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Abstract: The effect of Mg treatment on the microstructure and toughness of the heat-affected zone
(HAZ) of shipbuilding steel after high-heat-input welding was investigated via laboratory and
industrial testing. The welding process and Charpy impact tests were also carried out to evaluate
the HAZ toughness of steel plates. First, typical inclusion characteristics were characterised with
an ASPEX PSEM Explorer. Then, confocal laser scanning microscopy (CLSM) was used to observe
the diameters of austenite grains under different holding times. The results showed that when the
addition of microalloy elements were in the order of Al–Mg–Ti, this had an effect on dispersing
inclusions, the largest proportion of which were micro-inclusions that had a particle size range of
1.0–1.5 µm. This accounted for 25.4% of the total inclusions, which was the highest amount. The micro
inclusion particle size that was mainly distributed in the range of 0.5–3.5 µm accounted for 82.8% of all
the micro-inclusions. The inclusion structure induced intragranular acicular ferrite (IAF) in austenite
as follows: MgO and Al2O3 formed the core and Ti2O3 adhered to the Al–Mg complex inclusions to
produce smaller particle sizes and dispersions of Al, Mg, and Ti complex inclusions. The 40-mm-thick
plate obtained in the industrial test after welding had an average impact absorbed energy 2 mm
from the weld joint in the heat-affected zone of 198.9 J at −20 ◦C, while the welding heat input was
150 kJ/cm, compared with the parent material’s low-temperature performance, which exceeded 88%.
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1. Introduction

Shipbuilding applications require high-energy-input welding. In recent years, as productivity
has increased, the toughness of the heat-affected zone (HAZ) in welded steel plates has seriously
deteriorated. Thus, developing shipbuilding plate steel with greater strength and toughness has been
proposed. Oxide metallurgy [1] is an effective way to improve the toughness of HAZ welding by
utilizing non-metallic inclusions to nucleate an intragranular acicular ferrite (IAF) structure, thereby
refining the microstructure and increasing the strength of the HAZ [2–4]. Research on IAFs induced
by inclusions is still in its nascent stage [5–7]. The exact mechanism of the nucleation process by
which inclusions induce intragranular acicular ferrite has not yet been elucidated. At present,
the nucleation of acicular ferrite is generally stimulated by: (i) solute depletion from austenite in
the vicinity of nonmetallic inclusion [8,9]; (ii) the availability of an inert surface for reduction in
activation energy [10,11]; (iii) the thermal strain energy associated with different expansion coefficients
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of inclusion and matrix [12,13] and (iv) the reduction of interfacial energy between the ferrite and the
inclusions due to good lattice matching [14,15].

In recent decades, studies have increasingly concentrated on the development of IAF by inclusions,
such as Ti-enriched inclusions (e.g., TixOy [16–18] or TiN [19,20]). Several researchers have investigated
the positive roles of these inclusions in microstructure refinement, either individually or together with
other inclusions in complex deoxidized steel [21–23]. Magnesium has an even stronger affinity for
oxygen and sulphur than titanium, meaning that adding Mg to steel can easily distribute fine oxide
inclusions, such as MgO, MgO·Al2O3, and MgO·TiOx, which various researchers have recognized
as the most effective nuclei for IAF [24–26]. Strength is further increased through precipitation
hardening and the refinement of grain size by microalloying with Nb, V, and Ti, either individually or
in combination. Moreover, Nb is added during controlled rolling to inhibit austenite recrystallization,
and Ti is added to avoid extensive austenite grain coarsening during welding [27,28].

Results from laboratory tests are easily found in the literature; however, industrial experiments are
rare. Therefore, in this study, laboratory and industrial-scale experiments have been performed with
good replicability. Shipbuilding steel was treated with Mg and produced inclusions that had an effect
on the formation of acicular ferrite in the microstructure. These inclusions were small, highly dispersed
particles that acted as heterogeneous nucleation sites for new phases and facilitated the formation
of acicular ferrite to divide the austenite, while the refined microstructure effectively improved the
toughness of the steel.

2. Experimental Section

2.1. Laboratory Experiments

As-received shipbuilding steel ingots (90-mm thick) were produced with various microalloy
elements using a 100-kg vacuum induction furnace in a laboratory. The 90-mm-thick ingots were heated
to 1200 ◦C and kept at this temperature for 2 h, rolled to 12 mm over nine passes by a ∅400 × 350-mm
hot rolling mill with the finishing temperature controlled to 800 ◦C, and air-cooled to room temperature.
Two plates were welded with a heat input of 50 kJ/cm along the length of the plates. The average
absorbed energy in the weld was determined using a V notch specimen with an HVT2 Charpy
test at −20 ◦C. The compound microalloy testing was performed using DH36 shipbuilding steel.
The compositions of the test steels are shown in Table 1.

Table 1. The composition of test steel (wt %).

Composition C Mn S P Si Al Ti Mo Mg V Nb Ca

Steel 1 0.07 1.43 0.004 0.016 0.19 0.01 0.019 - 0.005 - - -
Steel 2 0.07 1.44 0.004 0.023 0.20 0.01 0.019 0.07 0.006 - -
Steel 3 0.07 1.44 0.004 0.016 0.20 0.01 0.019 0.07 0.005 0.040 - -
Steel 4 0.07 1.46 0.004 0.026 0.20 0.01 0.020 0.07 0.006 - 0.040 -

Steel GY 0.08 1.63 0.004 0.01 0.25 0.03 0.018 0.07 0.004 - 0.039 0.002

2.2. Industrial Experiments

An industrial test on the high-heat-input welding shipbuilding structural steel DH36 was
performed at a factory in North China. The industrial production experimental process contained
a 120 t converter, a 120 t LF, and a 220-mm-thick slab caster. During steel tapping, Mo, Mn, Si, Nb, and
Al were added. During LF refining, aluminium wire, calcium lime, magnesium wire, and titanium
wire were added. The normalizing rolling process was adopted. For an accumulated total reduction
greater than 42%, each pass deformation rate was greater than 12%, and the deformation rate of the last
pass was greater than 10%. The accelerated controlled cooling (ACC) process was adopted to control
the cooling process. The initial rolling temperature was 1050–1120 ◦C, and the final rolling temperature
was 700 ◦C in order to generate a 40-mm-thick plate. The welding heat input was 150 kJ/cm, and the
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welding speed was 22.7 m/h. The welding was performed along the length of the steel plate, and
the average absorbed energy for the V notch in the Charpy impact test was obtained at −20 ◦C, with
impact specimens taken 2 mm transverse from the weld joint in the HAZ according to GB/T 229–2007.

2.3. Laboratory Detection

Scanning electron microscopy (SEM, S-4800, Hitachi Limited, Tokyo, Japan) was carried out to
analyse the chemical composition and size distribution of the inclusions after all the specimens were
treated using standard grinding and polishing techniques. The microstructure of the specimens was
examined with an optical microscope after etching in a 4% (volume fraction) initial solution. The size
distributions and chemical compositions of numerous inclusions were analysed automatically using
an ASPEX PSEM Explorer (Aspex Corp., Delmont, PA, USA) equipped with an energy-dispersive
spectroscopy (EDS, S-4800, Hitachi Limited, Tokyo, Japan) unit.

The inclusion precipitation, growth, and microstructural evolution were observed in situ using
confocal laser scanning microscopy (CLSM, VL2000DX, YONEKURA, Osaka, Japan) to obtain detailed
information. The samples were processed into a size of 7 × 3 mm, placed into the microscope, heated
at a rate of 200 ◦C/min to 1100 ◦C, held at this temperature for 300, 600, and 900 s, respectively, cooled
at a rate of 300–690 ◦C/min, held at this new temperature for 600 s, and then cooled at a rate of
300 ◦C/min to room temperature.

3. Results and Discussion

3.1. Effect of the Microalloy Element Mo on the Microstructure

The test steel for the HAZ microstructures with and without the Mo microalloy added is shown
in Figure 1.
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Figure 1. Heat-affected zone (HAZ) microstructure of testing steel: (a) without Mo; and (b) with Mo.

The compositions of test steels in Table 1 are denoted as steel 1 and steel 2. As shown in Figure 1a,
coarse proeutectoid ferrite on the austenite grain boundaries and pearlite in the austenite. Figure 1b
shows blocky ferrite, acicular ferrite, and pearlite; the grain in HAZ is small, as Mo can shrink the
austenitic phase zone and induce ferrite effectively, which will promote the precipitation of microalloy
carbonitride in ferrite, and improve the stability of microalloy carbonitride. Mo cannot be segregated
easily while the distribution in austenite is relatively greater than that in the grain boundary, thus,
it can inhibit the transformation of proeutectoid ferrite. Thus, Mo could inhibit the transformation of
proeutectoid ferrite and improve the toughness, the average impact absorbed energy results of the
low-temperature impact tests on steel 1 and steel 2 plates after welding is shown in Table 2, were 10.3 J
and 74 J at −20 ◦C, respectively.
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Table 2. The low-temperature impact of test steel (J).

Test steel
The Low-Temperature Impact

Value (J) Average (J) Deviations

Without Mo
9.8

10.3 0.45510.9
10.2

With Mo
79

74 12.35686
57

With V
19

22 2.44925
22

With Nb
81.2

83.6 4.87790.4
79.2

With Al–Ti–Mg
10.2

8.9 1.4356.9
9.6

With Al–Mg–Ti
74.9

75.6 3.91080.7
71.2

3.2. Effect of Microalloy Elements V and Nb on the Microstructure

The compositions of the tested steels in Table 1 are labelled steel 3 and steel 4 for comparing the
effects on microalloy V and microalloy Nb. Microalloy V was added to steel 3, while microalloy Nb
was added to steel 4. Microstructures containing V and Nb are shown in Figure 2.
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Figure 2. Ingots microstructure of testing steel: (a) with V; and (b) with Nb.

As shown in Figure 2, the microalloy elements promote IAF in the ingots microstructure, but the
results of the ingots microstructure by V is less than that by Nb.

The performance of the HAZ microstructure containing V is worse than that of the HAZ
microstructure containing Nb.

The microstructure of the rolled samples are shown in Figure 3. The microstructures primarily
contain polygonal ferrite and pearlite. The ferrite was uniformly distributed as multilateral- or
lath-shaped particles, with fine ferrite strip bundles and distinct grain boundaries. However, the grains
were smaller when the microalloy Nb was added.
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Figure 3. Rolling microstructure of testing steel: (a) with V; and (b) with Nb.

The HAZ microstructures after welding are shown in Figure 4. The test steel with V had
granular bainite, pearlite, and ferrite in the coarse austenite grains, whereas the test steel with Nb had
considerably smaller grains in the HAZ.

Metals 2018, 8, x FOR PEER REVIEW  5 of 14 

 

  

Figure 3. Rolling microstructure of testing steel: (a) with V; and (b) with Nb. 

The HAZ microstructures after welding are shown in Figure 4. The test steel with V had granular 
bainite, pearlite, and ferrite in the coarse austenite grains, whereas the test steel with Nb had 
considerably smaller grains in the HAZ. 

  
Figure 4. HAZ microstructure of testing steel: (a) with V; and (b) with Nb. 

Both V and Nb had an effect on refining the grains. NbN and NbC precipitated from the 
austenite and the grain boundary at nearly 900 °C [29], whereas the temperatures of VN and VC 
which precipitated from ferrite were 770 °C and 630 °C, respectively. In this composition range, 
nitrides or carbon nitride precipitated in the molten steel. The content of N sharply decreased during 
the transformation from austenite to ferrite, whereas for AlN, rapid precipitation occurred in the 
grain boundary. As a result of the composite microalloy, composite inclusions in austenite, which 
induced IAF nucleation, were more dispersed and smaller. In the process of austenite transformation, 
the initially formed IAFs grew in size rapidly and divided the original austenitic grains into small 
areas. The IAFs later grew only in these limited small areas, such that the grains were divided into 
smaller sizes. Therefore, the average effective grain size was several times smaller than the original 
austenitic grains, thus refining the grains. The ferrite grains were greatly refined, and the composite 
inclusions and ferrite interface greatly increased. The microalloy Ti produced coarser nanoscale AlN 
particles, and the continuity of the AlN distribution was destroyed. NbN and NbC attached to the 
complex inclusions, effectively induced IAFs in austenite, then divided the austenitic grains into 
small areas, and refined the HAZ microstructure, which improved the low-temperature impact 
toughness. These findings were consistent with the tests results. 

The average impact absorbed energy results of the low-temperature impact tests on the steel 
plates after welding with microalloy elements V and Nb were 22 J and 83.6 J, respectively, as shown 
in Table 2. 
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Both V and Nb had an effect on refining the grains. NbN and NbC precipitated from the
austenite and the grain boundary at nearly 900 ◦C [29], whereas the temperatures of VN and VC
which precipitated from ferrite were 770 ◦C and 630 ◦C, respectively. In this composition range,
nitrides or carbon nitride precipitated in the molten steel. The content of N sharply decreased during
the transformation from austenite to ferrite, whereas for AlN, rapid precipitation occurred in the
grain boundary. As a result of the composite microalloy, composite inclusions in austenite, which
induced IAF nucleation, were more dispersed and smaller. In the process of austenite transformation,
the initially formed IAFs grew in size rapidly and divided the original austenitic grains into small
areas. The IAFs later grew only in these limited small areas, such that the grains were divided into
smaller sizes. Therefore, the average effective grain size was several times smaller than the original
austenitic grains, thus refining the grains. The ferrite grains were greatly refined, and the composite
inclusions and ferrite interface greatly increased. The microalloy Ti produced coarser nanoscale AlN
particles, and the continuity of the AlN distribution was destroyed. NbN and NbC attached to the
complex inclusions, effectively induced IAFs in austenite, then divided the austenitic grains into small
areas, and refined the HAZ microstructure, which improved the low-temperature impact toughness.
These findings were consistent with the tests results.

The average impact absorbed energy results of the low-temperature impact tests on the steel
plates after welding with microalloy elements V and Nb were 22 J and 83.6 J, respectively, as shown in
Table 2.
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3.3. Effect of the Microalloy Mg Addition Sequence on the Microstructure

3.3.1. Inclusions Size in Different Microalloy Addition Sequence

Different sequences of microalloy additions, namely, Al–Ti–Mg and Al–Mg–Ti, were tested based
on the two-dimensional disregistry theory of lattice growth proposed by Bramfitt. The calculated
results that were reported by the previous paper [30] indicate that the lattice disregistry value between
Al2O3 and Ti2O3 was 5.91 at 1400 ◦C, signifying that aggregation was facile, the size of the composite
inclusions was large, and dispersity was poor. The lattice disregistry between MgO and either Al2O3

or Ti2O3 was 12.06 or 13.01, respectively. These composite inclusions did not easily aggregate, and they
appeared as small and dispersed particles. Therefore, Mg plays a role in sufficiently dispersing
inclusions. Due to the isolation of MgO at high temperatures, Al2O3 and Ti2O3 do not aggregate, and
they form smaller and more dispersed composite inclusions, which induce the formation of IAF and
refine the structure. The particle size distribution of the inclusions for different microalloy addition
sequences from the ingot samples is shown in Figure 5. For regular-shaped inclusions, the particle size
was the diameter, while for irregular-shaped ones, the particle size was the equivalent circle diameter.
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Figure 5 shows that the inclusions were smaller for the Al–Mg–Ti microalloy addition sequence
(the red line) than the Al-Ti-Mg microalloy addition sequence (the black line). For the Al-Ti-Mg
microalloy addition sequence, 0.5–2.5 µm inclusions accounted for 37.7% of the distribution, among
which 2–2.5 µm inclusions accounted for 13.9% (the highest amount), 0.5–1 µm inclusions accounted
for 4.9%, 1–1.5 µm inclusions accounted for 7.1%, and 1.5–2 µm inclusions accounted for 11.8%.

For the Al–Mg–Ti microalloy addition sequence, inclusions with a size of 0.5–2.5 µm accounted
for 71.3% of the total inclusions. Within this range, 1–1.5 µm inclusions accounted for 25.4%, which
was the greatest contribution, while 0.5–1 µm inclusions accounted for 19.0%, 1.5–2 µm inclusions
accounted for 16.6%, and 2–2.5 µm inclusions accounted for 10.1%.

After deoxidation with aluminum, the quantity of Al2O3 inclusions are 1017 to 1014 in every ton of
steel, the corresponding inclusion size is 0.1–1 µm, thus, Al2O3 formed abundant heterogeneous nuclei.
Mg was easily removed by boiling and evaporation, and when the microalloy addition sequences
is Al–Mg–Ti, MgO adheres to Al2O3 at high temperatures and increases the utilisation rate of Mg,
followed by heterogeneous nucleation of Ti2O3, and Mg plays a role in sufficiently dispersing Al2O3

and Ti2O3 inclusions, so the largest inclusion size is smaller than Al–Ti–Mg. In a word, aggregated
inclusions formed heterogeneous nucleation, so the inclusions’ size distribution increased first, with the
effect of Mg on dispersing composite inclusions, resulting in fewer and fewer large-sized inclusions,
and the inclusions’ distribution trend decreased.
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3.3.2. Chemical Compositions of Inclusions in Different Microalloy Addition Sequence

The chemical compositions of the inclusions corresponding to the different microalloy addition
sequences are shown in Figure 6. Figure 6a,b show the microalloy addition sequences of Al–Ti–Mg
and Al–Mg–Ti, respectively. In Figure 6a, the composite inclusions contained more Al–Ti and less Mg,
while in Figure 6b, the composite inclusions exhibited more Mg than those in Figure 6a, indicating
that the utilization of Mg was increased and the composition inclusions were smaller, more dispersed,
and more abundant.

1 
 

 

Figure 6. Chemical composition distributions of inclusions in all specimens: (a) Al–Ti–Mg; and
(b) Al–Mg–Ti.

3.3.3. Microstructures in Different Microalloy Addtion Sequences

The ingot microstructures containing the microalloy addition sequences Al–Ti–Mg and Al–Mg–Ti
are shown in Figure 7a,b, respectively. Figure 7a reveals ferrite and pearlite in coarse austenite grains.
Figure 7b shows significant amounts of IAF induced by the inclusions, with mainly ferrite and pearlite
in the microstructure.
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The SEM micrographs, EDS spectra, and mapping images of typical composite inclusion particles
from the steel with the microalloy addition sequence of Al–Mg–Ti that induced IAF are shown in
Figures 8 and 9. Al2O3 formed the particle cores, with MgO heterogeneous surface nucleation, followed
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by Ti2O3 heterogeneous nucleation on the MgO·Al2O3 complex inclusions. The MgO·Al2O3 complex
inclusions had a relatively high melting point in the earlier precipitated steel. Upon lowering the
temperature, during the phase change from austenite to ferrite, carbonitrides were precipitated on
the outermost layer of the complex inclusions and had a small disregistry, which could induce IAF
most effectively.
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Figure 10 shows the microstructure of the samples after hot rolling, where the main microstructural
components were ferrite and pearlite, and the grain size was substantially smaller when the alloy
addition sequence was Al–Mg–Ti.
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and (b) Al–Mg–Ti.

The microstructures of the HAZ are shown in Figure 11. Figure 11a presents the ferrite and
pearlite in coarse austenite grains. Figure 11b exhibits smaller grains containing IAF induced by
inclusions that crossed each other to form a netlike ferrite organization. They were independent and
did not grow in fascicles in the microstructure of mainly ferrite and pearlite. The results of the average
impact absorbed energy of the low-temperature impact tests on the steel plates after welding with the
microalloy addition sequences Al–Ti–Mg and Al–Mg–Ti were 8.9 J and 75.6 J, respectively, as shown in
Table 2.
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3.4. Industrial Testing

The target composition of the steel for industrial testing, named steel GY, was determined based
on the laboratory results, as shown in Table 1.

The microstructure of the industrial steel ingots is shown in Figure 12. It has large amounts
of IAF crossing each other, while the IAF particles ranged from 5 to 10 µm in width. Varying
orientations caused the IAF to exhibit an interwoven appearance, and the high dislocation density of
IAF significantly refined the structure.
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were distinguished from the boundary, while the grains in the welding zone were smaller than in the 
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Figure 12. Ingot microstructure of industrial test steel.

The microstructure of the 40-mm plate after hot rolling is shown in Figure 13a. The grains
were small, and the microstructure consisted mainly of ferrite and pearlite. The results of impact
testing the weld at −20 ◦C showed that the average impact energy absorbed 2 mm from the fusion
line was 198 J, whereas the welding heat input was 150 kJ/cm compared with the parent material’s
low-temperature performance, which was greater than 88%. According to the microstructure shown in
Figure 13b, the grains in the HAZ are slightly larger than those in the rolling state. At this location,
for high-temperature welding, all grains in the range of 1–5 mm from the fusion line were small and
homogeneous and did not become coarser, which revealed that the complex inclusion particles had
a significant role in improving the HAZ microstructure, while oxide metallurgy had a critical role in
improving the HAZ toughness.
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The welded joint macrostructure is shown in Figure 14 and the microstructure of the 40-mm plate
after welding is shown in Figure 15. It can be seen in Figure 14 that the grain sizes in the three zones
were different. In Figure 15a, the base metal zone had many IAFs, and in Figure 15b, a boundary
between the base metal and the fusion zone could be seen where the grains in the fusion zone were
smaller than those in the base metal. Figure 15c shows that the fusion and welding zones were
distinguished from the boundary, while the grains in the welding zone were smaller than in the fusion
zone. The microstructure shown in Figure 15d is symmetric with that in Figure 15c, which corresponds
to Figure 14. At this location, for high-temperature welding, all grains in the range of 2–5 mm from the
fusion line were small and homogeneous and did not become coarser, which revealed that the complex
inclusion particles had a significant role in improving the HAZ microstructure. The average grains
size in HAZ is 7.3 µm and provided by the calculation of Image Pro plus.
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Figure 15. HAZ microstructure observation: (a) base metal; (b) base metal and HAZ; (c) HAZ and
welding zone; (d) welding zone and HAZ.

The morphology of austenite grains in the industrial steel at different holding times is shown in
Figure 16a–c. It shows the austenite grain behaviour at a typical temperature at 1100 ◦C, for which
the morphology and average size of the austenite grains were obtained, compared with the grains
in HAZ, the original austenite grains 43.07 µm is six times larger, as shown in Table 3. After heating
up to 1100 ◦C, this temperature was held for 300, 600, and 900 s, respectively. The austenite grains
austenitized sufficiently and the diameters of the austenite grains did not increase. After the in situ
observation experiments, the average diameters of the austenite grains were measured at the room
temperature and were found to be 43.92, 45.74, and 54.56 µm, respectively. This result indicates
that as the holding time increased, the average austenite grain diameter increased under these
experimental conditions.
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Table 3. The average grain size in HAZ and original austenite.

Location
The Average Size

Value (µm) Average (µm) Deviations

HAZ
6.8

7.3 0.3567.5
7.6

Original austenite
45.06

43.07 1.40842.13
42.02

Based on the observations of the austenite grain boundaries, the positions of IAF formations can
be determined. As shown in Figure 17a, there was acicular ferrite at the edge of the two boundaries,
which was induced by an inclusion. In Figure 17b, IAFs can be observed to crossover all the austenite
grains and are divided between two grains. The induced interlocking IAF particles are sufficiently
abundant to refine the microstructure and improve the toughness.
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4. Conclusions

Mo added for high-heat input welding shipbuilding steel can shrink the austenitic phase zone
and induce intra-granular ferrite effectively, which will promote the ferrite transformation and inhibit
the transformation of proeutectoid ferrite to improve the HAZ toughness.
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When the alloy addition order was Al–Mg–Ti for high-heat-input welding, shipbuilding steel
obtained dispersed, small, and abundant particles that effectively induced interlocking IAFs in
austenite, for which Al2O3 and MgO served as the core, TixOy attached to the complex inclusions,
and carbonitrides of Nb precipitated at the complex inclusions, which have a small two-dimensional
disregistry with α-Fe, and induce IAF effectively, thus refining the HAZ microstructure, and inclusions
with a size of 0.5–2.5 µm accounted for 71.3% of the total inclusions.

The 12-mm-thick plate obtained in the laboratory experiment after welding had an average impact
absorbed energy of 83.6 J at −20 ◦C when 2 mm from the weld joint in the HAZ for a welding heat input
of 50 kJ/cm. The 40-mm-thick plate obtained in the industrial test after welding had an average impact
absorbed energy of 198.9 J at the same position as the laboratory steel and the same test temperature for
a welding heat input of 150 kJ/cm, compared with the parent material’s low-temperature performance,
which exceeded 88%.
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