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Abstract: A method called forging solidifying metal (FSM), which is applied for eliminating coarse
dendrites and shrinkage porosity defects of ferrous alloys was proposed based on semi-solid forming
technology (SSF). To verify its feasibility, the effects of liquid fraction (FL) on the microstructure of the
deformed H13 steel were investigated experimentally. The coarse dendrites structure still existed and
cracks appeared when the 0.1/s 50% FSM method was carried out at ~20% FL. What is significantly
different from that is, the elimination of the coarse dendrites structure and shrinkage porosity defects
became more significant, when this method was conducted at the end of solidification (FL < 10%).
The microstructure of H13 steel was significantly refined and also became dense in such condition.

Keywords: SSF; FL; H13 steel; grain refinement; shrinkage porosity

1. Introduction

Ferrous alloys are widely employed in industrial components such as dies and tools (H13, M2),
metallurgical rollers (9Cr2MoV), etc. Excellent mechanical properties, such as high strength, hardness,
and toughness, are the basic performance evaluation criteria for these materials. This combination of
mechanical properties is achieved by a dense microstructure with fine grain [1]. From the perspective
of ferrous alloy ingots, which regularly have a coarse dendritic structure and obvious porosity defects,
grain refinement and the elimination of porosity are necessary to improve its microstructure and
mechanical properties. In a conventional manufacturing route, the refinement of the grains is achieved
by hot forging or the rolling process [2] as well as a subsequent heat treatment [3]. As it is difficult to
obtain grain refinement only by single-pass deformation, a multipass forging or rolling process has
been employed in the past [4]. In addition, a long homogenization time before the large deformation is
required to reduce segregations, especially in the case of medium or high-alloyed steels. Porosity can
be classified into micro-porosity and macro-porosity (also called shrinkage or void) based on its
size [5]. Several researchers have attempted to find solutions for eliminating this primary metallurgical
defect. For example, Wang et al. [6], Xu et al. [7], and Qian et al. [8] proposed that increasing the
size of the hot top can help reduce porosity defects in heavy ingots via numerical simulation method.
Lee et al. [9] described the closure of void during open die forging process. The results showed that
a local effective strain value of 0.6 or larger must be achieved in order to eliminate the void during
deformation. Xu et al. [10] and Li et al. [11] investigated the closing behavior of porosity during hot
forging process and put forward the wide-anvil radial forging (WRF) method for its elimination
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in steel ingot. These traditional methods such as multipass high-compression ratio deformation,
designing large-size hot tops and post-forging heat treatments, while being effective for eliminating
the coarse dendritic structure and porosity defects, has disadvantages such as high-cost, low efficiency,
and low material utilization. Therefore, a more efficient process for grain refinement and elimination
of porosity defects in the steel ingot is highly desirable.

It is worth mentioning that since most ferrous alloys are solidified in dendrite mode, two types
of defects mentioned above are formed during solidification [12]. Since the 1970s, with the raise and
development of semi-solid forming technology (SSF), the solidification mode has changed. During the
solidification process, mechanical agitation, electromagnetic stirring, etc., were used in the liquid-solid
two phase region of metal, which could break the bulk dendrites structure and obtain spherical solid
particle surrounded by liquid, thus realizing the refinement of the microstructure [13,14]. Flemings [12]
also proposed that less casting shrinkage and fewer porosities can be obtained via SSF. The previous
studies suggest that SSF can potentially replace the complex conventional route for eliminating the
coarse dendritic structure and porosity defects in steel ingot. So far, several treatment methods in SSF
have been proposed, including strain-induced melt activation (SIMA) [15], recrystallization and partial
melting (RAP) [16], electromagnetic stirring [17], and the cooling slope process [18], etc. Due to the
high forming temperatures of ferrous alloys, the forming tools which were in direct contact with the
molten metal are prone to degrade during service [19]. Moreover, the transportation of the molten
billets, also the oxidation of billets and precise temperature control during forming procedure were the
bottlenecks in the application of SSF on high-melting ferrous alloys. Therefore, most of these methods
are mainly used to produce low-melting alloys such as aluminum and magnesium. There has only
been limited research on the application of the SSF in ferrous alloys [20].

In order to establish a more effective way than the conventional route for the production of ferrous
alloy, the forging solidifying metal (FSM) method was proposed based on SSF in our previous study [21].
Unlike the traditional SSF, this method combined the solidification with large deformation process
(LDP) in the two phase region. In the current study, to verify its effectiveness in eliminating coarse
dendrites and porosity defects of ferrous alloys, the effects of liquid fraction (FL) on the microstructure
of widely used H13 tool steel were investigated through a series of semi-solid compression tests.

2. Experimental Procedures

2.1. Material

H13 steel is a commonly utilized material for components in die and tool applications. Coarse
dendritic structure and porosity defects are the main problems during its manufacture. The chemical
composition (in mass percentage) of H13 used in this study is shown in Table 1. The raw material
was from a commercial using die (not served before), obtained by a series of complex procedures
(casting, long-time homogenization treatment, multipass forging, post-forging heat treatment, etc.).
The microstructure was characterized by martensite matrix and uniformly distributed precipitates
(MXC type carbides), as shown in Figure 1. Most of the MXC type carbides precipitated during heat
treatment after forging process [22].

Table 1. Chemical composition of H13 steel (wt %).

Element C Si Mn Cu Ni Cr Mo V Fe

Analyzed 0.36 0.94 0.45 0.09 0.05 5.16 1.2 0.88 Bal.
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Figure 1. Original microstructure of H13 steel in this study, (a,b) images of the secondary electronic 
(SE) mode and (c) energy dispersive spectrometer (EDS) of scanning electron microscopy (SEM) 
analysis of the carbides (red arrows in (b)). 

2.2. Experiment Setup and Process Program 

The semi-solid compression tests were conducted by thermal-simulator system (Gleeble 3800) 
from DSI Corporation (Albany, NY, USA). The sample design method in the tests was the same with 
that in our previous report [23]. Cylindrical specimens with diameter of 6 mm and height of 10 mm 
machined from the raw material were used. The cylindrical samples were put in pure iron hollow 
cylinders, which has an outer diameter of 14 mm and inner diameter of 6 mm. The H13 cylindrical 
samples were attached to the pure iron hollow cylinder by mechanical fit. Moreover, small pure iron 
cylinders with diameter of 9 mm and height of 5 mm were “stair-step” welded upon the hollow 
cylinder to avoid the leakage of molten H13 steel during the LDP, as shown in Figure 2a. The 
temperature and sample length were recorded by computer data acquisition system and the rate was 
40 Hz. Temperatures were measured by a Type-R thermocouple welded to the midpoint of the 
samples and sample resistance heating currents were modulated to maintain predetermined 
temperatures (Tpre). During the semi-solid deformation, lubricated tantalum with graphite plate was 
placed between the specimen and tungsten carbide (WC) anvils, which was employed to ensure the 
uniform deformation of the specimens. The specimen was fixed inside the equipment and concentric 
with the WC dies. Vacuum pump system was used to avoid the oxidation of the specimen during the 
LDP in the two phase region (10−3 Torr), as shown in Figure 2b. 

The solidification range of H13 steel was determined by Differential Scanning Calorimeter (DSC) 
experiment using as-received H13 steel by SETSYS Evolution18 thermal analyzer from SETARAM 
Corporation (Ratingen, Germany), and the heating and cooling rate was 5 °C/min during the 
experiment. The liquidus and solidus temperature were determined to be 1480 °C and 1320 °C, 

Figure 1. Original microstructure of H13 steel in this study, (a,b) images of the secondary electronic (SE)
mode and (c) energy dispersive spectrometer (EDS) of scanning electron microscopy (SEM) analysis of
the carbides (red arrows in (b)).

2.2. Experiment Setup and Process Program

The semi-solid compression tests were conducted by thermal-simulator system (Gleeble 3800)
from DSI Corporation (Albany, NY, USA). The sample design method in the tests was the same
with that in our previous report [23]. Cylindrical specimens with diameter of 6 mm and height of
10 mm machined from the raw material were used. The cylindrical samples were put in pure iron
hollow cylinders, which has an outer diameter of 14 mm and inner diameter of 6 mm. The H13
cylindrical samples were attached to the pure iron hollow cylinder by mechanical fit. Moreover,
small pure iron cylinders with diameter of 9 mm and height of 5 mm were “stair-step” welded upon
the hollow cylinder to avoid the leakage of molten H13 steel during the LDP, as shown in Figure 2a.
The temperature and sample length were recorded by computer data acquisition system and the
rate was 40 Hz. Temperatures were measured by a Type-R thermocouple welded to the midpoint
of the samples and sample resistance heating currents were modulated to maintain predetermined
temperatures (Tpre). During the semi-solid deformation, lubricated tantalum with graphite plate was
placed between the specimen and tungsten carbide (WC) anvils, which was employed to ensure the
uniform deformation of the specimens. The specimen was fixed inside the equipment and concentric
with the WC dies. Vacuum pump system was used to avoid the oxidation of the specimen during the
LDP in the two phase region (10−3 Torr), as shown in Figure 2b.

The solidification range of H13 steel was determined by Differential Scanning Calorimeter (DSC)
experiment using as-received H13 steel by SETSYS Evolution18 thermal analyzer from SETARAM
Corporation (Ratingen, Germany), and the heating and cooling rate was 5 ◦C/min during the
experiment. The liquidus and solidus temperature were determined to be 1480 ◦C and 1320 ◦C,
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respectively, as shown in Figure 3 (red fonts). This result was in good agreement with Meng et al. [4]’s
study, which reveals the microstructural evolution and deformation behavior of semi-solid H13 steel.
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Figure 3. Differential scanning calorimeter (DSC) curve of H13 in this study (a) Heating process and
(b) cooling process, respectively.

The process program of Gleeble 3800 was illustrated in Figure 2c. Specimens were heated to
Tm (1480 ◦C) and hold 1 min to ensure that H13 steel was totally remelted in the center of the pure
iron set. The pure iron cover outside was unchanged due to its higher melting point (about 1530 ◦C).
Then specimens were cooled down to Tpre with a cooling rate of 1.5 ◦C/s and held isothermally
for 1 min before the LDP implemented. Afterwards, the specimens were compressed to induce
reduction of 50% at the strain rate of 0.1/s under an isothermal condition and then cooled in the
instrument. The Tpre were 1420, 1400, 1380, 1360, 1340, 1320 ◦C, respectively. In contrast, the specimen
(as-cast state) was heated to 1480 ◦C (hold 1 min) and then cooled at the rate of 1.5 ◦C/s to 1320 ◦C
(solidus temperature). Afterwards the as-cast specimen was cooled down in the instrument to room
temperature. Meng et al. [4] illustrated the FL versus Tpre relationship for H13 steel via RAP experiment
using scandium image analysis software. According to their study, the FL versus Tpre relationship in
this study are shown in Table 2. Notably, H13 steel was in solid state at 1320 ◦C but transformed into
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semi-solid state at higher temperatures. Hence, in order to elucidate the differences of microstructure
as the FL varies, a series of semi-solid compression tests under different FL had been conducted.

Table 2. The corresponding liquid fraction (FL) versus Tpre relationship according to the Meng et al.
study [4].

Tpre (◦C) FL

1420 ~22%
1400 ~20%
1380 ~18%
1360 ~10%
1340 ~4%
1320 ~0%

2.3. Microstructural Characterization

After the LDP in the two phase region, the specimens were cut along the longitudinal-section.
Standard metallographic procedures were used to mount, grind, and polish the specimens for
macrostructure and microstructure analysis. Metallographic samples were chemically etched in 5%
nitric acid/alcohol solution for 10 s. The microstructures of the specimens were observed using MC63
optical microscope (ZEISS Corporation, Jena, Germany) (as-chemical etched condition). The elements
distribution on the specimens were observed through mapping analysis (as-polished condition),
using electron probe micro-analyzer (EPMA-1610 made by SHIMADZU Company, Kyoto, Japan).
The microstructure of the raw material was observed by INSPECT F50 SEM (FEI Corporation,
Amsterdam, Netherlands). Carbides in raw material were identified by energy dispersive spectrometer
(EDS) (Oxford Instruments, Oxford, UK) analysis in SEM.

3. Experimental Results

3.1. Macrostructural Inspection

Microstructures of the specimens (in longitudinal-section) under different experimental conditions
are shown in Figure 4. The red arrows indicate the deformation direction during the semi-solid
compression test (Figure 4a).
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The macrostructure in the as-cast state showed obvious shrinkage defects (Figure 4b). However,
the deformed specimens had a relatively dense macrostructure without shrinkage defects, as illustrated
in Figure 4c–h. When deformed at higher temperature (1420 ◦C, 1400 ◦C and 1380 ◦C), the configuration
of deformed H13 steel in the pure iron showed uneven deformation and “double-ear” morphology
(Figure 4c–e). However, when deformed at lower temperature (1360 ◦C, 1340 ◦C and 1320 ◦C), the
H13 steel showed a more uniform deformation (Figure 4f–h). In the case of the higher deformation
temperatures, the FL of the semi-solid H13 billet inside the pure iron was higher, which corresponded to
a stronger fluidity under external shear force. Therefore, the molten H13 metal flowed more easily into
the gap between the pure iron set and its cover during the LDP, resulting in a double-eared appearance.

3.2. Microstructural Analyses

Figure 5 shows the microstructure of the specimens under different experimental conditions in the
study. The microstructure of H13 (as-cast state) was dominated by bulky dendrites structure, which had
obvious shrinkage and micro-porosity defects within it, as shown in Figure 5a. After the LDP in the
two phase region, the selected microstructures of H13 steel in the specimens deformed at different
temperature and FL are shown in Figure 5b–h. When deformed at higher FL (1400 ◦C and 1380 ◦C,
corresponding to a FL of 20% and 18%, respectively), the coarse dendrites structure still existed and the
crack defect appeared in the microstructure, as shown in Figure 5b,c. In comparison, when deformed
at a lower FL (1360 ◦C and 1340 ◦C, corresponding a FL of 10% and 4%), the bulky dendrites structure
disappeared. Compared with as-cast state, the microstructures under these conditions were refined,
exhibiting large amounts of globular crystal or grains, as shown in Figure 5e–h. The globular
crystal were surrounded by some “circle-like” structures when deformed at 10% FL (Figure 5f). Also,
some “island-like” structures existed at the grain boundaries or within the grains when deformed at
4% FL, as shown in Figure 5h. In addition, the deformed H13 steel under these conditions had a dense
microstructure without porosity defects. When deformed at completely solidified condition (1320 ◦C),
the microstructure was mainly characterized by deformed banded dendrite structure. The obvious
shrinkage defects in as-cast state were eliminated under such condition and some micro-porosity
defects still existed, as shown in Figure 5d.

In order to characterize the “circle-like” and “island-like” structures in Figure 5f,h, the EPMA
mapping analyses of main alloy elements of H13 steel (C, Mn, Cr, Mo, and V) was performed. From the
results, both structures were rich in Cr, Mo, and V elements, as shown in Figures 6 and 7.

To sum up, the elimination of the coarse dendrites structure and porosity defects of H13 steel
became more significant, when the 0.1/s, 50% LDP in the two phase region (FSM method) was
conducted at the end of solidification (with FL < 10%). The microstructure of H13 was significantly
refined and also became dense. This result was promising as such microstructure may display better
mechanical properties compared with the bulky microstructure of the as-cast ingot obtained by
dendrite solidification, as shown in Figure 5a,e.
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4. Discussion

4.1. Improvement of the Macrostructure

After the LDP in the two phase region, the obvious shrinkage in the as-cast state was eliminated
in the deformed H13 specimens, under all conditions (Figure 5). In a previous study of the SSF process
in H13 steel, Meng et al. [4] used a self-made test machine to reveal the basic semi-solid deformation
characteristics of this alloy. A few macrocracks and severe oxidation appeared on the samples when
deformed under higher FL conditions. While after the LDP in this study, no macrocracks nor severe
oxidation were observed on these samples. The possible explanation for this is that, the H13 steel was
deformed under a three-dimensional compressive stress state inside the pure iron shell in the current
study, thus preventing the macrocrack formation during deformation. Moreover, the H13 steel was
deformed and cooled within the pure iron shell in a vacuum atmosphere (Gleeble 3800), which cut off
the air outside, and prevent the oxidation. To some extent, the FSM method overcomes the problem of
oxidation of the billet (Ferrous alloy) in the traditional SSF.

4.2. Effects of LDP on Dendrite Structure

According to the recorded curve in Figure 3, the solidification interval of H13 steel is 160 ◦C,
which is reasonably wide, making dendritic structure of such alloy well developed during dendrite
solidification [24], as shown in Figure 5a. The experimental results indicated that, the addition of
the LDP in the two phase zone had changed the dendrite solidification behavior of the H13 steel.
However, the microstructures obtained significantly changed when deformed at different FL, as shown
in Figure 5b–h. The mechanism was correlated with the different deformation behaviors under
different FL conditions.

Flemings [12] proposed that the deformation mechanism in the solid-liquid two phase region
changes with the FL. When deformed at a very high FL, as the dendrites structure was rare,
few dendrites tended to rotate in the liquid melt during deformation. With decreasing in FL (~20%),
more dendritic structures formed. The deformation mechanism changed from rotating to sliding
because of the weak cohesion of the liquid film existed between the primary dendrites. When the FL of
the alloy was very low (~10%), the dendritic structure in the melt was more and overlapped into a
network skeleton. Under such condition, the mechanism of the deformation was dominated by the
plastic deformation of the primary dendrites skeleton. The different deformation mechanisms result in
different refinement effects of the dendritic structure of H13 steel in the study.

When deformed at 1420 ◦C, 1400 ◦C, and 1380 ◦C, where a higher LF of ~22%, ~20%,
and ~18% existed in these samples, the sliding deformation mechanism played a dominant
role. The primary dendrites in the melt were partially broken during the deformation and even
some dendrites still remained unbroken (UD). Meanwhile, the deformation caused the remaining
melt to generate forced convection and continuously wash out the primary columnar dendrites.
The force convection may have caused the breakage or separation of dendrites, as illustrated by
Campanella et al. [25] in their research on dendrite fragmentation criterion. As a result, a part of
primary dendrites were broken into dendrite fragments to form the small dendrite structure (DS),
as shown in Figure 8. Under such condition, the strength of the liquid films between the primary
dendrites was lower than that of the dendritic matrix [26]. If the stress induced by solidification
shrinkage, thermal contraction, or external deformation were large enough to overcome the strength
of the liquid film, internal or open hot tears would result in these semi-solid regions [27]. Cai et al. [28]
used the synchrotron tomographic quantification method to realize the in-situ observation of the
hot tearing during the semi-solid compression (with ~25% FL) of Al–Cu alloy. Similarly, under such
conditions, the hot tearing defects would also arise in the liquid film region due to the stress induced
by 50% deformation in the study. The hot tearing would grow to the microcrack defect, as illustrated
in Figure 8.
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When deformed at the end of solidification (1360 ◦C and 1340 ◦C), the FL in the H13 sample was
around or less than 10%. The dominant mechanism under such conditions was plastic deformation of
the primary dendrites skeleton. The deformation in the mushy zone at a low FL (<10%) could lead to a
complete transformation of the dendritic structure into numerous sub-grains, which had been reported
by previous simulation [29] and experimental study [23]. As a result, the primary dendrite structure in
this study was fully fragmented into large amounts of globular crystal or grains (Figure 5f,h). Before the
deformation was implemented, the initial dendrites of H13 grew and the solute (Cr, Mo, and V) was
ejected into the liquid (solute redistribution), resulting in its higher solute concentration in dendritic
solidification. Therefore, the “circle-like” and “island-like” structures (Figure 5f,h) which were rich in
solute elements were originated from the remaining melting after the semi-solid deformation, as shown
in Figures 6 and 7. Similar to the conventional SSF, a globular microstructure consists of spherical solid
surrounded by high solute liquid was obtained when the LDP was carried out at 1360 ◦C (Figure 5e,f).
As to 1340 ◦C, the remaining melting mainly distributed on the grain boundaries and a few existed
within the grain. The remaining melting within the grain was from the entrapped liquid which was
blocked within the solid phases during the semi-solid deformation. This phenomenon also appeared in
other alloys during their semi-solid forming process [30–32]. The dendritic structures were eliminated
and the microstructure was refined compared with as-cast state under these conditions.

4.3. Effects of LDP on Porosity

According to the formation mechanism, porosity can be divided into two main categories:
gas-induced porosity and shrinkage-induced porosity [33]. Because of the sample design (pure iron
cover) and experimental condition (vacuum atmosphere) in the study, the former (mostly originate from
trapped air) is not taken into consideration. As to the shrinkage-induced porosity, volume shrinkage is
coupled with solidification process of ferrous alloy due to an increase in the density with decreasing
temperature [24]. This volume shrinkage can be compensated and eliminated by sufficient feeding at
the early stage of solidification. However, this can be a problem as the solidification process continues,
especially for alloys which have a wide solidification interval. In this study, the primary dendrites of
H13 overlapped in a net-like structure at the end of the solidification with the remaining liquid within
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it. Due to the existence of these bulk dendrites structure, the liquid confined in the interdendritic
regions, was unable to flow freely [34]. A series of studies [33,35,36] proposed that an inadequate
interdendritic flow would lead to insufficient feeding and, to the formation of this type porosity in
the interdendritic regions. Moreover, the size of these porosities would grow larger owing to the
tensile stress during the volume shrinkage. Thus, it is clear that the formation of shrinkage-induced
porosity occurs at the end of the solidification because of the insufficient feeding resulted from the
bulk dendrites structure.

From the experimental results, the LDP at the end of the solidification had greatly eliminated the
porosity defects of H13 steel, as shown in Figure 5f,h. On one hand, the bulk dendrites structures in the
as-cast state were destroyed and fully transformed into large amounts of sub-grains under 50% two
phase region deformation. Thus the residual liquid between the interdendritic regions was released
and could flow freely, which was not conducive to the formation of the shrinkage porosity defects.
On the other hand, the freely-flowing liquid between the sub-grains would play a role of forced feeding
by the external deformation, which could also significantly eliminate the shrinkage porosity defects in
their infancy. The mechanism is somewhat similar to the soft-reduction or heavy-reduction technology
in continuous casting process. These methods also combine solidification under high pressure with
forced feeding by plastic deformation to reduce the centerline porosity defects of continuous casting
strands [5,37–39]. For both the reasons illustrated above, the shrinkage porosity defects of H13 steel
were significantly eliminated and a dense microstructure was obtained (Figure 5f,h). To summarize,
the mechanism in eliminating coarse dendrites structure and shrinkage porosity of SKD 61 steel under
LDP in the two phase region in this study is illustrated in Figure 9.
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Figure 9. Schematic diagram of mechanism in eliminating coarse dendrite structures and shrinkage
porosity in the study (The white regions in b and c represent shrinkage porosity, the yellow regions
in a, b, and c represent liquid). (a) The initial dendrites grew during the solidification and continued
discharging solute elements (such as Cr, Mo, and V) to the melt; (b) at the end of solidification,
the dendrites formed a cohesive network. The reason is due to the insufficient feeding in the
interdendritic region, shrinkage porosity defects formed. In this case, the 0.1/s, 50% LDP was
implemented; (c) Under the large strain induced by the large deformation, the primary dendrites
were fully broken to large amounts of sub-grains with high-solute liquid surrounded (Figures 5e,f
and 6). The residual liquid between the interdendritic regions were released and could flow freely,
which plays a role of forced feeding by the external deformation (red arrow in c). Due to these reasons,
the coarse dendrites structure and shrinkage porosity defects were eliminated. The sub-grains gradually
grew and spheroidized during the process; (d,e) the microstructure was refined due to recrystallization
in the subsequent deformation.

In comparison, the schematic evolution of shrinkage porosity defects when deformed after
completely solidified condition (1320 ◦C) is illustrated in Figure 10 below. The shrinkage porosities
defects formed in the end of the solidification (Figure 10b) would grow larger owing to the tensile
stress during the volume shrinkage in the subsequent cooling process, as shown in Figure 10c.
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Once formed and grown, defects with larger dimensions were difficult to eliminate and transformed
to micro-porosity after the complete solid deformation, as shown in Figures 5d and 10e.
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It should be noted that other than the two type defects investigated in the study, primary
carbides and micro-segregation are also the main metallurgical defects in H13 steel. Further study
is recommended to investigate the influence mechanism of LDP in the two phase region on both of
these defects.

5. Conclusions

This study has demonstrated the potential of LDP in the two phase region (FSM method) to realize
the efficient elimination of coarse dendrites and shrinkage porosity defects of H13 steel. The main
results can be summarized as follows:

1. The coarse dendrites of H13 steel were eliminated when LDP was carried out at the end of the
solidification (0 < FL < 0.1) due to the plastic deformation mechanism under this condition.

2. Because of the fragmentation of its primary dendrites structure and the forced feeding effect
of the residual liquid due to external deformation, the shrinkage porosity defects of H13 steel
were eliminated.

3. The dense globular microstructure (H13 steel) consisted of spherical solid surrounded by high
solute (Cr, Mo, and V) liquid was obtained when the 0.1/s 50% LDP was conducted at 1360 ◦C.
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