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Abstract: In this study, finite element analyses are performed to obtain a stress-strain curve for
ductile materials by a combination between the distributions of axial stress and strain at a certain
time as a result of one single Taylor impact test. In the modified Taylor impact test proposed here,
a measurement of the external impact force by the Hopkinson pressure bar placed instead of the
rigid wall, and an assumption of bi-linear distribution of an axial internal force, are introduced as
well as a measurement of deformed profiles at certain time. In order to obtain the realistic results
by computations, at first, the parameters in a nonlinear rate sensitive hardening law are identified
from the quasi-static and impact tests of pure aluminum at various strain rates and temperature
conducted. In the impact test, a miniaturized testing apparatus based on the split Hopkinson pressure
bar (SHPB) technique is introduced to achieve a similar level of strain rate as 104 s−1, to the Taylor
test. Then, a finite element simulation of the modified test is performed using a commercial software
by using the user-subroutine for the hardening law with the identified parameters. By comparing the
stress-strain curves obtained by the proposed method and direct calculation of the hardening law,
the validity is discussed. Finally, the feasibility of the proposed method is studied.

Keywords: Taylor impact test; stress-strain curve; Hopkinson pressure bar; miniaturized testing apparatus;
finite element simulation

1. Introduction

The Taylor impact test, established by Taylor [1], is a quite simple impact compressive test. In this
test, a cylindrical slender specimen is shot to, and strikes the surface of a rigid body wall. After striking,
the length of the deformed specimen is measured to determine the mechanical properties of the
materials. As a result of the test, maximum strain rates as high as 103–105 s−1 can be easily obtained.
The test is applicable to a wide variety of materials such as metals [2], polymers [3,4], foams [5,6] etc.
The test was originally used for measuring the impact yield strength, and the fairly reliable value of
the strength can be obtained.

It is actively discussed that modifications to the theoretical formulae in the original method are
needed to calculate the strength, because only constant deceleration at the free end of specimens is
considered. For example, Wilkins and Guinan [7] experimentally derive the conclusion that the ratio
between length in the region due to plastic deformation and the total length of the deformed specimen
is almost constant, with respect to the impact velocity, and they propose a simplification method of the
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formulae by Taylor [1]. In order to reduce the effect of friction and to avoid the indentation of the wall
by specimens, the symmetric Taylor impact test [8,9] is also proposed.

In conjunction with the above discussions in terms of the Taylor impact test, a further modification
is made to measure a stress-strain curve of ductile materials. Jones et al. [10,11] extend the theoretical
formulae by including not only the yield stress, but also work hardening effect. Julien et al. [12] made
a big challenge to measure stress-strain curve in brass, based on the test, by using various kinds of
formulae, as well as formulae by Jones et al. [10,11] to compare between them. However, according to
their method, numerous repetitions of the experiments are necessary to obtain one single stress-strain
curve. In addition, these formulae only considering the deformation of the specimen, the external
force is not measured and questions about the accuracy of the measurement results arise. From this
point of view, Lopatnikov et al. [5] and Yahaya et al. [6] attempted to use measuring devices such
as the Hopkinson pressure bar and a load cell made of quartz, with high accuracy and band width,
by replacing the rigid wall. However, this was not applied to measuring the stress-strain curve by just
one single number of the test, although the time history of the external force could be obtained.

The goal of this study is to modify the testing method for obtaining the stress-strain curve as
a result of one single Taylor impact test. A combination between the distributions of axial stress and
strain at a certain time is employed. In the modification, two following items are introduced into the
test. One is a measurement of the external impact force by the Hopkinson pressure bar placed instead
of the rigid wall, and the other is an assumption of bi-linear distribution of an axial internal force
calculated by a measurement of deformed profiles at certain time. In order to confirm the feasibility
and the validity of the modifications, finite element analyses on the basis of the proposed testing
method are performed for pure aluminum. In order to simulate the tests, at first, the quasi-static and
impact tests of pure aluminum at various strain rate and temperature are conducted. In the impact
test, a miniaturized testing apparatus based on the split Hopkinson pressure bar (SHPB) technique is
introduced to achieve the similar level of strain rate as 104 s−1 and to avoid the punching or indentation
displacement [13]. Here, the nonlinear rate-sensitive hardening model proposed by Allen et al. [14]
is chosen, because it has been reported that the stress becomes nonlinear with the respect to strain
rate at high strain rate [15]. Then, the parameters in the model are identified from the experimental
results after correcting the stress value to remove the friction effect [16,17]. Next, the finite element
simulation of the modified Taylor impact test is performed using a commercial software, MSC Marc
(2014), with the user-subroutine for the model by Allen et al. [14] and the identified parameters.
The feasibility and the validity of the proposed method is studied by comparing the stress-strain curve
obtained by the proposed method and direct calculation of the model by Allen et al. [14].

It must be emphasized that the selection of the hardening model is out of the main scope of this
paper. A modification method of the Taylor impact test is proposed to obtain a stress-strain curve by
one single number from the test. In order to confirm the feasibility and validity of the proposed method
as introduced above, this study is based on the finite element simulation by using arbitrary hardening
law. However, it is required that the model can express nonlinearity with respect to the strain rate,
and it differs from the model by Johnson and Cook [18] in as realistic situation as possible. Similar to
the work done by Iwamoto and Yokoyama [16], it should be confirmed that the result obtained through
the simulation as an output is similar to the hardening law used as an input.

2. Experimental Principle

2.1. A Proposition of a Modified Taylor Impact Test

As explained in the Introduction, the Hopkinson pressure bar is introduced to capture the impact
force by a specimen. At the end of the bar, the cylindrical specimen is hit. The internal force at
an interface between elastic and plastic deformation Fs(t) can be calculated from stress σ0(t) at the
interface by Taylor [1] as:

Fs(t) = σ0(t)A0 = ρA0le(t)
..
s. (1)
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Here, A0, ρ, le(t) and
..
s denote the initial cross-sectional area of the specimen, the density, length of

an elastically-deformed region, and the acceleration at the free end of the specimen, respectively. Here,
it is assumed that the cross-sectional area in the elastically-deformed region can be the same as the
initial value, even though it is slightly changed.

Jones et al. [10] have proposed that the deformation behavior in the Taylor impact test can
be divided into three phases, depending on the position of the plastic wave front in the specimen.
The details of the three phases proposed by Jones et al. [10] are expressed below. Figure 1 shows
the schematic drawing of the three phases during deformation. In this figure, lp(t) is length of
a plastically-deformed region. Here, the period from the start of deformation to the time t1 is referred
to as the phase 1, the period from the time t1 to t2 is referred to as phase 2, and the period after the
time t2 is referred to as phase 3. As shown in Figure 1, Jones et al. [10] assumed that the phase 1 was
nonlinear with respect to the time immediately after the impact. In addition, phase 2 represents a time
period in which the plastic wave front is moving linearly with respect to time. The moving velocity
of the plastic wave front is constant in this phase. After that, the particle velocity of the specimen
becomes 0. Therefore, the region where the moving velocity of the plastic wave front approaches
null can be considered to be phase 3. However, Jones et al. [10] provides no clear descriptions of the
behavior of the specimen at each of these phases, the transition times t1 and t2, as well as its conditions.
Focusing on phase 2, it is assumed that

..
s becomes almost constant. Additionally,

..
s can be measured by

the difference in the outline of the deformed specimen at a different elapsed time.
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Figure 1. A schematic drawing of specimen at t1, t2, t3, and the time history of the wave front of the
plastic region, to explain the partition of phase in the deformation behaviour of the specimen during
the Taylor impact test.

According to an inertia effect in the axial direction of the specimen, it is be realized that the internal
force is distributed along with the axial direction of a specimen. Figure 2 shows the schematic drawing
of the deformed specimen, and the axial distribution of the internal force. As shown in this figure,
the linear distribution of the internal force in each region is assumed here. Hereafter, both regions are
called the elastic part and the plastic part. Both le and lp can be measured from the deformed profile of
the specimen at an arbitrary time.

Based on the above assumptions, the distribution of the internal force can be calculated.
The distribution of the axial internal force in the plastically-deformed and elastically-deformed regions of
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the specimen can be obtained through the following equations, which are expressed as a ratio between
the internal force that is computed by the above assumption, and the current cross-sectional area:

F(x, t) = F0(t)− F0(t)−Fs(t)
lp(t)

x
(
0 < x < lp

)
and

F(x, t) = Fs(t)− Fs(t)
le(t)

{
x− lp(t)

} (
lp < x < l

)
.

(2)

Here, F0(t) and x denote the external force at an impact face of the specimen and the position
from an origin at the impact end of the specimen. The true normal stress distribution of the specimen
in the plastically- and elastically-deformed regions can be obtained through the following equations,
which are expressed as a ratio between the internal force, computed by the above equation and the
current cross-sectional area:

σ(x, t) = F(x,t)
A(x,t) =

F0(t)
A(x,t) −

F0(t)−Fs
lp(t)A(x,t) x

(
0 < x < lp

)
and

σ(x, t) = F(x,t)
A0

= Fs(t)
A0
− Fs{x−lp(t)}

le(t)A0

(
lp < x < l

)
.

(3)
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Figure 2. A schematic drawing of deformed specimen and axial distribution of internal force.

House et al. [19] introduces a high-speed camera for the first time, and conducts the Taylor impact
test using oxygen-free copper to measure the shape of the specimen during deformation. In this study,
the axial strain is calculated at each position in the axial direction of the specimen from the specimen
shape under deformation. According to their method with assumptions of constant volume during
plastic deformation and the dominance of plastic deformation, the axial strain can be calculated as:

ε(x, t) = ln
[

A0

A(x, t)

]
. (4)

Here, A(x, t) denotes the current cross-sectional area of the specimen at a position x.

2.2. The Hardening Law to Nonlinear Strain Rate Sensitivity for the Finite Element Simulation

In order to simulate realistic deformation behavior, a selection of the hardening law,
which indicates a relationship between the uniaxial stress, temperature, strain rate, and strain is quite
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important. Among the various hardening laws proposed in the past, there are three representative
models. Firstly, the power-law model can be expressed as:

σ =
E

Kn εn
p. (5)

Here, σ, εp, E, n, and K respectively mean the equivalent stress, the equivalent plastic strain,
Young’s modulus, work-hardening exponent, and a material constant. The Ramberg-Osgood
model [20] is applicable by adding the term of elastic strain into Equation (5), and is widely used for
simulating the deformation behavior of major metallic materials. However, expressing the strain rate
sensitivity as well as temperature dependency is quite tough, because strain rate and temperature are
not included into the model. Several efforts on its extension are made; however, it can be said that
a reliable and unified model is not found up to now.

Secondary, the hardening law proposed by Johnson and Cook [18] is frequently used as expressed in:

σ =
(

A + Bεn
p

)[
1 + Cln

( .
εp
.
ε0

)][
1−

(
T − Tr

Tm − Tr

)m]
. (6)

Here,
.
εp,

.
ε0, T, Tr, and Tm denote the equivalent plastic strain rate, the reference strain rate,

the temperature of the material, the room temperature, and the melting temperature of the material,
respectively. The parameters A and B are respectively the yield stress and the work hardening
coefficient at the strain rate of

.
ε0 and the temperature of Tr. The parameter m expresses the effect

of thermal softening behaviour. The parameter C indicates the coefficient of strain rate sensitivity.
This model has already implemented into a lot of commercial FE codes because of its usability, as well
as the availability of identified parameters in the model for various kinds of materials.

However, it is common that Equations (5) and (6) are empirical and phenomenological. In addition,
it is not based on any underlying physics such as a thermal activation process, based on the dislocation
theory. Thirdly, more physically-based models, for example, the model proposed by Zerilli and
Armstrong [21] for fcc metals, can more legitimately be extrapolated, as expressed in:

σ = C1ε
1
2
p exp

(
−C2T + C3Tln

.
εp

)
+ C4εn

p + C5d−
1
2 . (7)

Here, d is the average grain size, and C1 to C5 are parameters. The second term inside the
exponential function indicates the rate sensitivity. This term also depends on the temperature. However,
it is quite hard to say that all three representative model can express the nonlinear rate sensitivity of
materials, which appears especially at higher strain rate.

On the other hand, Allen et al. [14] proposed a nonlinear hardening model with respect to the
strain rate, expressed as the following equation:

σ =
(

A + Bεn
p

)( .
εp
.
ε0

)C[
1−

(
T − Tr

Tm − Tr

)m]
. (8)

Here, the parameter C indicates the exponent of strain rate sensitivity. This model is quite similar
to the Johnson-Cook model expressed in Equation (6). The difference is the second bracket on the
right-hand side to show the rate sensitivity. The rate sensitivity of the stress becomes nonlinear with
respect to the logarithmic strain rate.

Like the work done by Iwamoto and Yokoyama [16], the selection of the hardening model was
not a major target of this paper. In this research work, the nonlinear hardening model proposed by
Allen et al. [14] expressed in Equation (8) is adopted for the finite element simulation of the modified
Taylor impact test, because it can be used at the high strain rate to express nonlinear behavior with
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respect to the strain rate. In addition, the capability of the model is quite higher since only small
changes from frequently-used Johnson-Cook model [18] in Equation (6) are sufficient.

2.3. A Removing Method of the Frictional Effect in Impact Compressive Tests Based on the SHPB Technique

In the past, it has been reported that the friction and radial inertia in the impact test based on
SHPB method have an effect on the stress during the deformation [16]. Therefore, it is necessary to
consider the relationship between the friction coefficient and slenderness ratio:

σm = σ− ∆σf and ∆σf =
2νµ

3λ
σ. (9)

Here, σm, σ, ∆σf , ν, µ, and λ denote modified value of stress, measured stress, increment value
of stress due to friction, Poisson’s ratio, friction coefficient, and the slenderness ratio, respectively.
Kii et al. [17] attempt to reduce the friction effect without any corrections of stress value by using
a hollow specimen. In order to perform finite element analyses to show an effectiveness of hollow
specimens, they also propose a method to correct the value of stress based on the above Equation (9)
to identify the parameters in Johnson-Cook hardening law. In their method, σm, which means the
true value of stress in the material, should be constant with respect to λ at constant values of ν and µ.
In order to remove the frictional effect based on Equation (9), compressive tests using specimens with
various λ are carried out. Then, σm calculated by Equation (9) with respect to µ is plotted against λ,
and the linear approximate curve at the various values of µ are drawn. When the slope of the linear
curve becomes almost zero, both µ and σm can be identified at the same time. As a result of both
quasi-static and impact tests, the slope between the slenderness ratio and stress at a certain level of
strain can be obtained.

3. Experimental Methods

3.1. Material and Specimen

The specimen was made of A1070, which is a pure aluminum under the Japan Industrial Standard
(JIS). The shape of the specimen for the quasi-static test and impact test at 10−3 s−1 was a cylinder
14 mm in diameter. A circular plate with 3.6 mm in diameter for the impact test at 104 s−1 was used.
From Equation (9), it can be seen that the slenderness ratio would also have an effect on the stress;
therefore, the same value of slenderness ratio in specimens was used in both the quasi-static and
impact tests. In order to remove the frictional effect based on Equation (9), the length or the thickness
of the specimens was controlled to obtain the various slenderness ratios of 0.5, 1.0, 1.5, and 2.0 in the
case of the quasi-static tests, and 0.4, 0.5, 0.7, and 1.0 in the case of the impact tests. All the specimens
were annealed in a vacuum at 623 K for 1 h.

3.2. Quasi-Static and Impact Compressive Tests at Different Strain Rates and Temperatures

Quasi-static compressive tests were conducted by a material testing machine
(Shimadzu AG-250 kN, Shimadzu corporation, Kyoto, Japan) with lubricant of MoS2. In order to
determine the friction coefficient for quasi-static, the tests were conducted at room temperature for
10−3 s−1 of the strain rate. Next, the strain rate to measure the rate sensitivity in the stress-strain
curves was set to 10−1, 10−2, and 10−3 s−1, and the test temperature was the room temperature. Then,
it is carried out at 373, 473, and 573 K under 10−3 s−1 of the strain rate to obtain the temperature
dependency in the stress-strain curves. Because the thermal energy was released to the outside faster
than the speed of deformation during the quasi-static test, the temperature rise of the specimen could
be vanished. After the quasi-static test to measure the elastic properties by using two rosette gauges,
Young’s modulus was 67 GPa and Poisson’s ratio was 0.35.

It was shown that the stress-strain curve for the strain rate higher than 102–104 s−1 could be
measured by using the SHPB technique with a thin cylindrical specimen [22]. The conventional size
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of the impact testing apparatus based on the SHPB method with 16 mm in diameter of the bars [23]
was used to measure not only the stress-strain curve, but also the friction coefficient at the strain rate
of 103 s−1. However, with the decrease in the diameter ratio of the specimen and the pressure bar to
achieve the strain rate of 104 s−1, the punching or the indentation displacement [13] was increased.
Consequently, it was difficult to measure the stress-strain curve accurately because of the effect of
the punching displacement [13]. In order to obtain the stress-strain curve at a higher strain rate
over 104 s−1, the impact compressive test was conducted by using the miniature testing apparatus,
based on the SHPB method. Figure 3 shows the schematic illustration on the outline of used apparatus.
The material of the striker bar and the pressure bars was SUJ2, which was bearing steel in the JIS
standard, the lengths of the striker, input, and output bars were 150 mm, 400 mm, and 400 mm
respectively. The diameter of the bars is 4 mm. The validity of the compressive tests obtained from
the miniaturized testing apparatus, based on the SHPB method was discussed by comparing with
the result that was obtained from the conventional size of the testing apparatus, based on the SHPB
method [23] at a similar strain rate.
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testing apparatus.

4. Finite Element Simulation of the Modified Taylor Impact Test

By using a commercial finite element software MSC Marc 2014 (Version 2014, MSC Software
corporation, Los Angels, CA, USA), the finite element analyses of the modified Taylor impact test were
performed at the initial velocities of the specimen, at 154 m/s. The finite element model is shown as
Figure 4. As shown in Figure 4a, the specimen and the pressure bar were modelled as axisymmetric
bodies. The shape of specimen was a cylinder 8 mm in diameter and 40 mm in length. The shape
and dimensions were typical [12]. To measure the external force, the Hopkinson pressure bar was
used in the apparatus of the Taylor impact test to replace the rigid wall. On the interface between the
specimen and the stress bar, a hard contact condition with the kinematic friction was only considered,
and its coefficient was set to the values that were determined later, based on Equation (9). The finite
element used here was a four nodes bi-linear axisymmetric element. The numbers of elements and
nodes were 4000 and 4221 respectively for the specimen, and 100,000 and 102,051 respectively for the
pressure bar. Julien et al. [12] chose the Arbitrary Lagrangian-Eulerian (ALE) formulation to simulate
the Taylor impact test of brass material in a three-dimensional space because the finite element (FE)
meshes were extremely distorted around the contact region. The FE discretization in the present study
was uniform, but the mesh size of 200 µm was small, as shown in Figure 4b, and the remeshing option
was used to reduce such difficulties related to the distortion. It must be noted that, as explained above
in Figure 1, excessive deformation of the specimen in the Phase 3 reduced the applicability of this
method. Thus, the extremely huge deformed region induced errors, even though the stress and the
strain in the region was precisely predicted. Like the compressive test, the specimen was assumed
to be made of A1070. The pressure bar of 200 mm in diameter and 400 mm in length was assumed
to be made of SUJ2. On the assumption of the actual experiment, the incident stress wave of the
Hopkinson bar by generating an impacted specimen was captured. The pressure bar was assumed to
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be an isotropic linear elastic body with 7900 kg/m3 of the density, 209 GPa of Young’s modulus and
0.3 of the Poisson’s ratio. The density of the specimen was set to 2700 kg/m3 from the nominal value,
based on a catalogue of pure aluminum. Unfortunately, the nonlinear hardening model in Equation
(8) has not been implemented into any major commercial software, including MSC Marc 2014. Thus,
it was implemented by using the user-subroutine named “WKLDP”.
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Figure 4. The finite element model of the modified Taylor impact test using a pressure bar. (a) The whole
view and (b) the magnified view around an interface between the specimen and the pressure bar, as
shown in the red circle of the figure (a) (dimensions in mm).

On MSC Marc 2014, the analysis class chosen was Thermal/Structural, and the large strain option
was checked. For the post-processes, the deformed profiles of the specimen were output at several
points in elapsed time to obtain A(x, t), le(t), and lp(t) in Equations (1), (3), and (4). The “historyplot”
option was chosen to calculate

..
s in Equation (1). By combining the axial stress and strain at a certain

time, the stress-strain curve could be obtained. Additionally, for a comparison with the axial stress and
strain calculated by the deformed profiles, the “pathplot” option was also used to draw the axial stress
and strain, along with the central axis of the specimen from their contour data.

5. Results and Discussions

5.1. Compressive Test from Quasi-Static to Impact Range

First of all, the validity of the impact test by the miniature impact testing apparatus was confirmed.
Figure 5 shows the stress-strain curve obtained by setting the almost similar value of strain rate with
the testing apparatus based on the SHPB method, with the bars being 16mm in diameter. From this
figure, it can be found that the stress-strain curve obtained from the miniature apparatus almost
coincided with the result of the conventional testing apparatus in the range of the target strain rate
for this experiment. The strain rate obtained in both testing apparatuses was similar. From the above,
it can be estimated that the miniaturized testing apparatus was valid. Additionally, it can also be seen
that the size of the specimen had almost no effect on the stress-strain curve in the range of the strain
rate, as 103 s−1.

Figure 6 shows the relationship between modified stress σm, calculated by Equation (9) for each
friction coefficient and slenderness ratio obtained by (a) quasi-static and (b) impact tests. As performed
by Kii et al. [17], the approximated linear curve was drawn for each of the plots of the conditions,
based on Equation (9), and the slope of the curve was plotted against the friction coefficient. As per
the results of an extrapolation when the slope becomes zero, the friction coefficient was determined as
0.18 for the quasi-static test, and 0.03 for the impact test, respectively. At the same time, the modified
stress σm could be also determined, so that modified values were used to identify the parameter in
the model.



Metals 2018, 8, 642 9 of 16

Metals 2018, 8, x FOR PEER REVIEW  8 of 16 

 

 
(b) 

Figure 4. The finite element model of the modified Taylor impact test using a pressure bar. (a) The 

whole view and (b) the magnified view around an interface between the specimen and the pressure 

bar, as shown in the red circle of the figure (a) (dimensions in mm). 

On MSC Marc 2014, the analysis class chosen was Thermal/Structural, and the large strain option 

was checked. For the post-processes, the deformed profiles of the specimen were output at several 

points in elapsed time to obtain 𝐴(𝑥, 𝑡) , 𝑙e(𝑡) , and 𝑙𝑝(𝑡)  in Equations (1), (3), and (4). The 

“historyplot” option was chosen to calculate �̈� in Equation (1). By combining the axial stress and 

strain at a certain time, the stress-strain curve could be obtained. Additionally, for a comparison with 

the axial stress and strain calculated by the deformed profiles, the “pathplot” option was also used 

to draw the axial stress and strain, along with the central axis of the specimen from their contour 

data. 

5. Results and Discussions 

5.1. Compressive Test from Quasi-Static to Impact Range 

First of all, the validity of the impact test by the miniature impact testing apparatus was 

confirmed. Figure 5 shows the stress-strain curve obtained by setting the almost similar value of 

strain rate with the testing apparatus based on the SHPB method, with the bars being 16mm in 

diameter. From this figure, it can be found that the stress-strain curve obtained from the miniature 

apparatus almost coincided with the result of the conventional testing apparatus in the range of the 

target strain rate for this experiment. The strain rate obtained in both testing apparatuses was similar. 

From the above, it can be estimated that the miniaturized testing apparatus was valid. Additionally, it 

can also be seen that the size of the specimen had almost no effect on the stress-strain curve in the range 

of the strain rate, as 103 s−1. 

 

Figure 5. A comparison between the stress-strain curves obtained by the conventional and miniature 

testing apparatuses. 

Figure 6 shows the relationship between modified stress 𝜎𝑚, calculated by Equation (9) for each 

friction coefficient and slenderness ratio obtained by (a) quasi-static and (b) impact tests. As 

performed by Kii et al. [17], the approximated linear curve was drawn for each of the plots of the 
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In order to identify the parameters in the hardening laws, the least-square method or some other
optimization technique is employed [2,24]. Here, the following identification method by a manual-like
procedure was chosen. At first,

.
ε0 in Equation (8) is set to the lowest strain rate as 10−3. By fitting the

experimentally-obtained curve at
.
ε0 and Tr, A, B, and n could be identified. Then, m was determined

from the experimental data at
.
ε0 by changing T. Finally, C could be obtained from the experimental

data of the stress for 0.1 of the strain at various strain rates. As a result of the procedure, all the
identified parameters in Equation (8) are shown in Table 1.
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Figure 6. The relationship between modified stress calculated by Equation (9) for each friction coefficient
and slenderness ratio obtained by (a) quasi-static and (b) impact tests using an annealed specimen.

Table 1. The material parameters of the models by Allen et al. [14], determined by experimental results.

A (MPa) B (MPa) n
.
ε0 C m

49.7 60.6 0.282 0.001 0.0307 1.14

Figure 7 shows the stress-strain relationship at various (a) strain rate and (b) temperature. In the
figure, the experiment results with the modified stress are shown by dashed lines, and the results
drawn by calculating the model in Equation (8) are shown by solid lines. From this figure, it can be
understood that the experimental results and the results by model by Allen et al. [14] were in good
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agreement in the small strain range of less than 0.1. From this result, it was found that the model could
express the rate-sensitive and temperature-dependent deformation behavior accurately at a strain rate
range of around 104 s−1.
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Figure 7. Stress-strain curves obtained by a quasi-static and impact test at various temperatures and
directly calculated by Equation (8). (a) At various strain rates; (b) At various temperatures.

Figure 8 shows the relationship between the stress and strain rate for true axial strain of 0.1 and
0.15, obtained by experimental methods, and the model proposed by Allen et al. [14]. It has been
reported that pure aluminum, which is the face-centered cubic structure, shows a steep rise in stress at
the strain rate of about 5000 s−1 from the past study [15]. Furthermore, the stress becomes nonlinear
with respect to the strain rate. As shown in this figure, it was understood that the stress value obtained
from the miniaturized testing apparatus showed a sharp rise around the strain rate of 103 s−1, and the
nonlinearity could be also confirmed, as in the previous studies [15]. From these results, the nonlinear
strain rate sensitivity of the material could be measured correctly by using the miniature testing
apparatus. In addition, from the results obtained by the model proposed by Allen et al. [14], the stress
value rose sharply at a strain rate of 102 s−1. This fairly good agreement could be confirmed with the
results that were obtained by experimental methods, at a strain rate over 104 s−1. Overall, the model
proposed by Allen et al. [14] could be used at a super high strain rate.
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5.2. Computation of the Modified Taylor Impact Test by FEM

Using finite element analysis, the modified Taylor impact test proposed here was performed with
an initial impact speed of the specimen at 154 m/s. As a result, the above-mentioned calculation
method of a stress-strain curve explained in Section 2.1 was studied. Using the time history of the
external force obtained from the pressure bar, the velocity at the free end of the specimen, the time
history of the deformed profile in the specimen, at each time, the stress-strain curve was calculated by
the method shown previously. The stress-strain curve obtained in the analysis was compared with
the curve that was calculated by the model expressed in Equation (8), and the validity of the obtained
stress-strain curve by the above-mentioned method was investigated.

Figure 9 shows (a) the time history of the external force obtained by finite element analysis (FEA)
at the positions of 10, 20, and 30 mm away from the impact surface as the origin, and (b) a contour plot
of axial stress during the impact of the specimen at 20 µs of time elapsed. In Figure 9a, the black line
shows the time history of the reaction force by a contact acting on the impact surface of the specimen,
and the green, blue, and red lines represent the time histories of the external force as measured on
the surface of the pressure bar at 10, 20, and 30 mm from the impact surface, respectively. From this
figure, it was found that the time history of the external force at the position 20 mm or more away
from the impact surface could be accurately measured, excluding a spike generated immediately after
the impact. In addition, as shown in Figure 9b, the one-dimensional stress wave propagation has not
been achieved in the region within 10 mm from the impact surface. From the above results, it was
considered that an accurate measurement was difficult when the stress wave was measured near the
impact surface. In the finite element analysis, it was assumed that the specimen completely impacted,
with the center of the pressure bar. However, when actually conducting this proposed method based
on the Taylor impact test, a statistical variation in a position on the impact surface, where the specimen
collides with the pressure bar easily occurs. Therefore, it is sufficiently conceivable that the region
in the three-dimensional stress wave propagation in the pressure bar becomes larger than the region
obtained by the FEA, as shown in Figure 9b. Therefore, in order to reliably measure the time history of
the external force, the measurement position is determined to be 30 mm from the impact surface.
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Figure 9. Determination of a measuring position of external force from the impact surface. (a) Time history
of the external force. (b) Contour of axial stress at 20 µs.

Figure 10 shows the time histories of (a) the external force obtained from the pressure bar and
the velocity at the free end of the specimen, and (b) the length of the specimen and the distance of
the plastic wave front from the impact surface. In Figure 10a, the black and red lines represent the
external force and the velocity at the free end of the specimen. In Figure 10b, the black and red lines
represent the length of the specimen and the position of the plastic wave front, respectively. As shown
in Figure 10a, the duration of the external force was about 92 µs, and the time to decrease to 0 m/s for
the velocity at the free end of the specimen is about 78 µs. From this result, it was found that the impact
state continued for about 14 µs after the velocity at the free end of the specimen became 0 m/s. Just after
the velocity at the free end of the specimen achieves 0 m/s, the length of the specimen becomes about
33 mm, as shown in Figure 10b. From this length, the time period to reciprocate the elastic stress wave
once in the specimen was calculated as 13.2 µs, which was the time to decrease the external force
rapidly after the velocity at the end of the specimen to become 0 m/s. This almost coincided with
the time that was required for the history to decrease to zero. Therefore, it can be inferred that this
phenomenon was due to the fact that it takes time for the unloading wave to reciprocate in the test
piece after the particle velocity at the end of the specimen becomes zero. Since the duration of the time
history of external force is the time during which the pressure bar and the specimen are in contact,
the duration of the time history of the external force was the duration of this test. Moreover, as shown
in Figure 10b, the position of the plastic wave front changed nonlinearly from the start of the impact to
about 14 µs, then it showed a linear change, and its change became nonlinear again after about 50 µs.
This represented the transition time from phase 1 to 2 and from 2 to 3, respectively, as described before.
In this case, t1 and t2 were about 14 and 50 µs.

..
s in Equation (1) could be captured by the slope of the

red line in Figure 10a, from t1 to t2.
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Figure 10. Time histories of some important parameters in the specimen. (a) External force and velocity
in the elastic part. (b) Length and position of the plastic wave front.

Figure 11 shows the distribution of axial strain calculated from various methods at (a) 20 and
(b) 50 µs of elapsed time since the impact. In the figure, the black line shows the results calculated by
Equation (4) with the outline of the deformed specimen, the blue line shows the results obtained from
the contour plot of FEA, the red line shows the average strain of the plastic part, and the dashed line
shows the position of the plastic wave front. From this figure, the distribution of axial strain calculated
by Equation (4) was in good agreement with that obtained from the contour plot, and it was evaluated
that the calculated distribution by Equation (4) was appropriate. In addition, an increase in a quite
highly deformed region, as similar to the buckling at 50 µs, could be observed locally.

Figure 12 shows the distribution of axial stress in the specimen at (a) 20 and (b) 50 µs of
elapsed time since the impact. In this figure, the black line is the calculated result from the bi-linear
approximation by Equation (3), the red line is the obtained result from a contour map by FEA, the blue
line is the stress at the interface calculated by Equation (1), and the dashed line is the position of the
plastic wave front, respectively. From this figure, the stress at the interface calculated by Equation (1)
and the stress value at the plastic wave front obtained by the FEA agreed well. This means that in
phase 2, the calculation of stress distribution by bi-linear approximation was applicable. Also, in the
time after 20 µs, the stress value decreased in the region with the higher value of axial strain near the
impact surface. The precision for predicting the distribution was much higher at 20 µs. Therefore,
a good measurement could be obtained at a time close to t1.
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Figure 12. Distribution of axial stress obtained by a bi-linear approximation using Equation (3), the FEA,
and the calculated yield stress by Equation (1) at each elapsed time since the impact. (a) 20 µs, (b) 50 µs.

Figure 13 shows the stress-strain curves at each elapsed time. In the figure, the black line is
the calculated curve from the bi-linear approximation, the red line is the obtained curve from FEA,
and the blue line is directly calculated from the model by Allen et al. [14] in Equation (8). From this
figure (a), the stress-strain curves obtained by the bi-linear approximation and the contour plot showed
good agreement at 20 µs, when it could be seen that the approximation of the stress distribution
was possible, as shown in Figure 13. However, it is understood that the difference from the curve
calculated by the model gets larger as the strain increases. Since it is conceivable that the starting time
of plastic deformation everywhere in the specimen is also different, it is possible that the stress value
becomes low in the higher strain region located around the impact surface. On the other hand, in the
smaller region of strain less than 0.05, the curve obtained by these three methods showed fairly good
agreement at 50 µs. From this figure, it was found that better measurements of the curve could be
realized at a time close to t2, when the plastic wave sufficiently propagated at a constant velocity.
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Of course, this method was applicable when the loading only occurred in the entire region of
specimens. The deformation history at different material points must be considered carefully if the
distribution of stress and strain is linked together. On the other hand, it is difficult to establish the
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method of the calculation of the strain rate. Therefore, it was necessary to establish the calculation
method with a higher precision of the stress-strain curve and strain rate, by using not only the theory
of stress wave propagation, but also the laws of physics from the deformation of the specimens, as well
as the time history of the external force.

6. Concluding Remarks

In this study, to measure the stress-strain curve at only one single trial of the Taylor impact
test, its modification method was newly proposed. In the method, a measurement of the external
force by the Hopkinson pressure bar, an assumption of bi-linear distribution of an internal force and
a combination between the distributions of the axial stress and strain at a certain time, were employed.
Before the feasibility of the proposed method was studied, at first, the quasi-static and the impact tests
at various strain rates and temperatures were conducted to identify the parameters in a nonlinear rate
sensitive hardening law. Then, the hardening law with the identified parameters was implemented
into the commercial code through the user-subroutine. Next, a series of finite element simulations
was performed by using the implemented model to confirm the feasibility. The following results
were obtained.

1. It is possible to obtain a valid stress-strain curve at only one single trial of the Taylor impact test.
2. In the Phase 2, the distribution of the axial internal force can be approximated bi-linearly with

respect to the axial position of the specimen.
3. It can be observed that the axial stress decreases mainly in the region of higher strain.
4. The choice of elapsed time during Phase 2 is quite important, in order to obtain the correct

stress-strain curve.

At present, the strain rate cannot be calculated and stress-strain curve can be obtained at smaller strains
of less than 0.1. Further modifications of this method are necessary to solve the above issues.
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