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Abstract: In order to investigate the structure of welds, austenitic stainless steel (SS) studs with a
diameter of 6 mm were welded to austenitic SS plates with a thickness of 5 mm using an arc stud
welding (ASW) method. The effects of the welding current, welding time, and tip volume of the stud
on the microstructure and ultimate tensile strength (UTS) of the welded samples were investigated
in detail. The formation of δ-ferrites was detected in the weld zone because of the higher heat
generated during the welding process. Higher welding current and time adversely affected the stud
and significantly reduced the UTS of the samples. The UTS of the joints was also estimated using
artificial neural network (ANN) and Taguchi approaches. The mathematical formulations for these
two approaches were given in explicit form. Experimental results showed that the neural network
results are more consistent with experimental results than those of the Taguchi method. Overall, it can
be concluded that in order to achieve good welding joints and high strength values, ASW parameters
should be investigated properly to determine the optimum conditions for each metal.

Keywords: stud welding; mechanical properties; ANN; Taguchi; ANOVA

1. Introduction

Welding is a major fabrication method and widely used to join materials through a fusion
process. Metallic materials are mainly considered in welding due to their excellent features and
properties [1–3]. Numerous metallic materials can be joined using various welding techniques,
including friction stir welding, friction stir spot welding, ultrasonic welding, gas tungsten arc welding,
laser welding, gas metal arc welding, and arc stud welding (ASW). All of these methods have different
advantages and disadvantages in terms of cost, appropriateness, labor, training, efficiency, time,
temperature, and simplicity [4–9]. The process parameters of welding are a crucial factor affecting the
welding quality.

The effects of friction stir welding parameters on the microstructure and mechanical properties
of AISI 316L austenitic stainless steel (SS) joints were investigated by Kumar et al. who used
different tool rotational speeds. The authors suggested that a higher tool rotational speed results in
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plasticization of the material, and a lower tool rotational speed induces low plastic flow of the material.
The optimum properties were obtained at a tool rotational speed of 600 rev/min [10]. The influence
of welding parameters, such as welding current, base metal geometry, and welding time, on the
weld characteristics in the electric ASW process was discussed. It was reported that a higher welding
current considerably increased the hardness and penetration depth of welding zones in the metal
substrates [11]. Chi et al. used a new sensor to measure the effects of stud plunge depth and reported
that the proposed sensor had a precise stud plunge depth, which is a very important parameter in
the ASW process [12]. The welding current, welding time, and tip volume of the stud are the most
important factors affecting joint quality and strength. The high tip volume stud increases the formation
of flash, and a high welding current deforms the stud. Sufficient melting does not occur if a low welding
current and welding time are selected. In order to obtain quality, high-strength, and sound joints,
these parameters can be appropriately selected. It is well known that welding parameters significantly
affect the heat input, which affects the joint strength. The interactions and effects on heat input of these
factors should be considered in detail. The weldability of 2024-T3 aluminum alloy studs to an extruded
AZ80-F magnesium plate 3 mm thick was investigated using the ASW method The authors noted that
the optimal discharge voltage for the study was 300 V. Grain refinements of 1 µm thick were observed
near the joint interface of the AZ80-F magnesium and the Mg17Al12 and Al3Mg2 intermetallics [13].
The influences of keyhole gas tungsten arc welding parameters on the fusion zone profile of AISI 316L
stainless steel were analyzed. It was reported that the increase in welding current caused a rise of
weld depth and width. However, at a lower welding current, a completely penetrating keyhole could
not be obtained in the weld pool [14]. Ye et al. demonstrated the effects of welding parameters on the
mechanical properties, weld appearance, and interface of dissimilar aluminum/steel double-sided
butt welding-brazing. They determined that the optimum parameters are 13 V for the metal inert
gas (MIG) voltage, 70 A for tungsten inert gas (TIG) current, 13.5 for the MIG/TIG ratio, and 2 cm/s
for welding speed [15]. A high MIG voltage causes the formation of intermetallic compound with a
thicker layer, and the layer turns out to be thinner with a higher welding speed. Indeed, the joining of
dissimilar metals is recognized as a challenging process because of the major differences in physical,
chemical, mechanical, and metallurgical properties of the materials.

Recently, the ASW process has been extensively utilized for sheet metals in various industries,
such as automotive, ship, aircraft, electric, electronic, and construction. Different types of ASW methods
(e.g., capacitor discharge stud welding, short-cycle drawn ASW, and drawn ASW with shielding) are
used to weld metallic sheet materials, depending on the type of production, the amount of applied load,
and the type of materials and properties. The characteristics of ASW are influenced by stud diameter,
welding current, welding time, and tip volume of the stud. In other words, several parameters are
influential in achieving optimal mechanical properties and defect-free high-quality joints. To the best
of our knowledge, a comprehensive study related to 316 austenite stainless steel studs welded to
304 stainless steel plates by the arc stud welding method has not been carried out in the literature.
Therefore, this current study investigated in detail the weldability of AISI 316 SS studs to 304 SS plates
using the ASW process as well as influences of the welding current, welding time, and tip volume of
the stud on the microstructure and tensile behaviors of the joints. Also, a detailed statistical study was
executed using an artificial neural network (ANN) approach and a Taguchi approach with analysis of
variance (ANOVA) analysis.

2. Materials and Methods

In this study, austenitic stainless steel studs with a diameter of 6 mm and length of 45 mm, and 304
austenitic stainless steel plates with a thickness of 5 mm and width of 50 mm were purchased locally
and used without further treatment or modification.

A Soyer-BMK-16i type ASW machine (Heinz Soyer Bolzenschwei&technik GmbH, Munich,
Germany) was used in this study. Argon gas with a constant flow rate of 5 liters per minute was chosen
as a shield gas to protect the weld zone from oxidation and tarnishing.
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Tables 1 and 2 provide the compositions and mechanical properties of the stud and base metal
materials, respectively, utilized in this study. The welding operation was carried out using different
welding currents and times. Table 3 provides the maximum and minimum values of the welding
parameters employed.

Table 1. Composition (wt %) of stud and base metal utilized in this study.

Materials C Si Mn P S Cr Ni Mo Fe

Plate (304 SS) 0.08 1 2 0.045 0.03 18–20 8–10.5 - Balance
Stud (316 SS) 0.08 1 2 0.045 0.03 16–18 10–14 2–3 Balance

Table 2. Mechanical properties of stud and base metal utilized in this study [16].

Materials UTS (MPa) El. (%) Hardness (HV)

Plate (304) 515 - 55 275
Stud (316) 515 - 55 275

Table 3. Maximum and minimum values of welding parameters utilized in this study.

Level Welding Current (amps) Welding Time (s) Lift (mm) Plunge (mm)

Min 400 0.10
3 2Max 550 0.15

Lift and plunge values were adjusted as 3 and 2 mm in all tests, respectively. The tip volume of
the stud (TVS) (V: mm3) was calculated using Equation (1):

V =
1
3
π


sin

(
180 − 2d

2

)
·

 h

cos
(

180−2d
2

)
2

·h (1)

where h is plunge, and d is the tip angle of the stud.
Lift is the distance between the stud tip and the surface of the workpiece when the stud is pulled

away by the solenoid coil in the stud gun. Plunge is the length of the stud metal that appears at the end
of the gas shroud ring. Plunge and tip angle significantly affect the tip volume of stud, but lift does not
affect it. The increasing plunge value (h) increases the tip volume of the stud. However, the increasing
tip angle (d) value decreases the tip volume of the stud. In other words, if the “d” value reaches zero,
then the maximum value of the tip volume of the stud is obtained. Following the welding process,
the prepared specimens were sectioned by cutting them from the middle of the stud metal using a
wire electrical discharge machine (EDM) (Carmar accuracy Co., Ltd., Taichung, Taiwan), and then
they were ground and polished for surface microstructural studies. After the grinding and polishing
process, the specimens were also etched using a modified Keller’s reagent (10 mL HNO3, 1.5 mL HCl,
1.0 mL HF, and 87.5 mL distilled water) in order to obtain clear images. An optical microscope (Nikon
MA 100, Nikon, Tokyo, Japan) was used to examine the microstructures. In order to evaluate the
weld quality, tensile tests were conducted on the samples using a universal tensile test machine and
performed according to the ISO 14555 standard. Three tensile tests were carried out, and the average
of results was reported.
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3. Results

3.1. Macro-Micro Structures of Welds

Figure 1 shows macroscopic views of some welded specimens at different welding parameters.
Visual inspection with the naked eye did not reveal many macroscopic defects and other flaws on
the prepared weld samples. Because of the high welding current, the welding zone of the sample
(Figure 1f) is higher than the other samples, as is clearly shown by excessive fusion of the stud.Metals 2018, 8, x FOR PEER REVIEW  4 of 13 
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Figure 1. Macroscopic views of welded specimens with varying parameters: (a) 400-0.15-3-2-10◦;
(b) 400-0.15-3-2-20◦; (c) 400-0.10-3-2-20◦; (d) 500-0.10-3-2-0◦; (e) 500-0.10-3-2-30◦; and (f) 550-0.10-3-2-30◦.

Figure 2 exhibits the cross-sectional image and microstructure of the specimen 400-0.15-3-2 shown
previously in Figure 1b.
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Figure 2. Specimen 400-0.15-3-2: (a) cross-section image and (b) microstructure.

The cross-sectional image and the microstructure shown in Figure 2 belong to the specimen with
the maximum tensile strength. Noticeable defects were not observed on the cross-section images
of this sample (Figure 2a). In this welding experiment, three distinct regions were clearly observed:
base metal, heat-affected zone (HAZ), and welding zone, also known as the weld metal and fusion
zone, as indicated in Figure 2b. The width of the HAZ is relatively narrow compared to zones of the
other welding processes conducted on the specimens. A dendritic structure was also detected along
the HAZ towards the center of the weld, which may indicate some structural changes on the surface.

3.2. Mechanical Properties

3.2.1. Neural Network Approach

In the neural network approach, tensile test results were divided into two groups of data sets:
training (75%) and testing (25%). The input variables included welding current (WC; amps), welding
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time (WT; s), and tip volume of the stud (TVS; mm3), so the final output variable is the ultimate tensile
strength (UTS) of the prepared samples. All parameters were normalized in the range of 0 to 1.0 using
Equation (2):

θnormalized =
vr − vmin

vmax − vmin
(2)

where vr is the variables, and vmax and vmin are the maximum and minimum values in the
model, respectively.

Various neuron numbers (1–7) were used to fix the model architecture, when error-evaluation
criteria were utilized from the mean square error (MSE), mean absolute error (MAE), and mean
absolute percentage error (MAPE). The correlation coefficient (R) was used to calculate the model
performance. Explanations about the layers, R, MAE, MAPE, and MSE have been provided in detail in
other studies [17–19]. Figures 3 and 4 provide the influences of neuron numbers for training and test
sets, respectively.
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For the training set, the minimum MSE and MAE values are 0.0274 and 0.1098, respectively,
while the maximum correlation value is 0.8323. For the test set, the minimum MSE and MAE values are
0.0007 and 0.019, respectively, whereas the maximum correlation value is 0.9992. Equation (3) shows
the explicit formulation of ultimate tensile strength for the welds as a function of welding parameters.
This equation was procured using a macro value in MATLAB program. It could be written down that
the proposed explicit formulation is forced for the given ranges of the experiments.

UTS = 543.28 ×
(

1
1 + e−w

)
+ 246.46 (3)

where w is the u1 + u2 + u3 + 1.0144, in which u1, u2, and u3 are the empirical values given below:

u1 = (((1.0/(1.0 + exp(−1.0 × (((x) × (14.0987)) + ((y) × (−10.1375)) + ((z) × (−22.6694)) + (10.7274)))))
× (25.5146)))
u2 = (((1.0/(1.0 + exp(−1.0 × (((x) × (−1.5550)) + ((y) × (−7.7413)) + ((z) × (−11.2698)) + (2.0932))))) ×
(−19.3582)))
u3 = (((1.0/(1.0 + exp(−1.0 × (((x) × (2.1121)) + ((y) × (6.3599)) + ((z) × (−7.9340)) + (−0.2742))))) ×
(−13.6633)))

where x, y, and z are normalized input data of the welding current, welding time, and tip volume of
the stud.

Figures 5–7 illustrate the effects of various welding parameters on the ultimate tensile strength of
the welded joints.
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Figure 7. Interaction of ultimate tensile strength by tip volume of stud.

It was observed that the optimum experimental results of welding time, welding current, and tip
volume of the stud in all cases were found for 0.13 s, 400 amps, and 2.79 mm3, respectively. It can
also be seen that the rise of both welding current and welding time together deteriorates the tensile
results of the welds. UTS values of some samples were very high, and fracture in some of the prepared
specimens occurred at the stud, as shown in Figure 8a. Fracture in other specimens also took place at
the weld zone (Figure 8b).
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3.2.2. Taguchi Approach

The aims of this experimental design were to determine the effects of processing parameters
on the output products, identify which of the selected parameters has the greatest effect on the
output performance, and define the best possible ranges of those parameters in order to obtain
high-quality products. ANOVA is a statistical tool that is used to determine the differences or
similarities between groups of data [20]. Minitab software and the Taguchi method, which are efficient
tools for the design of high-quality product manufacturing systems, were used for the optimum design
of experiments [21]. The Taguchi approach provides an orthogonal array L9, which was selected based
on three different welding parameters. This approach recommends analyzing the data using the mean
effect or signal-to-noise (S/N) ratio, a logarithmic function of the desired result, which serves as an
objective function for the optimization of the process parameters. This technique also helps with data
analysis and prediction of optimum levels during the joining process [22].

The S/N ratio is the ratio of the “signal”, representing the desirable value, and the “noise”,
representing the undesirable value. The signal-to-noise ratio is widely used to measure the quality
performance and significance of the welding process. The S/N ratios were calculated according to the
selected values of the formula for each experimental run. Figures 9 and 10 show the main plots of the
S/N ratios for tensile strength.
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The optimum level setting of welding factors is the level showing the maximum value of S/N
ratio. Figure 11 provides an interaction plot for the ultimate tensile strength.

Metals 2018, 8, x FOR PEER REVIEW  8 of 13 

 

 

Figure 9. Main effect plot for means of tensile strength. 

 

Figure 10. Main effect plot for signal-to-noise (S/N) ratios of tensile strength. 

The optimum level setting of welding factors is the level showing the maximum value of S/N 

ratio. Figure 11 provides an interaction plot for the ultimate tensile strength. 

 

Figure 11. Interaction plot for ultimate tensile strength. 

550500400

800

750

700

650

600

0.150.130.10

56.5481.1090.260

800

750

700

650

600

WC (amps)

M
e

a
n

 o
f 

M
e

a
n

s
 (

M
P

a
)

WT (sec)

TVS (mm3)

Main Effects Plot for Means
Data Means

Figure 11. Interaction plot for ultimate tensile strength.



Metals 2018, 8, 326 9 of 13

Increasing the welding time results in decreasing the strength, so the enhancement in welding
current raises the mean effect and S/N ratio for the tensile strengths of the specimens. The mean
effect and S/N ratio for tensile strength improve with the tip volume of the stud and then decrease
considerably. Test results provided in Figures 9–11 are valid under the given conditions. The explicit
formulation of the UTS as a function of welding parameters is given in Equation (4):

UTS (MPa) = 292 + 1.31 WC (amps)− 1315 WT (s)− 3.15 TVS (mm 3) (4)

Based on the equation and calculations, the correlation coefficient and mean absolute percentage
error values of the Taguchi approach are 0.5690 and 21.6911, respectively. The significance level
(p-values) of the constant, welding current, welding time, and tip volume of the stud are 0.402, 0.051,
0.437, and 0.049, respectively. The p-value of the regression model is 0.66. Test results confirm that the
error percentage is high while the learning rate is relatively low with the Taguchi method. From the
Taguchi approach, it can be concluded that the optimum level setting of the welding current, welding
time, and tip volume of the stud are 550 amps, 0.10 s, and 1.109 mm3, correspondingly.

4. Discussion

The arc stud welding method was successfully applied to stainless steel. From the macro visual
inspection of the weld joints, it was found that welding without any macro-defects was obtained by
selecting the appropriate parameters. The primary aim of using argon shielding gas was to protect the
weld pool from the influences of the atmosphere, such as oxidation and nitrogen absorption, and also
to stabilize the arc welding process. However, oxidation could still be seen around the welding metals,
possibly because of the oxygen leakage from the atmosphere into the weld pool. In the ASW method,
various welding parameters, such as welding current, welding time, lift, and plunge were widely
applied. These parameters generally affect the quality of the welded materials and joint structures.
The high welding current and welding time can deform the stud and decrease the joint efficiency of
the welds substantially (Figure 1f). The solidification of δ-ferrite begins from the heat-affected zone
and increases towards the welding zone area. The welding operation in an ASW process takes place in
milliseconds; thus, solidification of the weld pool is very fast, and the width of the HAZ is quite narrow.

The amount and distribution of δ-ferrite, which mainly depends on chemical composition
and cooling rate, significantly affect the properties and performance of austenitic stainless steels.
The volume fraction of δ-ferrite can alter the microstructure of samples by changing the chemical
composition of steel. It is well known that Cr, Si, Ti, and Mo are predominantly δ-ferrite stabilizing
elements. The δ-ferrite has a body-centered cubic (BCC) crystalline structure and slows the grain
growth with changing the strength of the steel. The interphase boundaries act as strong barriers to
the dislocation motions [23,24]. The welding zone also exhibits a primarily ferrite mode during the
solidification process, which could be mainly due to the higher heat input in the welding zone areas.
It is also known that austenitic SS has austenite with its primary phase at room temperature and
that the δ-ferrite in welding zone of austenitic SS forms some dendrites prior to solidification of the
austenite at the peritectic temperature of around 1450 ◦C [25].

The network architecture, learning rate, and initial weight mainly affect the performance of the
welding process. The hidden layers and neuron numbers are also important factors affecting the
welding process and performance. In order to determine the network architecture and the optimal
parameters, there have not been well-defined methods to date; thus, this study addresses some of
these major concerns. Currently the trial-and-error approach has been the only approach for this aim.
The optimal results were obtained with three neurons in one hidden layer. It can be concluded that the
optimal model is a 3-3-1 architecture. The model learning ability is quite reliable according to the MSE
and MAE results in the training set. The performance, effectiveness, and generalization ability of the
system were evaluated using the test setups to calculate the expected ability in the next.
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It is also clear that the correlation coefficient has a very high value and shows good reliability
ratios. The equation could be used for fixing the influences of welding parameters on the strengths of
the weld joints. MAPE (for average percentage error value) of testing set (for un-normalized results) is
about 3.03%, and the maximum error should not exceed 6%. It was determined that the ultimate tensile
strength of the welds could be calculated with 96.97% accuracy. The maximum strength value was
obtained to be about 789.74 MPa. From the tensile test results, it was seen that some specimens had
very good joint performance, while other samples demonstrated weak or insufficient joint performance.
This may be due to local variations of the properties, grain coarsening, improper welding parameters,
and surface oxidations. The change in any welding parameter drastically affects the other parameters
and properties, as well. To produce high-quality joints, the optimum welding parameters should
be properly selected and evaluated for each set of test specimens. Results show that the considered
weld parameters are highly significant factors affecting the ultimate tensile strength of arc stud joints.
A high welding current and welding time increase the heat and in turn deform the stud gradually.
Also, any change in the cross-sectional area of the stud, which has an important effect on the weld
quality, affects the arc current density and heat intensity distribution. Thus, parameters during the
welding procedure must be selected properly to obtain maximum strength values [26,27].

Fisher introduced the design of experiments, which is considered a powerful technique for this
type of analysis [28]. The technique is widely used for the experimental layout to determine the level
of changes in the processing parameters on the output performance. The UTS could be estimated
with 78.31% accuracy using the Taguchi method. Welding current and tip volume of the stud have
lower p-values. Welding time with 0.437 p-values among the other parameters has a high p-value,
which indicates that this is not an important parameter. In previous studies, promising results were
achieved to find the method of optimization and control modeling, and estimation of the experimental
and theoretical results [29,30]. A comparison of the neural network and Taguchi approaches are shown
in Figure 12.
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A comparison of the artificial neural network and Taguchi approaches follows:

• The methods are extensively used to optimize engineering processes.
• The Taguchi method has a significant advantage in the design of experiments, which can also be

applied to a variety of quantitative tests; by using this method, time and cost can be saved and a
much higher number of assays can be reduced.
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• ANOVA in the Taguchi approach can be used for analysis and is an alternative and efficient
approach for fast, low-cost assay optimization. The Taguchi method incorporates one primary
experiment to study the main effects of each factor, modeling some of the important interactions.

• The ANN model is popular in predicting the field that is used to solve the problem by rebuilding
any function with arbitrary precision and has good adaptive and self-learning ability.

• The average relative uncertainty values of ANN and Taguchi approaches are 3.86% and 56.37,
respectively. The ANN has rapid overlearning, more accuracy (~3%), and precision (±24 MPa);
however, the Taguchi method has more low accuracy (~21%) and precision (±389 MPa) in
predicting the ultimate tensile strength of the welds.

• A high p-value (0.066) of regression in the Taguchi method indicates that the equation used here
has a low accuracy for estimating the ultimate tensile strength of welds.

• It was observed that the average percentage error value decreased and the correlation coefficient
value was significantly improved with the neural network approach compared to the Taguchi
approach. In other words, results of the neural network approach are in better agreement with
the test results, which may be attributed to the high learning rate of the ANN method.

In order to decrease experimental error and increase experimental reproducibility, all experimental
steps were performed under the same conditions, and the materials used (commercial 304 and 316 SS)
have the same properties. Three tensile tests for each sample were carried out, and the average of
the results was reported. The proposed models are valid for the given ranges and conditions for a
stud diameter of 6 mm. The optimal parameters of welding are a key issue to obtain the maximum
tensile strength. The maximization of the quality and joint strength of welding is frequently related
to optimization of the welding process parameters. In this paper, two model-based approaches for
welding strength were presented. The artificial neural network and Taguchi methodologies were used
to develop the appropriate welding current, welding time, and tip volume of the stud models based
on real experimental measurement data. The well-known ANN and Taguchi modeling processes
were selected for this case study. These models estimate the ultimate tensile strength as a function
of welding current, welding time, and tip volume of the stud. The comparative study shows that
optimization and control of the UTS using the ANN model provide better error-based performance
than the Taguchi model.

Overall, the present study provides the following major findings based on the experimental test
and model results:

• Increasing the welding current and time raises the local heat, which can probably cause some
deformations on the stud, which in turn diminishes the ultimate tensile strength values.

• The grain growth in the weld zone through external heat energy can cause a reduction in strength.
• Decreasing the cross-sectional area of the stud with a high welding current and time enhances the

heat intensity distribution and deteriorates the mechanical properties of the welded joints.
• A higher welding current or higher welding time can increase the chance of defect formations in

the weld areas, which can also significantly affect the mechanical properties and quality of the
welded metal.

• A high learning rate and high correlation coefficient indicate the effectiveness of the neural
network model, which may be used for the mechanical predictions of welded materials in
many industries.

5. Conclusions

Austenitic stainless steel materials were successfully welded using the arc stud welding method
and tested for tensile properties.

• Test results showed that a dendritic structure was formed during welding, which mainly contained
a δ-ferrite and austenitic structure.



Metals 2018, 8, 326 12 of 13

Improper welding parameters significantly deteriorate the ultimate tensile strength of the welds.
• Tensile test results were statistically studied using artificial neural network and Taguchi

approaches. Neural network results were in good agreement with the test results, and the
formulation has a high reliability with low error rates. The UTS of the joints using the ANN
and Taguchi methods were estimated with an accuracy of 96.97% and 78.31%, respectively.
More studies may be needed to obtain closer matching in the future. Hence, it was concluded
that the neural network model was fairly successful and has analytical virtue for specifying the
ultimate tensile strength of welds under different welding processing cases.

• Welding parameters such as welding current, time, and tip volume of the stud are the most
significant parameters in the ASW process. Thus, these parameters should be properly adjusted
to maximize the mechanical properties of the welds because any change in any of the parameters
can significantly affect all other parameters as well. For example, if a high level of welding current
or welding time is selected during welding, then this leads to more fusion/melting and forms
necking at the joined region due to grain coarsening effects and other structural changes.
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