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Abstract: The control of a homogeneous distribution of the reinforcing phase in aluminum matrix
composites is the main issue during the synthesis of this kind of material. In this work, 2024 aluminum
matrix composites reinforced with boron carbide were produced by mechanical milling, using 1 and
2 h of milling. After milling, powdered samples were cold consolidated, sintered and T6 heat treated.
The morphology and microstructure of Al2024/B4C composites were investigated by scanning
electron microscopy; analysis of X-ray diffraction peaks were used for the calculation of the crystallite
size and microstrains by the Williamson–Hall method. The mechanical properties were evaluated by
compression and hardness tests. B4C particles were found to be well dispersed into the aluminum
matrix as a result of the high-energy milling process. The crystallite size of composites milled for
2 h was lower than those milled for 1 h. The hardness, yield strength and maximum strength were
significantly improved in the composites processed for 2 h, in comparison to those processed for 1 h
and the monolithic 2024 alloy.

Keywords: Al2024; boron carbide; mechanical milling

1. Introduction

Aluminum matrix composites are considered as promising materials for the development of the
automotive and aerospace industry. This is because of the attractive characteristics, such as lightness,
strength, high specific modulus and good corrosion resistance. For these reasons, extensive theoretical
and experimental studies have been carried out on the fundamental relationships between the
mechanical properties and the microstructure of metal matrix composites (MMCs) with different types
of matrices and either particles or fibers as reinforcements [1–4]. The selection of the reinforcement
type, geometry and volume fraction is critical for obtaining the best combination of properties with
a low cost [5]. The size of the reinforcing phase is a key factor, in such a way that the interaction of
particles with dislocations becomes of significant importance and, when they are considered with
other strengthening effects typically found in conventional MMCs, gives as a result a remarkable
improvement of the mechanical properties [6–9].

Another aspect to be considered in the synthesis of MMCs is the low wettability of ceramic
particles with the molten metal matrix, which prohibits the production of MMCs by conventional
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casting processes. Mechanical milling, a method of powder metallurgy, offers homogeneous dispersion
of hard particles with a control of particle size. It also allows the fragmentation of ceramic clusters as
well as the formation of alloys by diffusion mechanisms starting from pure metals, producing preforms
by in situ reaction of reinforcements [10–14].

Monolithic B4C ceramic is a low-density material having a high hardness, strength and stiffness.
However, densification of monolithic B4C requires the application of high temperatures and/or
high pressures [15]. The density of B4C is lower than that of other commercially available ceramic
reinforcements, such as SiC, TiB2, ZrSiO4, Al2O3, and TiC, resulting in composites with higher specific
stiffness. Due to the fact that it possesses a low density (2.52 g/cm3), a hardness just below that
of diamond (9.5 + in Mohs’ scale), excellent thermal stability and wettability, remarkable chemical
inertness, and high abrasive capacity, it is an ideal candidate as a reinforcement for aluminum-based
composites [16]. However, a major limitation to its widespread use arises from its extreme susceptibility
to brittle fracture. Researchers have known that combining B4C with a metal could solve the recognized
difficulties with B4C. Therefore, this research focuses on the homogeneous dispersion of hard B4C
particles into the 2024 aircraft grade aluminum alloy. This is due to the extensive use of this alloy
in structural applications and the potential for increasing its mechanical performance by adding
hard particles. The use of solid-state routes, such as mechanical alloying to achieve an effective
homogeneous dispersion of hard particles into different matrices, makes them an interesting way to be
explored for expanding the mechanical capabilities of aluminum alloys, for future applications under
room and hot working conditions. The evolution of the microstructure and mechanical properties of
Al2024/B4C composites prepared by mechanical milling and conventional sintering, followed by a T6
heat treatment, will be analyzed.

2. Materials and Methods

The raw materials used in this investigation were Al2024 alloy swarf, which was produced from
a commercial solid bar, and B4C particles of average diameter 7 µm (Mills Electro Minerals Corp.,
Washington, DC, USA) were used as reinforcing agent. First of all, the Al2024 alloy swarf was mixed
with B4C in different concentrations (0.0, 0.5, 1.0, 1.5, 2.0, 2.5 wt.%) and then they were mechanically
milled in a high-energy milling apparatus (SPEX 8000M, Metuchen, NJ, USA) for 1 and 2 h. AISI D2
vial and balls were selected as milling media. Milling process parameters were selected as follows:
ball-to-powder ratio 5:1, argon atmosphere protection, and addition of methanol as a process control
agent (PCA). After milling, the Al2024/B4C composite mixtures were loaded into a steel die and
uniaxially cold pressed using 900 MPa for 3 min to produce billets with a diameter of 6 mm and a
height of 12 mm. Sintering process was carried out with a heating rate of 15 ◦C/min up to 500 ◦C
for 3 h under an Ar atmosphere; samples were allowed to cool down inside the furnace. Finally,
the samples were artificially aged (T6 temper) for 6 h at 191 ◦C [17]. A monolithic Al2024 alloy was
subjected to the same process for comparison purposes.

Microstructure, distribution and morphology of samples were determined using a scanning
electron microscope (SEM, Hitachi SU3500, Tokyo, Japan). Crystallite size and microstrains were
evaluated by X-ray diffraction (XRD) using Cu Kα (λ = 0.15406 nm) radiation source, in a diffractometer
(BRUKER model D8 Advance, Billerica, MA, USA), in the 2θ range of 20◦–100◦ operating at
40 kV/30 mA, with a scanning speed of 0.005◦/s. Williamson–Hall analysis was used for estimating
the crystallite size and microstrains, according to Equation (1). Metallographic specimens for the
composites were prepared by cutting a cross section of samples followed by hot mounting. Sample were
ground by using emery papers on a metallographic grinding machine. After that, a fine polish was
made with high-alumina powder. Finally, samples were etched with Keller’s reagent.

Vickers microhardness of the samples was measured at room temperature by a microhardness
tester (FM-7, Tokyo, Japan) using a maximum load of 1 kgf and dwelling time of 15 s; a total of five
measurements were performed for each sample, and the average value was reported. Compression
tests were performed at room temperature in a universal testing machine (Instron, Norwood, MA,
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USA) with a constant cross-head speed of 0.5 mm/min to obtain the yield strength (σy) and maximum
strength (σmax); three measurements were achieved for each sample and the average value was
reported. Additionally, the fracture surfaces were further examined in detail by SEM.

β cos(θ) =
Kλ

D
+ 4ε sin θ (1)

where: β = FWHM, D = crystallite size, ε = strain, λ = wavelength of Cu Kα, and K = shape factor (0.9).

3. Results and Discussion

3.1. Microstructure Analysis

Figure 1 shows images of the Al2024 alloy swarf and the as-received B4C powder, the latter
presenting a wide distribution of particle size with an angular morphology. Figure 2 shows the
milling effect on the morphology and particle size of the Al2024-2.0 wt.% B4C composite. After 1 h of
milling (Figure 2a), the particles have an equiaxial morphology and wide particle size distribution.
When the milling time increases to 2 h (Figure 2b), the micro-scale particles present a noticeable
refinement. The increment in milling time produces hardened particles due to cold working [18]
owing to the predominance of the fracture stage in the fracture-welding process occurring during the
mechanical milling.
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Figure 3 shows XRD diffraction patterns of the as-milled Al2024 alloy (0.0 wt.% B4C) and its
composites as a function of the B4C concentration. A respective inset displays the effect of milling time
and B4C concentration on the macrostrains and crystallite size. No significant decrease in the intensity
of the X-ray diffraction peaks nor broadening are visible in the patterns. However, a deeper analysis
indicates changes in the crystallite size and variations in the microstrains as the milling time increases
from 1 to 2 h, and as a function of the B4C concentration. A decrement in crystallite size is observed
when milling time increases from 1 to 2 h. This effect can be attributed to the increment in the milling
time producing a size reduction of the B4C particles.
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Figure 3. X-ray diffraction (XRD) diffraction patterns, crystallite size and microstrains as a function of
the B4C content: (a) 1 h and (b) 2 h of milling.

When the as-milled powders were sintered and T6 heat treated, the reinforcing particles became
smaller and sub-rounded (Figure 4a); furthermore, the particles can be seen as well embedded and
homogenously distributed throughout the Al2024 matrix, with no areas substantially depleted of B4C
(Figure 4b). The spacing between the B4C particles varies from 0 to 20 µm, with an average of about
8 µm. At higher magnifications (Figure 4b,c), it is noticeable that the B4C particles have different
sizes ranging from 3 to 20 µm. The properties of the MMCs depend not only on the matrix, particle
morphology and the volume fraction, but also on the distribution of the reinforcing particles, as well
as the interface bonding between the particle and the matrix [19,20]; a good interface bonding can be
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seen in the representative image shown in Figure 4c. The most important factor in the fabrication of
MMCs is the uniform dispersion of the reinforcing phase.Metals 2018, 8, x FOR PEER REVIEW  5 of 10 

 

 

Figure 4. Al2024-2.0 wt.% B4C specimen milled for 2 h, sintered and T6 heat treated: (a) low-

magnification optical micrograph and (b) high-magnification SEM micrograph; (c) morphology of a 

single B4C particle. 

The spatial distribution of the elements in the composites after the T6 heat treatment was 

examined through a scanning electron microscope with energy dispersive spectroscopy (SEM-EDS) 

mapping, as shown in Figure 5a for the Al2024-2.0 wt.% B4C specimen. The mapping reveals a 

homogeneous distribution of the B4C particles, even though they present a varied particle size. The 

energy dispersive spectroscopy (EDS) analysis taken from one of the bigger particles (Figure 5b) 

confirmed the chemical composition of the B4C phase. 

 

Figure 5. (a) scanning electron microscope-energy dispersive spectroscopy (SEM-EDS) mapping 

analysis of the Al2024-2.0 wt.% B4C milled for 2 h; (b) EDS analysis of a B4C particle. 

Figure 4. Al2024-2.0 wt.% B4C specimen milled for 2 h, sintered and T6 heat treated:
(a) low-magnification optical micrograph and (b) high-magnification SEM micrograph; (c) morphology
of a single B4C particle.

The spatial distribution of the elements in the composites after the T6 heat treatment was examined
through a scanning electron microscope with energy dispersive spectroscopy (SEM-EDS) mapping,
as shown in Figure 5a for the Al2024-2.0 wt.% B4C specimen. The mapping reveals a homogeneous
distribution of the B4C particles, even though they present a varied particle size. The energy dispersive
spectroscopy (EDS) analysis taken from one of the bigger particles (Figure 5b) confirmed the chemical
composition of the B4C phase.
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3.2. Mechanical Properties

3.2.1. Microhardness Measurements

The microhardness results of the composites milled for 1 and 2 h are shown in Figure 6; the
error bars represent the standard deviation. As can be seen, the microhardness of the composites
increases with the increment in the milling time, which is related to the material strain hardening
during the mechanical process. On the other hand, for both milling conditions, the microhardness
of the composites increases with increments in the B4C content up to 2.0 wt.%, reaching values of
110 and 125 HV for samples milled for 1 and 2 h, respectively. These values represent an increment in
microhardness of around 45% and 68%, respectively, compared with the microhardness of a commercial
as-cast 2024 aluminum alloy with T6 heat treatment condition (76 HV) [21]. These increments in
microhardness are associated with the combined effects of the homogeneous distribution of the B4C
particles into the Al2024 matrix and the overall microstructure refinement induced by the milling
process. From 2.5 wt.% of B4C, the microhardness begins to decrease, which may be due to the carbon
matrix saturation [22].
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3.2.2. Compression Tests

Figure 7 presents the effect of the B4C addition and milling time on the yield strength (σy) of the
composites; the error bars represent the standard deviation. Similar to the hardness results, there is a
clear influence of the B4C content on the σy behavior, up to saturation values of about 338 and 440 MPa
for samples milled for 1 and 2 h, respectively. With 2.5 wt.% of B4C the σy of composites begins to
decrease. Concerning the milling time effect, it is evident how σy increases for all composites milled for
2 h, in comparison with those milled for 1 h. Figure 7 shows also the σy value reported in the literature
for the as-cast Al2024 alloy in the T6 heat treated condition (315 MPa) [21]. Samples milled for 1 h
containing between 1.5 and 2.0 wt.% of B4C exceed the σy value of the commercial sample. The low
σy values of samples milled for 1 h with 0.5 and 1.0 wt.% of B4C can be due to the porosity inherent
to the sintering process [23]. All composites milled for 2 h exceeded the σy value of the commercial
sample, which proves the positive effect of the mechanical milling process in counteracting the adverse
effect of the porosity in the sintered samples. In the case of the sample milled for 2 h with 1.5 wt.%
of B4C, the positive trend was broken. For both milling times, with 2.5 wt.% of B4C the σy begins to
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decrease, probably because of the matrix saturation, but still these values are higher than that of the
commercial sample.

Regarding the maximum strength (σmax), whose values are shown in Figure 8, the effect of the B4C
content and the milling time were comparable to those found for the yield strength. Similar to other
research works [24–27], the strengthening mechanisms involved here can be related to the following:
(i) the dispersion of second phases (B4C particles); (ii) the microstructure refinement induced by the
high-energy milling; and (iii) the grain-boundary strengthening (Hall-Petch effect). Even though the
Orowan strengthening mechanism does not occur in composites with microreinforcements, the particle
fragmentation due to milling effects must be considered, and thus this mechanism may be considered
owing to the presence of fragmented B4C particles finely dispersed into the Al2024 alloy matrix.
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3.3. Fractographic analysis

Figure 9a shows the fracture surface of the Al2024-2.0 wt.% B4C composite milled for 2 h. Intact
B4C particles can be observed on the surface of fractured samples (pointed by arrows in Figure 9b),
which indicates a good bonding between B4C particles and the Al2024 alloy matrix. Axial cracks
similar to those presented in brittle materials under uniaxial loads during compression tests can
be observed. In addition, it can be seen that the sample was broken along the loading direction.
This suggests that the addition of 2.0 wt.% of B4C improves the ductility of the composite material;
however, this behavior must be deeply analyzed in future work. Some fracture dimples around the
B4C particles were found (Figure 9c), which were formed at the microscopic level by the mechanism of
ductile failure of the Al2024 matrix. A full examination of the fracture surface of samples demonstrated
the scarcity of cracking in the reinforcement; a decohesion of the matrix/reinforcement interface could
not be seen either. These results indicate the formation of a strong interface allowing the load to be
efficiently transferred between the matrix and the reinforcing particles.
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Figure 9. (a) Fracture surface examination of the Al2024-2.0 wt.% B4C composite milled for 2 h; (b) B4C
particles on the fractured surface and (c) Fracture dimples around the B4C particles.

4. Conclusions

The milling process, followed by cold compaction, sintering and T6 heat treatment, were
successfully applied to reinforce the 2024 aluminum alloy with B4C. B4C particles were homogeneously
dispersed throughout the 2024 aluminum matrix. A strong interface bonding between B4C and Al2024
was achieved with no reaction between them during the whole synthesis process. The milling time
had an effect on the refinement of the crystallite size and microstrains increase for both milling
times (1 and 2 h). An increase in the amount of B4C in the Al2024 matrix did not result in a finer
crystallite size for all composites milled for 2 h; however, for composites milled for 1 h, the amount of
reinforcement increased both the crystallite size and microstrains. Defects such as pores and cracks
were not detected. Both milling time and B4C content had a positive effect on the mechanical properties
of the composites. The best properties, hardness, σy, and σmax, were obtained with 2 h of milling and
2.0 wt.% of B4C particles.

Author Contributions: C.L.-M. and E.L.-S. prepared metallographic samples; R.C.-B. developed the composites
by mechanical milling; R.P.-B. and J.M.H.-R. characterized the composite powders by SEM; I.E.-G. characterized
the samples by microhardness and compression tests; C.C.-G. designed the experiments, analyzed the data and
wrote the paper.
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