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Abstract: According to the coexistence theory of slag structure, a calculation model for the activity
of FeO in the quaternary system SiO2-CaO-Al2O3-FeO of depleted copper slag was established.
The model was used to calculate and analyze the effects of temperature (T), basicity (B), and Al2O3

content on the activity of FeO (NFeO). The results show that temperature has little impact on NFeO.
With increased basicity, NFeO first increased slightly, then increased sharply, and finally decreased.
It is easier for CaO to combine with SiO2 than FeO to form calcium silicate, which replaces FeO in
2FeO·SiO2 and increases NFeO. However, when basicity is higher than 2.0, CaO not only reacts with
SiO2, but also combines with FeO to form calcium ferrate compounds to decrease NFeO. In addition,
the activity of FeO decreases with increased Al2O3 content because of the reaction between CaO and
Al2O3. The results can be used as a theoretical basis to guide the carbothermal reduction process of
copper slag.

Keywords: copper slag; activity of FeO; calculation model for activity

1. Introduction

In the last 50 years, copper consumption has tripled because of rapid industrial development [1].
The production of refined copper was 23.33 Mt in 2016, and the quantity of copper increases year by
year [1]. According to a prediction by the International Copper Study Group (ICSG), the global supply
of refined copper slightly increased by 0.9% in 2017, far below the average growth rate of 3% in the
previous 10 years, due to the fact that the depletion of global mines is more and more serious, and the
grade of newly discovered mines is low. Considering the huge consumption and lack of supply, it is
extremely urgent to make full use of copper production and other Cu-containing wastes.

Copper slag is one of the byproducts of the copper production process. Typically, about 2.2–3 t
of copper slag are generated per ton of matte produced [2,3], which indicates that the annual output
of copper slag was at least 51.33 Mt in 2016. There are abundant metals in copper slag, in which the
grades of copper and iron are close to or even higher than corresponding ores of copper and iron.
There are several main processes of recycling copper and iron in copper slag, such as beneficiation,
oxidation-magnetic separation, smelting reduction, and carbothermal reduction at high temperature.
It is generally believed that smelting reduction and carbothermal reduction at high temperature are
effective ways to reutilize copper slag, which can obtain carbon-saturated molten iron containing less
than 0.4% copper [4–7]. Zhang et al. [8] reported on copper slag and iron-bearing slag as flux to recover
iron and separate phosphorus, where the recovery of iron could be as high as 90%. According to the
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results of Xing et al. [9], temperature has a great effect on the recovery of iron and zinc, but has little
effect on the recovery of copper. The recovery of iron and copper can reach 91% and 99%, respectively.
However, there is a high level of Cu in the recovered iron-bearing product, and it restricts these
products from being used in the steelmaking process. Tang et al. [10] reported that the oxidizing ratio
of copper in CuO-FeCl2 can reach 62.5% with an argon flow of 50 mL/min at 973 K, based on the fact
that it is easier for Cu to react with Cl than Fe and CuCl2 can be volatilized easily. However, the high
cost of the recycling process hinders the recycling of copper slag. Therefore, large amounts of copper
slag are simply stockpiled or placed in landfills. The residual elements in copper slag, such as Zn,
Pb, and As, are potentially leached with rainwater, resulting in excessive levels of heavy metals in
groundwater and spread of small particles of copper slag in the air, causing health hazards for nearby
people and animals [11,12]. In order to make full use of copper slag and improve the ratio of recycling,
the thermodynamics of the carbothermal reduction of copper slag should be further studied.

As the main iron-containing phase of copper slag is fayalite (2FeO·SiO2), the activity of FeO
has a significant effect on the reduction process. The activity of FeO in blast furnace slag has been
investigated by O’Neill et al. [13], Taniguchi et al. [14], and Aroto et al. [15], and has been shown to
have relatively low FeO content (<5 wt. %). Zhang [16] utilized the coexistence theory of slag structure
to calculate the activity of FeO in the ternary slag system SiO2-CaO-FeO, and compared with other
studies [17], the results are similar. However, the FeO content in copper slag is higher than that in steel
slag. Wang et al. [18] employed the coexistence theory of slag structure for the ternary slag system
SiO2-CaO-FeO to calculate the activity of FeO with different basicity in order to recovery iron in copper
slag. However, Al2O3 in the slag was ignored during the calculation, which led to errors in the results.

The coexistence theory of slag structure was initially proposed by Chuiko [19] and developed
by Zhang [16]. The coexistence theory is based on the relevant phase diagrams, thermodynamic
relations, and the law of mass balance of ions and molecules coexisting in molten slag,
and establishes some equations to calculate the concentrate of components, by which the activity
of components is characterized. The theory has already been used in some slag systems, such as
CaO-FeO-Fe2O3-SiO2-Cu2O and MnO-FeO-SiO2-Al2O3 [20,21].

In this paper, a calculation model for the activity of FeO in the quaternary slag system
SiO2-CaO-Al2O3-FeO is established according to the coexistence theory of slag structure, in order to
analyze the variation of FeO activity with the effect of temperature (T), basicity (B), and Al2O3 content
and provide a theoretical basis to guide the carbothermal reduction process of copper slag.

2. Calculation Model of Activity

According to the coexistence theory of slag structure and relevant phase diagrams [22] such
as CaO-SiO2, Al2O3-CaO, SiO2-Al2O3, SiO2-FeO, Al2O3-FeO, SiO2-CaO-Al2O3, and SiO2-CaO-FeO,
the structural units were determined at 1573–1773 K, shown in Table 1.

Taking the composition of initial slag as x1 = ∑FeO, x2 = ∑CaO, x3 = ∑SiO2, and x4 = ∑Al2O3,
∑n is the sum of moles of ions and molecules in the slag system; Ni (i represents each structural
unit) is the mass action concentration of each structural unit after normalization; and N1, N2, N3, and
N4 are Fe2+ + O2−, Ca2+ + O2−, SiO2, and Al2O3, respectively. In these chemical equilibria between
structural units (Table 2), ki is the equilibrium constant, which can be acquired from standard Gibbs
free energy (∆G), T is temperature (K), and R is the gas constant, 8.314 J/(mol·K). Equations (1) to (5)
are obtained by the law of mass balance, and Equations (6) to (9) can be deduced based on the mass
balance equations and equilibrium constants in Table 2 and Equations (1) to (5).

Table 1. Structural units in the slag system.

Simple Ions Ca2+, Fe2+, O2−

Complex Molecules
CaO·SiO2, 2CaO·SiO2, 3CaO·SiO2, 3CaO·2SiO2, 3Al2O3·2SiO2, 3CaO·Al2O3,

12CaO·7Al2O3, CaO·2Al2O3, CaO·6Al2O3, CaO·Al2O3, 2FeO·SiO2, FeO·Al2O3,
CaO·Al2O3·2SiO2, 2CaO·Al2O3·SiO2, CaO·FeO·SiO2, Al2O3, SiO2
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Table 2. Chemical equilibria of structural units.

(Ca2+ + O2−) + SiO2 = CaO·SiO2 ∆Gθ
m1 = −81416 − 10.498T N5 = k1N2N3

2(Ca2+ + O2−) + SiO2 = 2CaO·SiO2 ∆Gθ
m2 = −160431 + 4.160T N6 = k2N2

2 N3

3(Ca2+ + O2−) + SiO2 = 3CaO·SiO2 ∆Gθ
m3 = −93366 − 23.03T N7 = k3N3

2 N3

3(Ca2+ + O2−) + 2SiO2 = 3CaO·2SiO2 ∆Gθ
m4 = −236973 + 9.63T N8 = k4N3

2 N2
3

3Al2O3 + 2SiO2 = 3Al2O3·2SiO2 ∆Gθ
m5 = 8589.9 − 17.39T N9 = k5N2

3 N3
4

3(Ca2+ + O2−) + Al2O3 = 3CaO·Al2O3 ∆Gθ
m6 = −17000 − 32.0 T N10 = k6N3

2 N4

12(Ca2+ + O2−) + 7Al2O3 = 12CaO·7Al2O3 ∆Gθ
m7 = −86100 − 205.1T N11 = k7N12

2 N7
4

(Ca2+ + O2−) + 2Al2O3 = CaO·2Al2O3 ∆Gθ
m8 = −16400 − 26.8T N12 = k8N2N2

4

(Ca2+ + O2−) + 6Al2O3 = CaO·6Al2O3 ∆Gθ
m9 = −17430 − 37.2T N13 = k9N2N6

4

(Ca2+ + O2−) + Al2O3 = CaO·Al2O3 ∆Gθ
m10 = −18120 − 18.62T N14 = k10N2N4

2(Fe2+ + O2−) + SiO2 = 2FeO·SiO2 ∆Gθ
m11 = −28596 + 3.349T N15 = k11N2

1 N3

(Fe2+ + O2−) + Al2O3 = FeO·Al2O3 ∆Gθ
m12 = −33272.8 + 6.1028T N16 = k12N1N4

(Ca2+ + O2−) + Al2O3 + 2SiO2 = CaO·Al2O3·2SiO2 ∆Gθ
m13 = 28006 − 74.795T N17 = k13N2N2

3 N4

2(Ca2+ + O2−) + Al2O3 + SiO2 = 2CaO·Al2O3·SiO2 ∆Gθ
m14 = −17092 + 8.778T N18 = k14N2

2 N3N4

(Ca2+ + O2−) + (Fe2+ + O2−) + SiO2 = CaO·FeO·SiO2 ∆Gθ
m15 = −72996.8 − 29.3169T N19 = k15N1N2N3

The ternary phase diagram of SiO2-CaO-Al2O3 is depicted in Figure 1 using FactSage software
(Version 7.0, GTT-TECHNOLOGIES, Herzogenrath, Germany). According to the phase diagram,
two kinds of slags are suitable to recover iron for less energy consumption, better liquidity, and less
viscosity. The major chemical composition of the initial copper slag and the composition of the two
kinds of slag are shown in Table 3. Considering high FeO content, the quaternary slag system of
SiO2-CaO-Al2O3-FeO has been established.

The activity calculation program was developed based on Equations (6) to (9), the equilibrium
constants in Table 2, and the components of slags in Table 3. The equilibrium constants ki (i = 1–15) were
obtained first based on specific temperature and the standard Gibbs free energy. Then, the equilibrium
constants and the composition of slags in Table 3 were substituted into Equations (6) to (9), and the
contents of the composition in the SiO2-CaO-Al2O3-FeO slag system were calculated. According to
the variation of temperature and compositions of slag, the effect of temperature, basicity, and Al2O3

content were obtained.
19

∑
i=1

N = 1 (1)

x1 = (0.5N1 + 2N15 + N16 + N19)∑n (2)

x2 = (0.5N2 + N5 + 2N6 + 3N7 + 3N8 + 3N10 + 12N11 + N12 + N13 + N14 + N17 + 2N18 + N19)∑n (3)

x3 = (N3 + N5 + N7 + 2N8 + 2N9 + 2N15 + 2N17 + N18 + N19)∑n (4)

x4 = (N4 + 3N9 + N10 + 7N11 + 2N12 + 6N13 + N14 + N16 + N17 + N18)∑n (5)

N1 + N2 + N3 + N4 + k1N2N3 + k2N2
2 N3 + k3N3

2 N3 + k4N3
2 N2

3 + k5N2
3 N3

4 + k6N3
2 N4 + k7N12

2 N7
4 + k8N2N2

4
+ k9N2N6

4 + k10N2N4 + k11N2
1 N3 + k12N1N4 + k13N2N2

3 N4 + k14N2
2 N3N4 + k15N1N2N3 = 1

(6)

x3
(
0.5N2 + 3k6N3

2 N4 + 12k7N12
2 N7

4 + k8N2N2
4 + k9N2N6

4 + k10N2N4
)
− x2

(
N3 + 2k5N2

3 N3
4 + k11N2

1 N3
)
+(

k1N2N3 + k5N2
3 N3

4
)
(x3 − x2)+

(
k2N2

2 N3 + k4N3
2 N2

3
)
(2x3 − x2) + k3N3

2 N3(3x3 − x2) + k4N3
2 N2

3 (3x3 − 2x2) +

k13N2N2
3 N4(x3 − 2x2) = 0

(7)

x2
(

N4 + 3k5N2
3 N3

4 + k12N1N4
)
− x4(0.5N2 + k1N2N3 + 2k2N2

2 N3 + 3k3N3
2 N3 + 3k4N3

2 N2
3 + k15N1N2N3) +

k6N3
2 N4(x2 − 3x4) + k7N12

2 N7
4 (7x2 − 12x4) + k8N2N2

4 (2x2 − x4)+k9N2N6
4 (6x2 − x4) +(

k10N2N4 + k13N2N2
3 N4

)
(x2 − x4) + k14N2

2 N3N4(x2 − 2x4) = 0
(8)

x3(0.5N1 + k12N1N4)− x1(N3 + k1N2N3k2N2
2 N3 + k3N3

2 N3 + 2k4N3
2 N2

3 + 2k5N2
3 N3

4 + 2k13N2N2
3 N4 +

k14N2
2 N3N4) + k11N2

1 N3(2x3 − x1) + k15N1N2N3(x3 − x1) = 0
(9)
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To consider the effect of temperature on the activity of FeO (NFeO), NFeO was calculated in the 
different slags shown in Table 3 and at a temperature range of 1573–1823 K. The results are shown 
in Figure 2. It was found that NFeO in the two slags increased slightly with increased temperature. 
Figure 3 shows the activity of some components in slag 2 at different temperatures. F, S, C, and A 
represent FeO, SiO2, CaO, and Al2O3, respectively. 

Figure 1. Phase diagram of SiO2-Al2O3-CaO.

Table 3. Chemical composition of copper slag (wt. %).

Slag Type SiO2 Al2O3 CaO FeO R

Initial 39.96 7.21 3.35 49.47 0.08
1 34.91 7.61 14.27 43.22 0.4
2 27.50 11.90 26.55 34.05 0.95

3. Results and Discussion

3.1. Effect of Temperature on Activity of FeO

To consider the effect of temperature on the activity of FeO (NFeO), NFeO was calculated in the
different slags shown in Table 3 and at a temperature range of 1573–1823 K. The results are shown
in Figure 2. It was found that NFeO in the two slags increased slightly with increased temperature.
Figure 3 shows the activity of some components in slag 2 at different temperatures. F, S, C, and A
represent FeO, SiO2, CaO, and Al2O3, respectively.
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2FeO·SiO2 and CaO·FeO·SiO2, respectively.

From Figure 3, it can be seen that temperature had little effect on NFeO in slag 2. With increased
temperature, the activity of F2S (2FeO·SiO2) decreased and, on the contrary, the activity of CFS
(CaO·FeO·SiO2) increased. From Table 2, it can be seen that the reaction between FeO and SiO2 is
exothermic, and the reaction generating CaO·FeO·SiO2 is spontaneous. Namely, the consumption
of FeO is reduced by limiting the reaction between FeO and SiO2, although the reaction generating
CaO·FeO·SiO2 consumes FeO. These cause NFeO to increase slightly.

3.2. Effect of Basicity on Activity of FeO

To calculate the effect of basicity on NFeO, the contents of Al2O3 and FeO were kept constant at
7.61% and 43.36% in slag 1, respectively. In slag 2, the contents of Al2O3 and FeO were 11.90% and
33.68%, respectively. From Figure 2, it can be seen that temperature had little effect on NFeO, thus the
study was carried out at 1723 K, and basicity was used with binary basicity R = w(CaO)%/w(SiO2)%.
The results are shown in Figure 4, indicating that the tendency of NFeO was the same with different
contents of Al2O3 and FeO. NFeO first increased slightly, then increased sharply, and finally decreased.
In slag 1, the maximum activity was 0.64 at basicity of 1.7, while the maximum was 0.55 in slag 2 with
basicity of 2.0. From Table 2, it can be seen that ∑n, the sum of moles of ions and molecules in the
slag system, decreased because of the reactions between CaO and SiO2. According to the equation
NFeO = 2xFeO/∑n, NFeO would increase as the reactions between CaO and SiO2 proceed. On the other
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hand, FeO would react with CaO, Al2O3, or SiO2, which would decrease the content of FeO. Since these
two are opposite factors, the activity of FeO would appear at the maximum value.
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In Figure 5, the measured γFeO results are plotted for slag systems of SiO2-CaO-Al2O3-FeO and
SiO2-CaO-FeO by Taniguchi et al. [14], Arato et al. [15], and Wang et al. [18]. It is found that the present
work is in good agreement with the results of Taniguchi et al. and Arato et al., while it is within the
wide variation range reported by Wang et al. This is possibly because Al2O3 was not considered by
Wang et al. Comparing the results of Taniguchi et al., Arato et al., and the present work, the results
here are very small, which probably means that the effect of Al2O3 on γFeO is inert in the system.
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Figure 6 shows the activity of some components in slag 2 at 1723 K. When basicity was below
0.8, the activity of Al2O3 and SiO2 declined and the activity of CFS (CaO·FeO·SiO2) increased.
As basicity increased to 0.8, there was little activity of 2CaO·SiO2 and 2FeO·SiO2 disappeared
gradually, which means that CaO reacts with 2FeO·SiO2 first to form CaO·FeO·SiO2, instead of
forming 2CaO·SiO2. It proves that while the content of CaO is low, it is hard to replace the FeO from
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2FeO·SiO2. During the process, ∑n decreased and NFeO increased. Therefore, although the content of
FeO decreased, NFeO increased slowly.Metals 2018, 8, x FOR PEER REVIEW  7 of 10 
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From Figure 6, it can be seen that the tendency of the activity of 2CaO·SiO2 is same as that of FeO
when basicity is higher than 0.8, and the activity of CaO increases while the activity of CaO·FeO·SiO2

declines. This indicates that CaO reacted with CaO·FeO·SiO2 to form FeO and 2CaO·SiO2 with
increased basicity, making the activity of FeO and 2CaO·SiO2 increase. The formation of 2CaO·SiO2 in
copper slag has two steps, shown in Equations (10) and (11): first CaO reacts with 2FeO·SiO2 to form
CaO·FeO·SiO2 and FeO, and then CaO reacts with CaO·FeO·SiO2 to form 2CaO·SiO2 and FeO. CaO is
alkaline oxide and can dissociate O2− and Ca2+ easily. Meanwhile, CaO has higher alkalinity than FeO.
On the contrary, SiO2 is acidic oxide, which reacts more easily with CaO. FeO bound with SiO2 in the
form of 2FeO·SiO2 would be free to increase the NFeO.

(Ca2+ + O2−) + 2FeO·SiO2 = CaO·FeO·SiO2 + FeO (10)

(Ca2+ + O2−) + CaO·FeO·SiO2 = 2CaO·SiO2 + FeO (11)

When basicity reaches near 2.0, maximum NFeO as the affinity of CaO for SiO2 reaches the
maximum value at the ratio of NCaO/NSiO2 = 2 [14]. When the value of Si/O is smaller, the structure of
silicate is more stable and simpler. With basicity higher than 2.0, the CaO content still increases. By this,
all the silicate exists as SiO4−

4 , which is the most stable structure (Si/O = 1/4) [23], and O2− cannot
continue to be consumed to form silicate. Residual O2− reacts with Fe2+ to form FeO−

2 , decreasing
the FeO content; in the meantime, residual CaO reacts with FeO to form calcium ferrate compounds.
With these two results, the activity of FeO decreases [24].

3.3. Effect of Al2O3 on Activity of FeO

NFeO was calculated in different contents of Al2O3 for slag 1 and slag 2 with basicity of 1.7
and 2.0, respectively, at 1723 K, as shown in Figure 7. It can be seen that the value of NFeO slightly
decreased with increased Al2O3 content, but the variation was very small. To study the variation
further, the activity of some components in the slag system were calculated and are shown in Figure 8.

From Figure 8, it can be seen that the value of the activity of FA (FeO·Al2O3) is very small, just like
the value of the activity of S (SiO2). Although the activity of FeO·Al2O3 increased with increased
Al2O3 content, the value of activity of FeO·Al2O3 was so small to be ignored, which means it is hard
for Al2O3 to react with FeO in this slag system. On the other hand, the activity of CaO·Al2O3 increased,
indicating that the Al2O3 reacted with CaO and decreased its activity. With such a decrease, it is
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difficult for CaO to replace FeO from 2FeO·SiO2, which decreases the NFeO [24]. CaO can only react
with 2FeO·SiO2 to form CaO·FeO·SiO2, as in Equation (10). Therefore, the activity of 2CaO·SiO2

decreases and the activity of CaO·FeO·SiO2 increases when the content of Al2O3 increases.Metals 2018, 8, x FOR PEER REVIEW  8 of 10 
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CaO·Al2O3, 2FeO·SiO2, FeO·Al2O3 and CaO·FeO·SiO2, respectively.

4. Conclusions

1. The calculation model can predict the activity of components generated in the quaternary
slag system SiO2-CaO-Al2O3-FeO with different temperatures, basicity, and Al2O3 content.
Temperature influences the activity of NFeO slightly at 1573–1773 K.

2. Basicity is the major factor affecting the activity of FeO. With basicity ranging from 0.4 to 0.8, NFeO

increased slightly due to the formation of CaO·FeO·SiO2. When basicity reaches near 2.0, there
is maximum NFeO, as CaO can react with SiO2 to form the most stable and simplest structure,
SiO4−

4 (Si/O = 1/4). When basicity is higher than 2.0, CaO not only reacts with SiO2, but also
combines with FeO to form calcium ferrate compounds to decrease NFeO.

3. The value of NFeO slightly decreases with increased Al2O3 content, as CaO reacts with Al2O3,
which limits the free FeO generated from 2FeO·SiO2.
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