Supplementary Materials:

Table S1. Modeling of isotherm result for PPAC, PPAC-MS 25, PPAC-MS 50, and PPAC-MS 100.

Pollutants	Langmuir Parameter			Frendlich Parameter				Experiment
	$q_{ m L}$	K_{L}	R ²	q_{F}	K _p	n	R ²	qexp
PPAC	174.774	0.023	0.983	97.431	38.778	4.246	0.894	165
PPAC-MS 25	363.438	0.005	0.901	85.549	12.806	2.060	0.866	220
PPAC-MS 50	386.556	0.006	0.965	103.784	15.964	2.090	0.936	285
PPAC-MS 100	367.601	0.022	0.956	185.766	55.714	3.249	0.998	369

Table S2. Comparison of Cu(II) adsorption capacities between PPAC, PPAC-MS 100 and other absorbents.

Adsorbents	Initial pH	Q _{max} (mg g ⁻¹)	References
Nitrogen-Functionalize GO	5	34.4	[1]
MgO (precipitation and calcination)	3–4	593	[2]
Mg(OH) ₂ /GO	5	216	[3]
Activated carbon cloth	5	15.3	[4]
PPAC	4.5	165	This study
PPAC-MS 100	4.5	369	This study

Table S3. Modeling of Kinetic result for PPAC, PPAC-MS 25, PPAC-MS 50 and PPAC-MS 100.

Cu Removal	Pseudo-F	Pseudo-First-Order Model			Pseudo-Second-Order Model			
0 M NaCl	$K_1(\min^{-1})$	Slope	R ²	$K_2(\min^{-1})$	V_{0}	R ²	Q_{eq}	
PPAC	0.0264	0.0115	0.5409	0.0004	19.1843	0.972	225.450	
PPAC-MS 25	0.0177	0.0077	0.8731	0.0003	21.1844	0.995	256.859	
PPAC-MS 50	0.0161	0.0070	0.7980	0.0003	22.4362	0.984	284.257	
PPAC-MS 100	0.0192	0.0084	0.7177	0.0005	57.0002	0.996	338.041	
0.01 M NaCl								
PPAC	0.023	0.010	0.941	0.0010	23.710	0.995	153.066	
PPAC-MS 25	0.021	0.009	0.303	0.0005	15.638	0.991	184.616	
PPAC-MS 50	0.016	0.007	0.734	0.0004	16.257	0.983	213.899	
PPAC-MS 100	0.017	0.007	0.850	0.0005	29.110	0.994	241.733	
0.1 M NaCl								
PPAC	0.021	0.009	0.896	0.0005	10.239	0.972	147.246	
PPAC-MS 25	0.018	0.008	0.698	0.0007	12.813	0.993	137.088	
PPAC-MS 50	0.015	0.007	0.821	0.0005	14.073	0.982	175.348	
PPAC-MS 100	0.016	0.007	0.907	0.0004	17.659	0.986	199.550	

Table S4. Isotherm result for PPAC-MS 100 for As, Zn, Al, Fe and Mn removal.

Pollutants	Langmuir Parameter				Frendlich Parameter			Experiment
	$q_{\rm L}$	KL	q exp	qf	Kp	n	R ²	q exp

Zn (II)	487.563	0.006	0.931	120.819	15.331	1.895	0.962	373
Al (III)	330.431	0.008	0.968	102.695	18.801	2.304	0.919	244
Mn (II)	315.539	0.008	0.957	94.551	14.671	2.100	0.904	234
Fe (II)	1367.727	0.002	0.997	105.954	5.559	1.327	0.974	562
As (V)	167.039	0.022	0.955	80.073	19.829	2.803	0.902	191

Table S5. Pore characteristic of PPAC, PPAC-MS 25, PPAC-MS 50, and PPAC-MS 100.

Sample	PPAC	PPAC-MS 25	PPAC-MS 50	PPAC-MS 100
Total surface area(m ² g ⁻¹)	1,099.80	992.97	910.32	772.10
BET surface area (m ² g ⁻¹)	1,207.70	1,056.8	966.87	831.7
Microspore surface area (m ² g ⁻¹)	966.55	684.87	620.8	650.1
Total pore volume(cm ³ g ⁻¹)	0.54	0.537	0.489	0.470
Microspore volume (cm ³ g ⁻¹)	0.38	0.28	0.256	0.263

Figure S1. XPS analysis binding energy after adsorption (A) PPAC-MS 100 and (B) PPAC.

References for Supporting Information

- 1. Zhang, K.; Li, H.; Xu, X.; Yu, H. Facile and efficient synthesis of nitrogen-functionalized graphene oxide as a copper adsorbent and its application. *Ind. Eng. Chem. Res.* 2016, *55*, 2328–2335.
- 2. Rafiq, Z.; Nazir, R.; Durr e, S.; Shah, M.R.; Ali, S. Utilization of magnesium and zinc oxide nano-adsorbents as potential materials for treatment of copper electroplating industry wastewater. *J. Environ. Chem. Eng.* 2014, *2*, 642–651.
- 3. Wang, P.; Ye, Y.; Liang, D.; Sun, H.; Liu, J.; Tian, Z.; Liang, C. Layered mesoporous mg(oh)₂/go nanosheet composite for efficient removal of water contaminants. *RSC Adv.* 2016, *6*, 26977–26983.
- 4. Kadirvelu, K.; Faur-Brasquet, C.; Cloirec, P.L. Removal of cu(ii), pb(ii), and ni(ii) by adsorption onto activated carbon cloths. *Langmuir* 2000, *16*, 8404–8409.