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Abstract: In automotive body-in-white production, presshardened 22MnB5 steel is the most widely
used ultra-high-strength steel grade. Welding is the most important faying technique for this steel
type, as other faying technologies often cannot deliver the same strength-to-cost ratio. In order to
conduct precise numerical simulations of the welding process, flow stress curves and thermophysical
properties from room temperature up to the melting point are required. Sheet metal parts made out
of 22MnB5 are welded in a presshardened, that is, martensitic state. On the contrary, only flow stress
curves for soft annealed or austenitized 22MnB5 are available in the literature. Available physical
material data does not cover the required temperature range or is not available at all. This work
provides experimentally determined hot-flow stress curves for rapid heating of 22MnB5 from the
martensitic state. The data is complemented by a comprehensive set of thermophysical data of
22MnB5 between room temperature and melting. Materials simulation methods as well as a
critical literature review were employed to obtain sound thermophysical data. A comparison of
the numerically computed nugget growth curve in spot welding with experimental welding results
ensures the validity of the hot-flow stress curves and thermophysical data presented.
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1. Introduction

The finite-element analysis (FEA) of welding processes like spot and arc welding has a key role in
the design of the faying process. The part design can be significantly influenced or even determined
by requirements of the welding technology. Weldment properties eventually will determine the
mechanical performance of the welded structure. Tolerances in industrial production are critical
influences on the choice of welding processes and parameters, as pointed out by Podržaj et al. [1]
as well as Schlosser and Jüttner [2] and Häßler and Füssel [3]. While Brauser et al. [4] emphasized
the effect of gaps on spot welding quality, Moos and Vezzetti [5] for the first time employed FEA
to further investigate the effect of tolerances in complex assemblies. Bi et al. [6] employed FEA to
examine shunting at a challenging three-sheet joint, whereas van der Aa et al. [7] optimized the welding
parameters of a new automotive steel grade using FEA. In the course of product development, FEA can
therefore greatly reduce the probability of faulty designs and the necessity to carry out preliminary
tests. This helps to save design costs and time, releasing resources to develop better-performing,
more-lightweight welded structures.

The numerical simulation of welding processes and welding results is a challenging task.
Reasons are the strong multiphysical couplings of phenomena and the steep temperature gradients
at the weld site. With increasing material temperature, significant nonlinear changes in the material
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properties occur. As a result, a spatial field of local material properties, with steep gradients, will be
present around the weld site, affecting the physics and the result of the welding process, and in
turn, the numerical solution process. This necessitates a very careful selection of FEA boundary
conditions, as shown by Raoelison et al. [8], and material data suitable for the specific temperature
profiles of welding, as Schwenk and Rethmeier [9] emphasized. In order to carry out precise numerical
simulations of the welding process, a complete dataset of physical and mechanical material properties
up to the melting point is essential. According to Schwenk and Rethmeier [9], the dataset needs to
include as a function of temperature:

• flow stress kF;
• elastic modulus E and Poisson ratio ν;
• coefficient of thermal expansion α;
• specific electrical resistance ρel ;
• mass density ρ;
• specific heat capacity cp/specific entropy h; and
• specific thermal conductivity λ.

As explained by Karbasian and Tekkaya [10], automotive parts made of 22MnB5 are heat-treated
before the welding process. During the heat treatment, the desired, sometimes localised, martensitic
microstructure with high strength is established. Merklein et al. [11] reported on various works on
the production of load-adjusted parts with locally tailored properties by means of a tailored heat
treatment. In the as-delivered state, 22MnB5 has a ferritic–pearlitic microstructure as Geiger et al. [12]
stated. This peculiarity of 22MnB5 has important consequences. The flow stress curves available in the
literature, as provided by Ngyuen et al. [13], are intended to be used for hot-stamping simulations
of the material. This means that in mechanical testing, the material is fully austenitized before it is
cooled down to the respective test temperature; cf. Merklein and Lechler [14] as well as Naderi [15].
In contrary to that, in the welding process the material is being heated up from the martensitic state to
the respective temperature very quickly. As reported by Gumbsch et al. [16], significant softening of
the material will occur although the temperature Ac3 is not surpassed, that is, the martensite is only
tempered. Consequently, the flow stress curves available are not valid for the welding simulation.
Few authors have published information on the temperature-dependent physical properties of 22MnB5:
Shapiro [17]; Spittel and Spittel [18]; and Wink and Kraetschmer [19]. In those datasets, various
properties are missing altogether, while others are only available for a temperature range not sufficient
for the welding process simulation.

It is the goal of this work to supplement the datasets available for 22MnB5 in the martensitic state
by means of measurements, numerical computation and literature review. Although the scope of this
work lies in the data application in spot welding, the data can be used for other welding processes
as well.

2. Materials and Methods

2.1. Experimental

2.1.1. Test Procedure

Flow stress curves of 22MnB5 were measured using a DIL805 A/D Dilatometer built by BAEHR

(Thermoanalyse GmbH, Huellhorst, Germany), shown in Figure 1. The specimens depicted in Figure 2
were cut out of the as-delivered sheet of 22MnB5 with 1.5 mm thickness by a water jet, and afterwards
the coating was ground off. In the dilatometer, each specimen was induction-heated under vacuum to
1223 K within 180 s and soaked for 120 s. Following a Newtonian cooling law, the specimens were then
quenched to 343 K with an average cooling rate of

.
T = 30 Ks−1 using argon gas. This temperature was

held for another 120 s to allow some relief of residual stresses. Additional microsections and tensile
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tests proved that this initial heating and cooling cycle appropriately yields the desired martensitic
microstructure in the specimens, and in turn resembles the presshardening process mentioned in the
previous section.
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Figure 2. Some specimens after the hot tensile test in the dilatometer.

Afterwards, the specimens were heated up with
.
T = 1000 Ks−1 to the test temperature Tϕ,

followed by a soaking time of 2 s. While force and elongation were measured, the sample was then
elongated with a (Hencky) strain rate of

.
ϕ = 0.1 s−1. A welded-on thermocouple of the type Pt/Pt10Rh

ensured correct temperature control throughout the test. The specimen was neither intentionally
strained to fracture, nor was the elongation at rupture evaluated. For test temperatures up to and
including Tϕ = 773 K, three specimens per temperature were tested; at higher temperatures, the low
scatter of the data allowed a reduction to two specimens. Due to the high strength of 22MnB5,
dilatometric tests at temperatures lower than Tϕ = 673 K were not possible within the machine’s
limitations. Additional tests on a conventional tensile testing machine at room temperature therefore
supplemented the experiments. The highest temperature tested was Tϕ = 1473 K.
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2.1.2. Data Processing

Each measured force–elongation curve was transformed into a stress–strain curve and limited to
strain values up to uniform elongation. A regression analysis then determined the parameters of the
flow stress Equation (1) by Hockett and Sherby [20] to best fulfil the individual measured curve.

k f ,Tϕ
(ϕ) = k f ,s −

(
k f ,s − k f ,0

)
× e−m×ϕP

(1)

Therein, k f ,0 is the initial flow stress and k f ,s the saturation flow stress. m and P are dimensionless
parameters. The resulting flow stress k f ,Tϕ

(ϕ) is valid for a respective temperature Tϕ. The mean of
the computed Hockett–Sherby parameters within an individual test temperature then yielded the
parameters of the mean flow stress curve for the respective temperature. The molten metal at the weld
is described using the same structural mechanics equations as the solid material, instead of defining
a multiphase approach using the Navier–Stokes equation for the molten metal. This simplification
significantly eases modelling and computation of the welding process. As melt flow in most cases is
little, it is allowed. Of course, molten metal will have no yield strength nonetheless. Therefore, it is
formally necessary to also define flow stress curves for the melt. A virtual zero-strength, as defined
below, and a finite compressibility, cf. Section 3.2.1, in this case were determined as the most reasonable
material properties of the melt. In spot welding simulations by the authors, see Section 3.3 and [21],
good results have been achieved by defining two additional curves fulfilling

k f ,Ts=1719 K(ϕ) = 0, 5 × k f ,Tϕ=1473 K(ϕ) (2)

k f ,Ts=3273 K(ϕ) = 0, 165 × k f ,Tϕ=1473 K(ϕ). (3)

In short, regions governed by laws of fluid flow in the FEA are represented by means of drastically
reduced flow stress.

Input of the data into the FEA was required in the form of stress–Cauchy–strain curves. The strain
values therein were transformed from the Hencky–strain ϕ applying the relation

εpl = eϕ − 1. (4)

2.2. Numerical Material Simulation

Measurement of physical properties at elevated temperatures during rapid heating is very difficult,
as shown by [22,23], which inform on the comparably large measurement errors that have to be
expected. Material simulation software like JMATPRO can deliver the required data, but the reliability
of the results is questionable, as the software purely relies on empirical models. Therefore, the decision
was made to compute the required data using the software, and then validate the data very critically
in comparison to measured data available in the literature.

Using the software, the phase composition, as well as the physical properties of the pure
phases during heating of the material, were computed. Afterwards, the physical properties of the
temperature-dependent phase composition were computed from the properties of the pure phases by
using the lever rule. The computed austenitization temperatures for a heating rate of

.
T = 1000 Ks−1

are presented in Table 1. It can be seen that the transformation delay due to the heating rate is small
compared to the temperatures stated by [24].

The tempering, as well as partial or full dissolving of martensite below Ac1, is driven by diffusional
processes. During quick heating of the material, the dwell time below Ac1 is short. Therefore, diffusive
effects are negligible. In this work, it was accordingly assumed that between Ac1 and Ac3, the martensite
will directly transform into austenite. Figure 3 depicts the phase composition of 22MnB5 being assumed
in the thermophysical material property computation with JMATPRO.
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Table 1. Computed phase-transformation temperatures of 22MnB5; quasi-static according to [24],
and rapid heating.

Quantity
.
T ≈ 0 Ks−1

.
T = 1 k Ks−1

Ac3/K 1153 1213

Ac1/K 993 1068
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T = 1 k Ks−1.

It has to be pointed out that the assumption of neglected tempering in this work was only done
for considerations regarding the thermophysical properties of 22MnB5. The flow stress curves on the
contrary are derived from measurements, hence including the tempering effect of martensite as well.

The data computed with JMATPRO was compared to data published by: Bungardt and Spyra
(BaS) [25], Spittel and Spittel [18] (Landoldt-Boernstein), Richter [26,27], Shapiro [17], Verein Deutscher
Eisenhuettenleute (VDEh) [23], Volz [28] and Wink and Kraetschmer [19]. From a chemical composition
point of view, 22MnB5 is an unalloyed steel. Therefore, it is allowed to compare the order of magnitude
of the computed data to data of similar unalloyed steels and pure iron, at least for the austenitic and
molten phases. Accordingly, literature data on pure iron and a 23Mn6 steel were included in the
comparison to ensure best verification of the data derived from JMATPRO. The data published by
Volz [28] was collected from additional literature sources and is valid for structural steel. He used the
data for FEAs of residual stresses resulting from arc welding and obtained very good conformity to his
experimental verifications. Therefore, the data is considered to be sound.

During melting of the material, some properties considerably change their magnitude. Simulation
trial runs proved that the numerical solution procedure is significantly more stable when the melting
range of the material is only slightly widened. To account for this effect, the temperatures A4 and
As were artificially shifted about 50 K upwards and downwards, respectively; cf. the data points
‘FEA’ in the diagrams outlined below. An effect of this temperature shift on the computed results was
not observed.

During solution of the model, the equation solver may compute very large, intermediate
temperature results. In order to enhance the numerical stability, the physical data was extrapolated up
to the boiling point T = 3273 K accordingly.

2.3. Resistance Spot Welding Simulation and Welding Experiments

The material data presented is well proven by comparing the results of a spot welding process
FEA to measured results. A two-staged welding current as presented in Figure 4 along with a constant
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electrode force of FE = 6 kN was applied in both experiment and FEA. The experiments were carried
out with a pneumatic spot welding gun with high-frequency direct current (HFDC) power source.
With respect to the scope of this work, details on the experimental conditions, FE model and the
entirety of its boundary conditions shall be examined in [29].Metals 2018, 8, x FOR PEER REVIEW  6 of 15 
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3. Results and Discussion

It has to be noted that the data presented is valid only for the heating phase in the welding process,
as it is intended to be used in simulation-driven process development. Material property evolution in
the cooling phase is not within the scope of this work. The data represented by the points denoted as
‘FEA’ in the diagrams is tabularly composed in Section 3.4.

3.1. Flow Stress

Figure 5 displays the measured flow stress curves, along with the two artificial curves. The curves
have been extended according to (1) up to ϕ = 1. It can be readily seen that the work hardening
effect is not pronounced in the martensitic phase. As soon as Ac1 is surpassed, significant strain
hardening becomes visible. It shall be noted that the ends of the curves do not indicate fracture of
the material. At most temperatures it will fail much earlier. Due to experimental limitations outlined
above, a significant gap in the data exists between Tϕ = 293 K and Tϕ = 673 K. As the decrease of
strength in this temperature window is moderate, it is assumed that a linear interpolation between the
respective curves, as FEA software modules will perform it, is reasonable.
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For easy access, the mean of the measured flow stress parameters according to Hockett and
Sherby [20] are composed in Table 2.

Table 2. Hockett–Sherby flow stress parameters of 22MnB5 after rapid heating from martensitic state.

Tϕ/K kf,0/MPa kf,s/MPa m/1 P/1

293 1066 1488 87 0.885
673 680 844 8934 1.533
773 432 529 818 1.11
873 298 368 134.5 0.82
973 147 196 90.5 0.83

1073 97 248 1 0.52
1173 79.5 180 1 0.515
1273 39 100 2 0.605
1373 25 74.3 2.6 0.663
1473 17.5 43.5 3 0.615

3.2. Physical Properties

3.2.1. Elastic Modulus and Poisson Ratio

Starting from E = 210 GPa, the elastic modulus decreases with temperature, while the Poisson
ratio increases, as shown in Figure 6. For the melt, the software computed a very small elastic modulus
along with incompressible material behaviour (ν = 0.5), but delivered a small, finite bulk modulus K.
In other words, the computed bulk modulus and Poisson ratio excluded each other. Due to lack of
other data, the computed bulk modulus was then used to compute the elastic modulus of the melt
using the relation:

E = K(3 − 6ν). (5)

As fully incompressible behaviour is unlikely for the melt, the Poisson ratio therein was set to
ν = 0.45. This prevents numerical problems resulting from incompressible material behaviour, but still
reasonably represents the data computed by JMATPRO.
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3.2.2. Coefficient of Thermal Expansion

The data depicted in Figure 7 represents the secant coefficient of thermal expansion with a
reference temperature of T0 = 293 K. Some of the literature data therein has been computed from the
lattice constant taken from [23]. The coefficient of thermal expansion α strongly depends on the lattice
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structure, as shown in Figure 7. During austenitization, it quickly drops, followed by a steeper incline.
On melting, the coefficient roughly doubles its magnitude.Metals 2018, 8, x FOR PEER REVIEW  8 of 15 
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3.2.3. Specific Electric Resistance

To improve readability, the specific electric resistance ρel is drawn in two separate diagrams,
shown in Figures 8 and 9. Literature data on this property is particularly scarce. JMATPRO delivered
data on the specific resistance only for T > 1213 K. To fill the gap, additional data was generated
based on the thermal conductivity λ using the Wiedemann–Franz (WF) law with a Lorenz number of
L = 3.12 × 10−8 V2K−2 as stated by [30]:

ρel(T) =
L × T

λ
, (6)

as well as the relation published by BaS [25],

ρel, f errite(T) =
2985 × 10−2 × T + 1674

λ
(7)

ρel,austenite(T) =
2182 × 10−2 × T + 5718

λ
. (8)
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Close to room temperature, the specific resistance is strongly dependent on the alloy.
With increasing temperature, the curves converge towards each other. At the melting point,
the resistance increases by a small percentage. For the austenite and the melt, the data delivered
by JMATPRO and the WF law are in contradiction with the experimental data. The data computed with
the model of BaS is in good conformity with the experimental data. Accordingly, the data computed
with the BaS rule is considered to be sound. Beyond the melting point, the curve was extrapolated up
to the boiling point.Metals 2018, 8, x FOR PEER REVIEW  9 of 15 
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3.2.4. Mass Density

In addition to the thermal expansion of the metal during heating, its mass density ρ generally
decreases, as shown in Figure 10. On austenitization, the density increases by a small percentage
accordingly. It is critical that the data on thermal expansion and density fit to each other. Otherwise,
creation or destruction of mass in the numerical model, with adverse effects for the precision of the
thermal balance, would occur. The mass density data presented here has been carefully reviewed
regarding this subject, although mathematical details on the review shall not be discussed.
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3.2.5. Specific Heat Capacity

The specific heat capacity cp is a function of temperature with discontinuities at the Curie point,
during austenitization, and at the melting point, as shown in Figure 11. At the mentioned transition
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points, the heat capacity is theoretically infinite. To avoid the discontinuities, the specific enthalpy
density h is used by the FEA following the relation

h(T) =
∫ T1

T0

ρ × cp(T) dT (9)

The integrated heat capacity curves according to the relation are presented in Figure 12. Therein,
an average mass density of ρ = 7600 kg m−3 was set. While the average slope of the curve is relatively
constant, melting is characterised by a significant step in the curve.Metals 2018, 8, x FOR PEER REVIEW  10 of 15 
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3.2.6. Specific Thermal Conductivity

The specific thermal conductivity λ is initially reduced with increasing temperature, but increases
again as soon as austenitization sets in, as shown in Figure 13. The data computed by JMATPRO is in
good agreement with the experimental data. The curve published by Shapiro [17] apparently refers
to the cooling of the material from the austenitic state. An additional curve computed by JMATPRO

for quenching of 22MnB5 being drawn in Figure 13 strongly supports this. As computed by [31,32],
a hydrodynamic mixing movement will occur in the molten pool during welding. In order to account
for the resulting additional convective heat transport, the specific thermal conductivity of the melt is
increased by about twice the magnitude at room temperature in this analysis.
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3.3. Data Application in Resistance Spot Welding

An overview of the computed temperature distribution in the welded sheets at the end of current
flow, along with a macrosection of the weld nugget, is presented in Figure 14.
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Figure 14. Macrosection of weld nugget in comparison to computed result, the latter half-translucent;
temperature profile is in K, gray surface represents melt.

The computed molten zone represents the nugget shape visible in the macrosection reasonably
well, although the computed nugget is slightly smaller. Quantitative examination of the nugget radius
rp in Figure 15 gives more insight: In the FEA, a decision has to be made whether the temperature A4

or AS is considered to be sufficient to form a joint across the sheet metals’ surfaces. The experimentally
observed nugget growth curve lies well in between both criteria. In Figure 14, melting is only assumed
when the temperature AS is surpassed, which explains the seemingly too-small nugget in the picture.
It shall also be noted that the computed electrode indentation depth and shape conform very well with
the experiment. By comparison of the sheet thicknesses on the left border of Figure 14, it is assured
that the relative scaling of FEA and the macrosection is correct.
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3.4. Tabular Data

For convenience, the thermophysical data is composed in Tables 3 and 4.

Table 3. Physical properties of 22MnB5.

T/K E/GPa ν/1 T/K α/10−5 K−1 T/K ρel/µΩm

273.15 211.804 0.290 293.15 1.256 273.15 0.214
505.05 198.693 0.298 460.98 1.307 458.96 0.340
744.51 179.279 0.307 595.73 1.348 651.12 0.506
935.80 151.383 0.315 762.56 1.398 840.70 0.742
1068.15 128.226 0.320 917.37 1.442 1027.97 1.020
1213.15 113.060 0.347 1068.15 1.485 1068.15 1.082
1426.11 91.707 0.360 1213.15 1.160 1132.22 1.122
1669.15 65.859 0.375 1322.89 1.280 1244.72 1.156
1831.15 1.470 0.450 1437.27 1.380 1402.63 1.201
3273.15 1.470 0.450 1567.51 1.469 1570.86 1.238

1669.15 1.525 1669.15 1.254
1831.15 2.416 1831.15 1.402
1966.85 2.504 3273.15 1.604
2192.90 2.646
2426.40 2.777
2708.93 2.919
2989.43 3.036
3273.15 3.133

Table 4. Physical properties of 22MnB5.

T/K ρ/kgm−3 T/K h/MJm−3 T/K λ/Wm−1 K−1

273.15 7815 273.15 0 273.15 45.738
408.21 7775 433.92 591 343.92 46.153
589.77 7717 637.68 1441 425.87 45.807
798.48 7643 735.55 1911 534.21 44.244
946.10 7588 851.72 2529 662.40 41.172

1068.15 7541 951.01 3150 854.26 35.678
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Table 4. Cont.

T/K ρ/kgm−3 T/K h/MJm−3 T/K λ/Wm−1 K−1

1213.15 7560 1019.39 3652 956.06 33.161
1372.11 7475 1103.25 4163 1051.18 31.402
1566.58 7373 1213.15 4795 1150.47 29.447
1669.15 7322 1470.95 5921 1211.79 28.152
1831.15 6947 1669.15 6838 1407.03 30.473
2092.03 6722 1831.15 9110 1608.95 32.917
2539.46 6320 2022.07 9952 1669.15 33.700
3273.72 5625 2336.66 11,239 1831.15 100.000

2701.79 12,521 3273.15 120.000
3001.71 13,405
3273.15 14,090

4. Conclusions

Measurements of flow stress curves, as well as physical material property computations and
comprehensive literature reviews, were employed to compose a set of material data necessary for
welding process simulations on presshardened 22MnB5 steel. Due to the lack of literature data and/or
specific requirements, a few simplifications and assumptions were made in the process of the data
collection. The assumptions are described in detail in this work, so the simulation expert may carefully
reconsider if the data is still valid in the specific case. The data provided is suitable to describe the
materials’ behaviour during the heating phase in the welding process. The materials’ behaviour during
cooling or quenching is not in the scope of this work.

The following results were obtained:

1. Data on the flow stress of 22MnB5 was measured and converted to stress–strain data for test
temperatures ranging from Tϕ = 293 K to Tϕ = 1473 K.

2. Flow stress data is provided by means of flow parameters for the tested temperatures according
to the Hockett–Sherby model.

3. Physical material property data of 22MnB5 as a function of temperature has been computed using
material simulation software. The data was critically reviewed considering literature data.

All datasets provided have been linearly extrapolated up to a temperature of T = 3273 K in order
to allow immediate use for the numerical process simulation procedure.
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