacturing different
mechanical parts, was investigated at different temperatures (298 K, 523 K, 723 K, and 923 K) and
strain rates (0.0015 s−1, 0.015 s−1, and 0.15 s−1). Dynamic tests at intermediate strain rates were
also conducted at room temperature by using a dynamic drop mass bench. With each test, the true
stress-true strain curve was plotted in order to determine the behavior of the steel at different strain
rates and temperatures. The Scanning Electron Microscopy (SEM) was utilized to analyze the damage
caused relative to the varying test conditions. An energy-based damage model was employed by
utilizing the SEM images to describe the damage evolution throughout the deformation process.

The thermomechanical response of EN08 followed a similar behavior of most ferrite steel at which
the thermal stresses are mainly controlled by the yield stresses. The quasi-static test results at low and
high temperatures revealed the typical degradation trend of the thermal stresses with a temperature
increase. Dynamic strain aging (DSA) was also active at the lower quasi-static strain rate for a limited
range of elevated temperatures. The strain hardening was found to be almost rate-independent at
room temperature. However, the rate dependency behavior of the material slightly increased at higher
temperatures. Furthermore, the SEM images of EN08 microstructures at fracture showed an increase
in micro-cracks and voids with a strain rate and a temperature increase.

It should be mentioned that the application of this research outcome is limited to the loading
conditions considered in the present experimental program. Any other scenarios intended to be
implemented such as constitutive modeling shall consider further experimental tests and exploration.
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