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Abstract: Simultaneously improving the strength, toughness, and ductility of cast steels has always
been a difficult problem for researchers. Biphase TiCx-TiB2 nanoparticle-reinforced cast steels are
prepared by adding in situ nanosized biphase TiCx-TiB2/Al master alloy during the casting process.
The experimental results show that a series of significant changes take place in the microstructure of
the steel: the ferrite-pearlite structure of the as-cast steels and the bainite structure of the steels after
heat treatment are refined, the grain size is reduced, and the content of nanoparticles is increased.
Promotion of nucleation and inhibition of dendrite growth by biphase TiCx-TiB2 nanoparticles leads
to a refinement of the microstructure. The fine microstructure with evenly dispersed nanoparticles
offers better properties [yield strength (1246 MPa), tensile strength (1469 MPa), fracture strain (9.4%),
impact toughness (20.3 J/cm2) and hardness (41 HRC)] for the steel with 0.018 wt.% biphase TiCx-TiB2

nanoparticles, which are increased by 15.4%, 31.2%, 4.4%, 11.5%, and 7.9% compared with the 40Cr
steels. The higher content of nanoparticles provides higher strengths and hardness of the steel but are
detrimental to ductility. The improved properties may be attributed to fine grain strengthening and
the pinning effect of nanosized carbide on dislocations and grain boundaries. Through this work, it is
known that the method of adding trace (0.018 wt.%) biphase TiCx-TiB2 nanoparticles during casting
process can simultaneously improve the strength, toughness, as well as ductility of the cast steel.

Keywords: TiCx-TiB2 nanoparticles; grain refinement; mechanical property; strengthening
mechanism

1. Introduction

Solving the problem of simultaneously improving the strength and toughness of cast steels
is a long-term goal for researchers. In recent years, ceramic particles, such as TiC [1,2], TiB2 [3,4],
(NbTi)C [5] and other ceramics [6,7], have been used to enhance metallic materials because of their good
thermal stability, high modulus, and good wettability with the metal matrix [6,8–11]. The outstanding
role of ceramic particles in enhancing metal properties has aroused researchers’ interest [12–15].
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Sung-Mo Hong et al. found that nanosized TiC particles can refine the structure and increase the
strength of SA-106B carbon steel [16]. S.W. Hu et al. found that TiC particles 2 µm in size can
strengthen the hardness and wear resistance of manganese steel [17]. TiB2 and TiC-reinforced steel
matrix composites were produced through powder metallurgy, improving the wear properties of the
composites [18–20]. Improved steel properties were expected to be obtained through the combination
of TiB2 and TiC particles. Spark plasma sintering was used to produce TiB2-TiC-reinforced steel matrix
composites [21]. Among the various methods, traditional casting is economical and convenient, with
its high production efficiency and flexible product shape [22,23]. However, due to the large difference
in specific gravity, agglomeration of nanoparticles and surface pollution of nanoparticles, it seems that
the traditional casting method is not suitable for producing nanoceramic-reinforced steel. Because
of these constraints, there have been few studies on enhancing the strength and toughness of cast
steel with dual-phase nanosized ceramic particles (TiCx-TiB2). Therefore, it is meaningful to prepare
TiCx-TiB2 nanoparticle-reinforced steel through traditional casting method.

In this work, we have innovatively added the in situ nanosized biphase TiCx-TiB2/Al master alloy
into the casting process to make trace (TiCx-TiB2) nanoparticle-reinforced cast steel. The master alloy,
in which nanosized ceramic particles are uniformly dispersed, is prepared by the SHS (self-propagating
high temperature synthesis) method. This work helps to solve the problem of floating, agglomerating,
and surface contamination of ceramic particles in the steel and makes full use of the benefits of the
dual-phase ceramic particles (TiCx-TiB2) and conventional casting methods. The experimental results
show that the strength and toughness of the dual-phase ceramic particles-reinforced cast steel are
simultaneously improved. The influence mechanisms of the ceramic particles on both microstructural
evolution and properties improvement of steels have been fully analyzed and discussed. In this paper,
the preparation methods show a large potential application value, and the analysis and discussion
provide a valuable reference for subsequent researchers.

2. Materials and Methods

The main chemical composition of investigated 40Cr steel is displayed in Table 1. The nanosized
TiCx-TiB2/Al master alloy was prepared through self-propagating high-temperature synthesis. First,
Al (~13 µm), Ti (~25 µm), and B4C (~1.5 µm) powders at a ratio corresponding to that of stoichiometric
TiC and TiB2 were sufficiently mixed in a ball mill at a speed of 50 rpm for 18 h. Second,
the sufficiently mixed powders were cold pressed into cylindrical compacts (Φ = 28 mm; h = 30 mm).
Finally, a self-made vacuum thermal explosion furnace was used to initiate the self-propagating
high-temperature synthesis (SHS) reaction in the compacts at a heating speed of about 30 K/min.
and then at 900 ◦C for 10 min. After the reaction was completed, the nanosized TiCx-TiB2/Al master
alloy was successfully produced. The molten steel melted in 5 kg-capacity medium frequency furnace
(GW-0.3t, NHHY, Foshan, China) was poured into a ladle, in which the master alloy had been placed.
The molten steel with the ceramic particles dispersed throughout was cast into the sand mold and then
cooled to room temperature. The steels were kept at 950 ◦C for 90 min and oil quenched. Afterwards,
the steels were kept at 200 ◦C for 480 min and air cooled to room temperature, as shown in Figure 1.

Table 1. Chemical composition of the 40Cr steel.

Element C Si Mn Cr S P Fe

wt.% 0.41 0.25 0.65 0.95 0.004 0.018 Bal.
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Figure 1. Heat treatment process diagram for cast steels.

The chemical composition of the investigated alloy was determined by direct-reading spectrometer
(CX-9000, GLMY, WuXi, China). The ceramic particles extracted from the master alloy were
characterized by X-ray diffraction (XRD, D/Max 2500PC Rigaku, Japan) and by field emission scanning
electron microscopy (FESEM, JSM-6700F, JEOL, Tokyo, Japan). Samples after heat treatment were cut
into dog-bone shaped tensile specimens (the specimens had a gauge length of 8 mm and cross-sectional
area of 2.5 mm × 2 mm) and Charpy impact specimens (10 × 10 × 55 mm, U-notch). The samples
used for optical microscopy (OM, Olympus PMG3, Tokyo, Japan) were polished and etched with
a 5% nitric acid and 95% alcohol mixture. The samples designated for electron backscatter diffraction
(EBSD, Oxford NordlysMax EBSD, Oxford, UK) analysis were electropolished in a mixture of 20%
perchloric acid (Beijing Chemical Works, Beijing, China) and 80% acetic acid (Beijing Chemical Works,
Beijing, China) at 30 V for 15 s. 0.3 µm was chosen as step size of EBSD scans. The TEM microstructure
was acquired by using a JEOL microscope (JEM 2100F, JEOL, Tokyo, Japan). The tensile tests were
performed on a servo hydraulic materials testing system (MTS 810, MTS Systems Corporation,
Minneapolis, MN, USA). The standard Charpy impact test was conducted using a semiautomatic
impact tester (JBW-300B, JNKH, Jinan, China). The fracture surfaces of the tensile and impact specimens
were observed by means of scanning electron microscopy (SEM, VEGA 3 XMU, TESCAN, Brno,
Czech Republic).

3. Results and Discussion

Figure 2a presents the XRD pattern of the nanosized biphase TiCx-TiB2/Al master alloy, which
shows that the master alloy mainly contains α-Al, TiC, TiB2 and a small amount of Al3Ti. It can be
determined that the SHS reaction is relatively complete, with only a small amount of Al3Ti remaining.
Figure 2b is a FESEM image of the mixed particles of TiC and TiB2 obtained by extracting the nanosized
TiCx-TiB2/Al master alloy with hydrochloric acid. It can be seen that in addition to the spherical TiC
particles, there are also hexagonal prisms or lamellar TiB2 particles. The size statistics of the TiCx and
TiB2 mixed particles in Figure 2b shows that the average grain size of the mixed particles is 190 nm.
The nanoparticles are separated by aluminum, with no significant agglomeration with one another
(Figure 2c,d). Then, the nanosized TiCx-TiB2/Al master alloy was melted and gradually dispersed
in the molten steel. The aluminum in the master alloy can also be simultaneously used as an oxygen
scavenger to react with oxygen at a high temperature to form Al2O3. Then, the Al2O3 is removed
during the smelting process. This method not only successfully introduces nanoparticles into the
molten steel but also contributes to the uniform dispersion of nanoparticles and to the removal of
oxygen from the steel.
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Figure 2. (a) XRD pattern of nano-sized TiCx-TiB2/Al master alloy, (b) morphologies and sizes analysis
of the nano-sized TiCx-TiB2 particles in the nano-sized TiCx-TiB2/Al master alloy. TEM images (c) and
electron diffraction patterns (d) of the nano-sized TiCx-TiB2/Al master alloy.

The typical ferrite-pearlite hybrid structure of the medium-carbon steel can be seen in Figure 3a.
The bright area is pro-eutectoid ferrite, and the dark area is pearlite [24–26]. Because the carbon
content of the steel is less than 0.77 wt.%, ferrite will be precipitated along the austenite grain boundary
before the pearlite transformation. Therefore, the long strip ferrite is distributed on the boundary of
the coarser pearlite group. After adding the 0.018 wt.% nanoceramic particles, it can clearly be seen
that instead of the strip-shaped pro-eutectoid ferrite, the small pieces of ferrite dispersed inside the
pearlite group increase, and the size of the pearlite group is also reduced (Figure 3b). When the content
of nanoparticles in the steel is increased to 0.054 wt.%, smaller ferrite in the structure is distributed
uniformly, and the pearlite structure is further refined Figure 3c. It is known from the structure
observed under the optical micrographs that the microstructure of the steel after heat treatment mainly
contains lower bainite and a small amount of residual ferrite. The unevenly distributed particles with
a large number of large white blocks can be seen in Figure 3d. In contrast, the lath ferrite and carbide
in the microstructure of the steel, to which the 0.018 wt.% nanoparticles are added, are significantly
finer and more uniform. More lath ferrites and carbides were observed in Figure 3f, but the lath ferrite
is thicker than that in Figure 3e.
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Figure 3. OM images of the as-cast steels (a–c), and steels after heat treatment (d–f).

The EBSD method was used to clarify the quantitative degree of grain refinement, as shown in
Figure 4. The average grain size is refined from 9.12 µm in the 40Cr steel to 3.59 µm in the steel with
0.018 wt.% TiCx-TiB2 nanoparticles. The grain size of the steels with trace nanosized TiCx-TiB2 particles
was refined by 60.6%. More importantly, the nanoparticles not only changed the cast microstructure of
the steel but also refined the grain size of the steel after heat treatment.
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Figure 4. EBSD images of steels with TiCx-TiB2 particles contents of 0 wt.% (a) and 0.018 wt.% (b) after
heat treatment. (c) shows the average grain size of (a,b).

The TEM images in Figure 5 show the differences in microstructures between the steels without
nanosized TiCx-TiB2 particles and the 0.018 wt.% TiCx-TiB2 nanoparticle-reinforced steel. It is
determined that a large number of carbide particles, of which the size is less than 100 nm, are evenly
distributed in the microstructure of the 0.018 wt.% TiCx-TiB2 nanoparticle-reinforced steel in Figure 5b.
On the contrary, a smaller amount of carbide particles is found in the microstructure of the steels
without nanosized TiCx-TiB2 particles (Figure 5a).
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Figure 5. TEM images of steels without nano-sized TiCx-TiB2 particles (a) and steels with 0.018 wt.%
TiCx-TiB2 nanoparticles (b).

TiCx and TiB2 have been proven to be effective austenitic heterogeneous nucleation sites [2,10,12].
Nanoparticles are successfully introduced and dispersed into the liquid steel herein. As shown in
Figure 6, because structural undulations and energy fluctuations of the heterogeneous nucleation are
small, nucleation occurs preferentially on the nanoparticles. Usually, larger-sized nanoparticles act
as the nucleation site, while smaller-sized nanoparticles adsorb onto the solid-liquid interface and
hinder the transition of the interface, thus inhibiting the growth of the dendrite [27]. The primary
dendrites gradually grow, and finally, the material becomes completely austenitized. The size of the
prior austenite grains seriously affects the later ferrite-pearlite structure and the bainite structure [28].
The increased grain boundaries due to austenite grain refinement and dispersed nanoparticles provide
more precipitation sites for pro-eutectoid ferrite, which avoid the formation of long ferrite and limit the
growth of pearlite. The most important process when the bainite transformation occurs is the diffusion
of carbon. The rapid diffusion channels and thermal mismatches produced by the grain boundaries
and nanoparticles promote the diffusion of carbon and the nucleation of carbides, so there are a large
number of dispersed carbides throughout the structure.
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Figure 6. The effect of TiCx-TiB2 nanoparticles on the refinement of austenite. (a) Nanoparticles in
molten steel; (b) Nucleation and growth of austenite; (c) Nanoparticles in austenite.

Figure 7 shows the tensile engineering stress-strain curves and fracture surfaces of the 40Cr steels
with different TiCx-TiB2 nanoparticle contents. It is not difficult to determine from Figure 7a that the
yield strength and tensile strength of the steel with nanoparticles are greatly improved. In addition
to a large increase in the yield strength and tensile strength compared to the 40Cr steel, the fracture
strain of the steel containing 0.018 wt.% TiCx-TiB2 nanoparticles is also improved. The yield and
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tensile strengths of the steel with 0.054 wt.% nanoparticles added are further enhanced, but the fracture
strain is obviously decreased. From Table 2 one can observe that the yield strength, tensile strength,
and fracture strain of the 40Cr steel are 1080 MPa, 1120 MPa and 9%, respectively. Compared with
the 40Cr steel, the yield strength (1246 MPa), tensile strength (1469 MPa), and fracture strain (9.4%)
of the steel containing 0.018 wt.% TiCx-TiB2 nanoparticles are increased by 15.4%, 31.2% and 4.4%,
respectively. The yield strength (1415 MPa) and tensile strength (1554 MPa) of the steel with 0.054 wt.%
TiCx-TiB2 nanoparticles are increased by 31% and 38.8% compared with the 40Cr steel, respectively.
The fracture surfaces (Figure 7b–d) also reflect the tensile properties of the material to some extent.
There are some dimples with uneven sizes on the tensile fracture of the 40Cr steel, which shows
a ductile fracture. The dimples on the fracture surface of the steel with 0.018 wt.% nanoparticles are
more obvious, and the size is more uniform, but it is also a ductile fracture. However, there are fewer
dimples on the fracture surface of the steel with 0.054 wt.% nanoparticles, and most of the areas have
a rock or sugar-like morphology, which shows a brittle intergranular fracture. Owing to the increase of
carbides inside and the refinement of grain size, hardness of steels with nanoparticles has increased,
as Table 2 lists.
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Table 2. Tensile properties, impact toughness and hardness of the steels with different content of
TiCx-TiB2 nanoparticles.

Samples σ0.2
(MPa)

σUTS
(MPa)

Fracture Strain
εf (%) ak (J/cm2) Hardness HRC

40Cr steels 1080+10
−70 1120+20

−10 9.0+1.6
−2.0 18.2 ± 0.85 38+1.5

−1.0
0.018 wt.% TiCx + TiB2 1246+8

−6 1469+20
−10 9.4+1.7

−1 20.3 ± 1.66 41+1.1
−0.8

0.054 wt.% TiCx + TiB2 1415+5
−2 1554+8

−35 5.5.6+0.8
−1.3 13.8 ± 0.80 47+2.2

−2.1

Figure 8 reflects the work-hardening ability of the steels with different TiCx-TiB2 nanoparticles
contents. Combined with the analysis of Figure 7, it is determined that the yield strength of the 40Cr
steel is low, the yielding occurs very quickly, and the work-hardening rate rapidly decreases after
yielding. Compared with the 40Cr steel, the steel with 0.018 wt.% TiCx-TiB2 nanoparticles has a higher
yield strength, and a higher work-hardening rate with the same plastic deformation after yielding.
The steel with 0.054 wt.% TiCx-TiB2 nanoparticles has the highest yield strength, and the highest
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work-hardening rate, but its work-hardening rate is less than the steel with 0.018 wt.% nanoparticles
when the true strain at a value exceeding 4.5% as shown in Figure 8, and there is no buffering stage of
the work-hardening rate similar to that of the steel with 0.018 wt.% TiCx-TiB2 nanoparticles.
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Figure 9 shows the impact properties and impact fracture morphologies of the steels with different
contents of TiCx-TiB2 nanoparticles at room temperature. The impact toughness of steel with 0.018 wt.%
TiCx-TiB2 nanoparticles is 11.5% higher than that of the 40Cr steel, but the impact toughness of the
steel with 0.054 wt.% nanoparticles is reduced. Some of the reasons for this can be seen from the
impact fracture surfaces in Figure 9. In the impact fracture surfaces of the 40Cr steel, the quasi-cleavage
transgranular fracture is dominant, and there is a small intergranular fracture section. Except for
a small amount of cleavage fracture, there are many dimples on the impact fracture of the steel with
0.018 wt.% TiCx-TiB2 nanoparticles, indicating that the impact toughness is better than that of the
40Cr steel. The fracture of the steel with 0.054 wt.% TiCx-TiB2 nanoparticles is dominated by brittle
intergranular fracture and some cracks, which are unfavorable for the toughness of the material.
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According to the Hall-Petch formula, a smaller average grain size can result in a larger yield
strength [29]. The difference in grain orientation on both sides of the grain boundary increases the slip
resistance of the dislocation near the grain boundary and causes dislocations to accumulate at the grain
boundary. According to the Orowan mechanism, a large number of dispersed carbides can hinder the
movement of dislocations and cause an entanglement of the dislocations [30–33]. The dislocation loop
will be left behind when dislocations pass through the carbides and nanoparticles, which produces
a reaction force to the dislocation source. All of the above factors can improve the tensile strength of the
steels. In a certain volume, the smaller grains size means a greater number of grains. The deformation is
more uniform because it can be dispersed in more grains with the same amount of plastic deformation.
On the other hand, when there is stress concentration in the material, voids tend to form in the weaker
part. With the strain increasing, voids grow up, and adjacent voids gather together to form dimples.
However, materials with uniform internal structure such as steels with 0.018 wt.% nanoparticles have
more uniform distribution of vacancies when strain occurs, so the dimples on the fracture surface are
more uniform and the size of dimples is larger before fracture. On the contrary, materials with less
uniform internal structure, such as the matrix, tend to concentrate a large number of voids to form
crack sources when strain occurs. Therefore, the ductility of steels with 0.018 wt.% nanoparticles is
better than that of the matrix. Materials can withstand a large amount of deformation before breaking
when fewer cracks caused by a stress concentration occur. It is difficult for many nanoparticles to
disperse uniformly in the steel. In the case of a large deformation, the second phase of agglomeration
often becomes the source of cracks. This is why the strength and plasticity of the steel with 0.018 wt.%
TiCx-TiB2 nanoparticles are simultaneously improved, while the strength of the steel with 0.054 wt.%
TiCx-TiB2 nanoparticles is greatly increased but the fracture strain drops. The smaller grain size means
more grain boundary area and more zigzag grain boundary, which is not conducive to the crack
propagation. Therefore, the impact performance of the steel with 0.018 wt.% TiCx-TiB2 nanoparticles is
improved. For the steels with 0.054 wt.% TiCx-TiB2 nanoparticles, the enhancement caused by grain
refinement does not offset the damage of the poorly dispersed particles to impact toughness.

4. Conclusions

Trace biphase TiCx-TiB2 nanoparticle-reinforced steels are innovatively produced by adding
nanosized TiCx-TiB2/Al master alloy during the casting process. The pearlitic-ferrite structure of the
as-cast steels and the bainite structure of the steels after heat treatment have been refined and the
dispersed nanosized carbides are increased. The average grain size is refined from 9.12 µm for the
40Cr steel to 3.59 µm for the steel with 0.018 wt.% TiCx-TiB2 nanoparticles. Microstructural refinement
benefits from the promotion of nucleation and inhibition of dendrite growth by TiCx-TiB2 nanoparticles.
Compared with the 40Cr steel (σ0.2 = 1080 MPa, σUTS = 1120 MPa, εf = 9%, ak = 18.2 J/cm2, HRC = 38),
the yield strength (1246 MPa), tensile strength (1469 MPa), fracture strain (9.4%), impact toughness
(20.3 J/cm2), and hardness of the steel containing 0.018 wt.% TiCx-TiB2 nanoparticles are increased by
15.4%, 31.2%, 4.4%, 11.5%, and 7.9%, respectively. The yield strength (1415 MPa) and tensile strength
(1554 MPa) of the steel with 0.054 wt.% TiCx-TiB2 nanoparticles are increased by 31% and 38.8%
compared with the 40Cr steel, respectively. The improved tensile properties may be attributed to fine
grain strengthening and the pinning effect of nanosized carbides on dislocations and grain boundaries.
The results indicate that the trace TiCx-TiB2 nanoparticles are successfully introduced into the cast steel
through the method of adding nanosized TiCx-TiB2/Al master alloy during the casting process and
that trace (0.018 wt.%) TiCx-TiB2 nanoparticles can simultaneously improve the strength, toughness,
as well as ductility of the cast steel.
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