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Abstract: In this article, the copper-chromium-zirconium (CuCrZr) alloys plates with 21 mm in
thickness were butt joined together by means of FSW (friction stir welding). The properties of the
FSW joints are studied. The microstructure variations during the process of FSW were investigated
by optical microscopy (OM), electron back-scattered diffraction (EBSD), and transmission electron
microscopy (TEM). The results show that the grains size in the nugget zone (NZ) are significantly
refined, which can be attributed to the dynamic recrystallization (DRX). The microstructure
distribution in the NZ is inhomogeneous and the size of equiaxed grains are decreased gradually
along the thickness direction from the top to bottom area of the welds. Meanwhile, it is found
that the micro-hardness and tensile strength of the welds are slightly increased along the thickness
direction from the top to the bottom area of the welds. All the nano-strengthening precipitates in
the BM are dissolved into the Cu matrix in the NZ. Therefore, the decreases in hardness, tensile
strength, and electrical conductivity can be attributed to the comprehensive effect of dissolution of
nano-strengthening precipitates into the supersaturation matrix and severe DRX in the welded NZ.

Keywords: copper-chromium-zirconium alloy; friction stir welded; microstructure; precipitates;
micro-hardness; tensile properties; electrical conductivity

1. Introduction

The copper-chromium-zirconium (CuCrZr) alloy is a new functional structure material and
widely applied in industry owing to its excellent combinations of electrical conductivity, vacuum
compatibility, and outstanding mechanical properties at elevated temperature [1–4]. However, due to
the extreme high thermal diffusivity (i.e., approximately 10 to 100 times higher than that in some steels
and nickel alloys [5–7]), copper alloys are generally classified as non-weldable alloys which cannot be
fabricated by conventional techniques, such as fusion welding. Durocher et al. [8,9], Drezet et al. [10],
and Gogari [11] found that hot cracking frequently occurs during electron beam welding of the CuCrZr
alloys. Feng et al. [12] observed the appearance of residual stress and impurities introduced by the
flash butt welding process, which thus caused the decrease of the electrical conductivity. Kanigalpula
et al. [13] revealed the presence of voids and cracks in the microstructure of the investigated alloys
after electron beam welding. Therefore, the fusion welding, such as the flash butt welding and the
electron beam welding, are considered as an unattractive method for the welding of the CuCrZr alloy.

In comparison with fusion welding, friction stir welding (FSW), invented by The Welding Institute
(TWI) of the UK in 1991 [14], is a relatively new solid-state joining process. The FSW process is proved

Metals 2017, 7, 381; doi:10.3390/met7090381 www.mdpi.com/journal/metals

http://www.mdpi.com/journal/metals
http://www.mdpi.com
http://dx.doi.org/10.3390/met7090381
http://www.mdpi.com/journal/metals


Metals 2017, 7, 381 2 of 13

to be a perfect choice for copper alloys [7,15–18], and it has been successfully implemented in industrial
applications [19,20]. However, little research has been carried out on the CuCrZr alloy fabricated by
FSW. Moreover, limited research related to the microstructure evolution of the CuCrZr alloy in the
FSW process has been reported so far.

In this study, the FSW was introduced to successfully weld the 21 mm thickness of the CuCrZr
plate. The properties including the micro-hardness, tensile strength, and electrical conductivity of the
CuCrZr alloy joints are studied. The microstructures around the welding joints are investigated by
OM, TEM, and EBSD.

2. Materials and Methods

The chemical compositions of the CuCrZr alloy in this work are listed in Table 1. The plates
with 21 mm in thickness were longitudinally butt-welded using a computer-controlled FSW machine
and the welding tool with a shoulder of 36 mm in diameter and a conical pin of 20 mm in length,
as shown in Figure 1. The plunging depth and plunging speed of the tool were selected as 1 mm
and 0.5 mm/s, respectively. The pin rotation speed and travel speed were chosen as 1500 rpm and
150 mm/min, respectively. The microstructures of the FSW sample perpendicular to the welding
direction are analyzed by OM with a confocal laser scanning microscope (CLSM, ZEISS, Oberkochen,
Germany), TEM, and EBSD. For the CLSM observation, the specimens were polished by diamond
paste, etched in a solution of 40 mL distilled water, 10 mL hydrochloric acid, and 2 g iron (III) chloride.
Intermetallic particles found in micrograph were further analyzed by EDS for determination of the
elemental composition. For the TEM study, some thin foils of 0.5 mm thinness were cut out from
different zones. Then, the foils were grinded into one of a thickness of 70 µm~80 µm and punched
out several (Φ3 mm) discs for electro twin polishing in a solution of 75% methanol and 25% nitric
acid under the parameters of the temperature ranging from −30 ◦C~−20 ◦C, and at a voltage of 10 V.
TEM experiments were conducted on the Tecnai G2 F20 (FEI Corporation, Hillsboro, OR, USA) with
an acceleration voltage of 120 keV. For the EBSD analysis, the corresponding sampling positions in
the NZ were shown in Figure 2. Also, the data was collected using a FEI Quanta 650 FEG scanning
electron microscopy (FEI Corporation, Hillsboro, OR, USA).

Table 1. The chemical compositions of the copper-chromium-zirconium alloy plate.

Cu Cr Zr Al Mg Fe Si Pb

Bal. 0.8 0.3 0.25 0.1 0.09 0.04 0.02
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In order to investigate the mechanical properties of the welded joints, the block was further cut
along the plate thickness direction into three layers (top, middle and bottom) with a thickness of 5 mm,
as seen in Figure 2. The Vickers micro-hardness measurements were conducted on the cross section for
each layer using a Vickers indenter, wherein a 100 g load was imposed and held for 10 s. To further
explore the zone-related Vickers micro-hardness, points with 2 mm apart from each other were selected
for measurements. The tensile properties at room temperature of the welded joints for each layer were
also examined using an Instron-8032 testing machine (Grove City, PA, USA) with a crosshead speed
of 2 mm/min. The facture surfaces were analyzed on a field emission scanning electron microscopy
(SEM Quanta 650).

To study the effects of the microstructure evolution on electrical conductivities, tests on both the
parent material and the welded alloy were carried out at each layer by employing a double bridge circuit
and dc currents (intensity up to 50 A) under a ventilated condition at a constant temperature of 25 ◦C.
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Figure 2. Schematic of three layers for tensile strength and vickers hardness, and electrical test and
three locations (a–c) for the electron back-scattered diffraction (EBSD) test.

3. Results and Discussions

3.1. Microstructure of FSW Joints

The picture FSW joint of the CuCrZr alloy is shown in Figure 3. Clearly, there are four
distinguishable zones of the FSW joint including: (a) the base metal (BM); (b) the heat affected
zone (HAZ); (c) the thermo-mechanically-affected zone (TMAZ); and (d) the nugget zone (NZ); these
all occur during the process of FSW.
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Figure 4 shows the OM picture microstructures corresponding to locations “a”, “b”, “c”, and “d”,
which are indicted in Figure 3. In the BM, larger lath and coarse grains are apparently observed and
considerable numbers of irregularly shaped particles can be found distributed randomly in the Cu
matrix, as shown in Figure 4a. To further reveal the composition of these particles, the EDS mapping
analysis is performed and the results are presented in Figure 5. The results show that the element Cr
is found to concentrate in the particles, while element Cu is absent in these locations but distributed
uniformly in the alloy matrix. The concentration of Zr is not detected based on the results of EDS, as
demonstrated in Figure 5d. These findings are consistent with previous reports [21,22].

In the HAZ, as seen in Figure 4b, the grain structures are similar to that of the base metal, but
some newly formed grains around the large grains driven from static recrystallization are detected.
Within this HAZ, as seen in Figure 4c, a unique metallurgical zone in FSW experiencing both
high frictional heating temperatures and plastic deformation is generally defined as TMAZ [23–25].
The microstructure of TMAZ is characterised by a highly deformed structure with an upward flowing
pattern next to the NZ owing to the rotated deformation. Meanwhile, in the NZ, severe plastic
deformation and a significant rise in temperature make the dynamic recrystallization (DRX) become
apparent [23,24,26–38], resulting in the existence of near fully equiaxed grains. In addition, the particles
that exist randomly in the BM are refined and distribute uniformly in the NZ, as shown in Figure 4d.
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Figure 5. Scanning electron microscopy (SEM-EDX) mapping analysis of CuCrZr alloy. (a) Micrograph
of the surface revealing the presence of intermetallic particles, (b) Copper, (c) Chromium, (d) Zirconium.

To further uncover the microstructure details of nugget zone (NZ), the technique of EBSD was
employed. Figure 6 shows the inverse pole figure (IPF) corresponding to three different locations along
the thickness direction of NZ. As seen in Figure 6a, nearly equiaxed grains appear at the top of NZ.
As distance away from the top increases, the grain size was found to decrease gradually (Figure 6b,c).
During the FSW process, a large amount of heat that arose from severe deformation was formed.
The deformation heat then dissipated toward to the surroundings and the base steel that was attached
to the welded CuCrZr alloy. The high thermal conductivity of the base steel makes the larger amount
of dissipated heat at the bottom. In addition, the heat produced at the top is higher than that at the
bottom, leading to temperature gradients and thus a diverse microstructure.

The TEM micrographs of BM and NZ are shown in Figure 7. Figure 7a,b shows a bright field
TEM micrograph and the corresponding selected area electron diffraction pattern (SADP) of the Cu
matrix in the BM alloy. As shown in Figure 7a, all the strengthening precipitates are presented as an
equiaxed shape with a range of 2–5 nm in diameter, decorating uniformly inside the grains of the Cu
matrix. Moiré fringes in two directions, nearly perpendicular to each other, were clearly observed in
some of the precipitates in Figure 7a. It was identified that most of the Moiré fringes were parallel
to the planes of the Cu matrix [31]. In the <110> Cu directions, no Moiré fringes can be found in the
precipitates. A contrast associated with the strain fields surrounding the precipitates was observed,
suggesting that the precipitates were coherent with the matrix. The SADP of the Cu matrix did not
reveal any diffraction spots from the fine precipitates.
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TEM micrographs of BM and NZ are shown in Figure 7. Figure 7a,b shows a bright field TEM
micrograph and the corresponding selected area electron diffraction pattern (SADP) of the Cu matrix
in the BM alloy. As shown in Figure 7a, all the strengthening precipitates are presented as equiaxed
shape with a range of 2 nm–5 nm in diameter, decorating uniformly inside the grains of the Cu matrix.
Moiré fringes in two directions, nearly perpendicular to each other, were clearly observed in some of
the precipitates in Figure 7a. It was identified that most of the Moiré fringes were parallel to the planes
of the Cu matrix [31]. In the <110> Cu directions, no Moiré fringes can be found in the precipitates.
A contrast associated with the strain fields surrounding the precipitates was observed, suggesting
that the precipitates were coherent with the matrix. The SADP of the Cu matrix did not reveal any
diffraction spots from the fine precipitates.

In the NZ, sub-grains can be obviously observed around the small recrystallized grains, while
nano-strengthening precipitates are absent (Figure 7c). The results of SADP on these regions did not
reveal any streaks, as can be seen in Figure 7d. Källgren [19] found that the friction heat can raise
the temperature up to over 800 ◦C between the rotating shoulder, the pin, and the workpiece during
the FSW process of the Cu alloy. For the high strength CuCrZr alloy, the peak welding temperature
should be higher than for pure copper. High welding temperatures and thermal cycling during FSW
can result in the dissolution of nano-strengthening precipitates into the supersaturating matrix in NZ.
Similar results can also be found in Heinz [30], Rhodes et al. [25], Sato et al. [39], Liu et al. [40], and
Jata et al. [41].
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corresponding SAED pattern of BM; (c) shows that the small recrystallized grains of the NZ contain
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3.2. Properties

3.2.1. Micro-Hardness

Figure 8 shows the micro-hardness of three distinct zones: (A) NZ; (B) the transition zone, TMAZ,
and HAZ; and (C) the BM corresponding to different layers. As shown in Figure 8, the NZ had the
lowest hardness with the average value of 64 HV in the top layer, 70 HV in the middle layer, and 80 HV
in the bottom layer, respectively. It is found that the value of micro-hardness from the centre to the edge
increases with increasing distance, and the highest micro-hardness appears in the base metal. From the
demonstration of average hardness values, the tendency of variation can be summarized as followed:
top > middle > bottom, and BM > HAZ > TMAZ > NZ. It’s widely accepted that the hardness of the
CuCrZr alloy is dependent on the grain size and the distribution of the nano-strengthening precipitates.
In the NZ, the grain size is small but the hardness is low; this indicates that the grain size plays
a secondary role in determining the hardness. In this case, the nano-strengthening precipitates play
a major role in affecting the value of the hardness. As indicated by Figure 7d, the nano-strengthening
precipitates in the NZ are nearly absent owing to the elevated temperature that arose during the FSW
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process. It is be reasonably concluded that the remarkable decrease of hardness in the NZ is mainly
attributed to the dissolution of nano-strengthening precipitates (Figure 7d).

Generally, the temperature in the top layer should be the highest one owing to the heat that
was released from the bottom layer to the platform. In this case, the gradient microstructures occur,
wherein a fraction of the nano-strengthening precipitates will remain in the bottom layer alloy but
near-totally dissolve into the Cu matrix. Compared to the bottom, the lowest hardness in the top of
the weld NZ could be attributed to the more severe DRX, with larger grain sizes caused by the higher
welding temperature at the top of weld [42].
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3.2.2. Tensile Strength

In order to study the tensile strength of the welded joints of the CuCrZr alloy along the joint thickness
direction, tensile tests were performed on specimens with dimensions of 120 mm × 4 mm × 4 mm which
have been signed according to their slice positions in the welding joint, as shown in Figure 2. The fracture
locations of the joints are shown in Figure 9. It is obvious that all the weld joints are severely necking
fractured in the NZ.
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As illustrated in Figure 10, the average tensile strength of the welded alloys is determined to be
269 MPa (equivalent to 60% of the base metal strength) and the average elongation is 18.3% (much
higher than that of the base metal). Along the thickness direction, it can be found that the tensile
strength of the welds is slightly increased from the top to the bottom area of the welds. However,
an opposite tendency is found for the elongation. This phenomenon can be attributed to the two
microstructure-related aspects of nano-strengthening precipitates and the size of grains at the fracture
location, which have been discussed in the previous sections.

To further investigate the fracture mechanisms, the fracture appearance is examined and shown
in Figure 11. From the fracture morphology, it is found that the major fracture mechanism of the
FSW is the joints behaviors ductile. The ductile fracture is apparently presented in both the fracture
morphology of the base metal and the welded alloy. However, for case of the welded joint, larger voids
were observed than for that of base metal, as shown in Figure 11a,b.
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3.2.3. Electrical Conductivity

The high electrical conductivity of the CuCrZr alloys is one of the reasons that they are widely
be used in industry. Hence, in this study, the electrical conductivity of the FSW CuCrZr alloy joints
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were measured. The specimen sampling is parallel to the direction of the weld, with a dimension of
2 mm thickness × 2 mm width ×120 mm length for the electrical conductivity test.

Figure 12 shows the variations of electrical conductivity corresponding to three distinct zones:
(A) NZ; (B) Transition zone, TMAZ and HAZ; and (C) BM, all at different height layers.
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As seen in Figure 12, the variation of the electrical conductivity of the sample in the NZ is slight
but keeps constant (~40% IACS) at a certain distance from the welded center (~8 mm), which then
starts to increase to 50~60% IACS in the transition zone (TMAZ and HAZ). The highest value (~65%
IACS) of electrical conductivity was obtained in the base metal.

It is well documented that the electrical conductivity is mainly affected by the electron scattering
of the solid solution atoms. A theoretical model to describe the relationships between temperature,
impurity content, and the electrical resistance of a metal solid solution is given by Matthiessen’s
rule [43]: ρi(T) = ρi + ρm(T), where ρi is the residual resistivity and ρm(T) is the resistivity of pure metal.
The value of ρi is determined by impurity concentration [44]. The ρi was reported to play a leading
role at lower temperatures and an increase of ρi will result in an increase of the resistivity of the alloy.

Based on the above analysis, the contribution of a high welding temperature and thermal cycling
during FSW resulted in the dissolution of the nano-strengthening precipitates into the supersaturation
matrix in the weld zone (Figure 7d). The increase of the degree of supersaturation would lead to
the higher lattice distortion of the matrix and thus the scattering of the electrons would increase.
Therefore, the value of ρi will increase correspondingly. During the FSW process of the CrCuZr
alloy, the gradual re-dissolution of solute atoms to the matrix leads to an increase of ρi, and then the
electrical conductivity decreases with the increasing welding temperature. Moreover, the significant
occurrence of the recovery and recrystallization would lead to the continuous occurrence of the crystal
lattice distortion and thus accelerate the decrease of the electrical conductivity in the NZ of the FSW
CuCrZr alloy.
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4. Conclusions

The microstructure and properties of a friction stir welded CuCrZr alloy are investigated.
Some important conclusions can be drawn as follows:

1. The weld zone that is defect-free is formed in the condition of 1500 rpm and 150 mm/min.
The microstructure near the weld zone is very different from that of the base metal. HAZ is
characterized by some newly formed grains around the large grains. TMAZ is characterized by
a highly deformed structure with an upward flowing pattern, and the fine and equaxed grain
structure is apparently found in the NZ.

2. The strengthening precipitates with a range of 2 nm–5 nm in diameter are coherently exhibited
with the Cu matrix in the BM. After FSW, however, all the nano-strengthening precipitates are
dissolved into the Cu matrix in the NZ. Also, the grains’ size is significantly refined owing to
the occurrence of DRX. The coarse chromium-rich particles are crushed into finer ones, which
distribute more uniformly in the NZ.

3. Along the thickness direction, the microstructure distribution is inhomogeneous and the size of
the equiaxed grains in the NZ is decreased gradually from the top to the bottom area of the welds
because of the distinctive heat production and the heat dissipation on the welding joint. That led
to the micro-hardness and tensile strength of the welds, which are slightly increased from the top
to the bottom area of the welds.

4. Decreases in hardness, tensile strength, and electrical conductivity are detected in the welded
NZ, which result from the comprehensive effect of the dissolution of the nano-strengthening
precipitates into the supersaturation matrix and severe DRX.
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