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Abstract: The effect of equal-channel angular pressing (ECAP) on stress corrosion cracking (SCC)
behavior of a cast AZ61 Mg alloy was investigated in distilled water (DW) using the slow strain rate
tensile test (SSRT) at a strain rate of 1 × 10−6 s−1. The fine-grained alloy after ECAP showed a greater
SCC susceptibility but a higher ultimate tensile strength, compared with the as-cast counterpart.
The results were attributed to refined grains, high-density dislocations and increased proportion of
high-angle grain boundaries induced by severe plastic deformation, as well as isolated fine β-phase
particles transiting from net-like β-phase.
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1. Introduction

Magnesium alloys are very attractive light materials, due to a high strength to weight ratio, being
pollution-free, non-toxic, and exhibiting easy recovery [1,2], etc. The applications of magnesium
alloys in electronics, automobiles, aerospace and the biomedical field are rapidly increasing, but their
high chemical reactivity and poor corrosion resistance still severely limit their wider application [3,4].
In particular, magnesium alloys are susceptible to stress corrosion cracking because of the synergy
between mechanical stress and the corrosion medium during their service as engineering structural
materials, with heavy economic losses due to unexpected premature failure. Therefore, the pressing
matter of the moment is to understand the SCC behavior of magnesium alloys so as to improve
their SCC resistance, thus making greater application of structural components of magnesium
alloys possible.

Constant efforts have been made to figure out the influencing factors of SCC behavior of
magnesium alloys, including alloy composition, the manufacturing process, microstructure and heat
treatment [1], etc. Furthermore, it has been demonstrated [5] that hydrogen is crucial to the mechanism
of the SCC of magnesium alloys. Based on these, many investigations have been carried out to obtain
less susceptibility to SCC of Mg alloys. Remarkable improvement has been achieved in some reports,
but research on this matter is far from conclusive. Tomashov and Modestova [6] indicated that the
susceptibility of Mg-Al-Mn alloys increased with small additions of Ce, compared to the improved SCC
resistance of EV31A by the additions of Nd or Zr [7]. Srinivasan et al. [4] reported that the wrought
AZ61 Mg alloy processed by plasma electrolytic oxidation improved general corrosion resistance to a
significant extent, attributed to the protection of plasma electrolytic oxidation coating on the specimen
surface, yet the enhancement in the resistance to SCC was much less distinct.
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Severe plastic deformation (SPD), as a well-known method of manufacturing fine-grained metals
and alloys, is a promising way to improve the SCC resistance of Mg alloys, accompanied by the
enhancement of both strength and ductility. Available study [8] showed that the general corrosion
resistance of Mg alloys was definitely improved after grain refinement via SPD. However, a conclusion
about the effect of grain refinement on SCC has not yet been reached in the limited literature.
Argade et al. [9] reported that ultrafine grained AZ31 processed by friction stir processing, one of the
SPD methods, exhibited higher susceptibility to SCC because of the enhanced hydrogen diffusivity.
Lopez et al. [10] claimed that an austenitic stainless steel containing 0.97 wt % nitrogen achieved higher
resistance to SCC through grain refinement compared to the as-received steel in 30% NaCl solution at
90 ◦C.

In the present work, AZ61 Mg alloy has been chosen as the experimental sample, fabricated by
equal-channel angular pressing to get a fine-grained microstructure. All Al-containing magnesium
alloys have been confirmed to be susceptible to SCC in distilled water [1]. Generally, the SCC
susceptibility of Mg alloys tends to increase with the growing percentage of Al content [11], and a
previous study even showed the SCC susceptibility achieved maximize with about 6% Al content [12].
Herein, the fine-grained AZ61 samples were fabricated by multi-pass ECAP and then the stress
corrosion resistance was investigated by slow strain rate tensile tests (SSRT) in air and distilled water,
respectively. SSRT is considered an advantageous testing method, in which the SCC susceptibility
of samples could be easily evaluated [2]. The present work gives an insight into the relationship
among temperature, grain size and structural homogeneity so as to discuss the influence of processed
temperature on the SCC behavior of samples. The objective of current research is to investigate the
influence of grain refinement on the SCC behavior of AZ61 Mg alloy.

2. Experimental Procedures

2.1. Material

The material used in the present study is AZ61 magnesium alloy. The billets for ECAP
(20 mm × 20 mm × 45 mm) were prepared by electrospark wire-electrode cutting. Then different bulk
ultrafine-grained samples were obtained using a self-made ECAP die (Φ = 90◦, Ψ = 0◦), meanwhile
optimizing parameters of the ECAP process to produce the high-quality samples without cracks.
Different passes and extrusion temperature of ECAP were applied, i.e., 8 passes at 673 K, 16 passes at
673 K, and 16 passes at 623 K, respectively. Hereinafter, the as-cast and ECAP processed (ECAPed)
AZ61 samples of 8-pass processed at 673 K, 16-pass processed at 673 K and 16-pass processed at 623 K
are designated as 1#, 2#, 3#, and 4#, respectively.

2.2. Slow Strain Rate Tensile Testing

All samples were tensioned on a slow strain rate tensile testing machine (RGM-4050, Reger,
Shenzhen, China) to investigate the SCC behaviors of AZ61 Mg alloy. In this case, air and distilled
water were used as test mediums, and all tests were done at room temperature. Load was imposed
on samples through the shifting cross-head of the testing device at quite slow but constant speed,
followed by the accelerated initiation of SCC due to the strengthened strain state. Figure 1 shows
details of tensile samples, of which the axial direction was parallel to the extrusion direction, and the
thickness of samples was 2 mm. To rule out the effects of roughness on tests, all samples were abraded
along the tensile direction with silicon carbide sandpaper up to 2000 grit. SSRT was carried out at
a strain rate of 1 × 10−6 s−1 and a pre-load of 50 N was applied before trails. Cleaning of fractured
samples was performed using absolute alcohol in an ultrasonic cleaner immediately after the failure
and then samples were dried in a vacuum oven for the observation of fracture morphology.
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Figure 1. Diagram of AZ61 Mg alloy samples for slow strain rate tensile test (SSRT) (unit: mm). 
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polishing, and then etched in the mixture of 10 mL acetic acid, 3 g picric acid, 25 mL ethanol, and 10 
mL distilled water. Energy dispersive spectroscope (EDS, Bruker, Beijing, China) was carried out on 
four types of samples to reveal the species and distribution of elements, and then it provided a 
preliminary analysis of the secondary phase or precipitate distribution accordingly. For further 
specifications, transmission electron microscope (TEM, FEI, Hillsboro, OR, USA) observation was 
conducted to present information on crystal structure, including grain size, dislocation, twinning, 
etc. Samples for TEM were prepared by means of ion beam-thinning. Fractography of fractured 
samples after SSRT was performed using scanning electron microscope (SEM, Hitachi, Tokyo, 
Japan) for the study of evolution of SCC behaviors of the as-cast and the ECAPed AZ61 samples. 
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determined by linear intercept method. Significantly structural deformations were presented in the 
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K, whereas the microstructure was generally inhomogeneous and there were still coarse grains. 
After 16 passes at 673 K, the microstructural uniformity deteriorated compared to the 8-pass AZ61 
alloy processed at the same temperature, with the refined grains distributed along the extruded 
direction and the remaining existing large grains, and the value of average grain size was ~15 μm. 
Figure 2d indicates that grains were refined appreciably, exhibiting relative homogeneity, and 
deformation bands composed of refined grains distributed along the extruded direction were 

Figure 1. Diagram of AZ61 Mg alloy samples for slow strain rate tensile test (SSRT) (unit: mm).

To evaluate the SCC resistance of the Mg alloy, the SCC susceptibility index (ISCC) for each sample
was established, based on the absorbed energy (A) before its disruption, in air or in distilled water,
and is defined as [1]:

ISCC =
Aair − Adw

Aair
× 100% (1)

where Aair and Adw are the value of absorbed energy, calculated according to the areas under
stress-strain curves [1] in air and in distilled water, respectively. The greater value of ISCC corresponds
to the stronger SCC tendency.

2.3. Microstructure Observation

The microstructure of the as-cast and the ECAPed AZ61 samples was investigated along with
the extrusion direction by a OLYMPUS-BX51M optical microscope (OM, Olympus, Tokyo, Japan).
Previously, all samples were abraded with SiC sandpaper up to 2000 grit, prepared by mechanical
polishing, and then etched in the mixture of 10 mL acetic acid, 3 g picric acid, 25 mL ethanol, and 10 mL
distilled water. Energy dispersive spectroscope (EDS, Bruker, Beijing, China) was carried out on four
types of samples to reveal the species and distribution of elements, and then it provided a preliminary
analysis of the secondary phase or precipitate distribution accordingly. For further specifications,
transmission electron microscope (TEM, FEI, Hillsboro, OR, USA) observation was conducted to
present information on crystal structure, including grain size, dislocation, twinning, etc. Samples for
TEM were prepared by means of ion beam-thinning. Fractography of fractured samples after SSRT was
performed using scanning electron microscope (SEM, Hitachi, Tokyo, Japan) for the study of evolution
of SCC behaviors of the as-cast and the ECAPed AZ61 samples.

3. Results

3.1. Microstructure

Figure 2 shows optical micrographs of the as-cast and various ECAPed AZ61 samples of 8 passes
at 673 K, 16 passes at 673 K, and 16 passes at 623 K, respectively. The microstructure of as-cast AZ61
alloy possessed a coarse α-phase matrix and secondary phase or β-Mg17Al12 intermetallic, primarily
along the grain boundaries. The average grain size of the as-cast alloy was ~100 µm, determined by
linear intercept method. Significantly structural deformations were presented in the ECAPed AZ61
samples. Grains were refined to the average size of ~10 µm after 8 ECAP passes at 673 K, whereas the
microstructure was generally inhomogeneous and there were still coarse grains. After 16 passes at
673 K, the microstructural uniformity deteriorated compared to the 8-pass AZ61 alloy processed at the
same temperature, with the refined grains distributed along the extruded direction and the remaining
existing large grains, and the value of average grain size was ~15 µm. Figure 2d indicates that grains
were refined appreciably, exhibiting relative homogeneity, and deformation bands composed of refined
grains distributed along the extruded direction were formed. Here the average size was ~5 µm.
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Compared to the ECAPed Al alloys, the grains of ECAPed AZ61 Mg alloys were fairly coarse [13],
primarily due to the difference in processing temperature of ECAP. The processing temperature of Al
(ordinarily less than 423 K) is much lower than that of the AZ61 alloy [13,14].
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Figure 2. Optical micrographs of as-cast and ECAP processed (ECAPed) AZ61 Mg alloy (a) 1#, (b) 2#,
(c) 3# and (d) 4#.

Figure 3 shows the TEM micrographs of the as-cast and various ECAPed AZ61 samples
for 8 passes at 673 K, 16 passes at 673 K, and 16 passes at 623 K. The relatively heterogeneous
microstructure of as-cast AZ61 Mg alloy was the mixture of large grains with deformation bands and
twins accompanied with low dislocation density and high fraction of low-angle grain boundaries.
After ECAP, the microstructure homogeneity was improved significantly. According to the ring-shaped
selected area electron diffraction (SAED) pattern of ECAPed samples, grains were remarkably refined
and the proportion of high-angle grain boundaries increased accordingly. The growing misorientation
angles were consistent with the consequence of dominant process (dynamic recrystallization process)
in other ECAPed metals [15,16]. A fairly high density of tangled dislocations was formed, notably in
3# samples. Figure 4 shows the element maps of Mg and Al overlapped on EDS images, providing
a rough idea for the distribution of the β-Mg17Al12. The green and red patches represented Mg and
Al, respectively. It can be speculated that the majority of the red particles were Mg17Al12. By contrast,
the coarse β-phase in as-cast AZ61 revealed appreciable refinement into uniformly dispersed fine
particles with trace large particles retained after ECAP, as shown in Figure 4 indicated by arrows.
Compared to the 16-pass samples processed at 673 K or 623 K, the refinement was less significant for
the 8-pass sample, attributed to the lower ECAP passes.
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3.2. Slow Strain Rate Tensile Testing

The typical SSRT stress-strain curves for the studied alloys are presented in Figure 5. Table 1 shows
the value of yield strength, ultimate tensile strength, elongation, absorbed energy to failure and SCC
indices for the four different samples. Apparently, the yield strength and ultimate tensile strength
were enhanced after ECAP processing compared to the as-cast one, largely originating from the
strengthening effect of the refined grains [17]. In addition, 4# samples showed superior properties,
a combination of strength and elongation in both air and distilled water, compared to the other
two samples processed by ECAP. The relatively advantageous performances of 4# samples are primarily
attributed to grain refinement and the comparatively homogeneous structure. A remarkable similarity
among all the samples is the significant loss of ultimate tensile strength and elongation when tested in
distilled water compared to air.

The susceptibility indices of SCC are calculated based on Equation (1). It is quite noticeable that
the as-cast AZ61 Mg alloy exhibited high SCC susceptibility with a SCC index of 42.50% in distilled
water. After ECAP processing, all the ECAPed samples showed higher SCC susceptibility indices,
indicating a greater tendency of SCC. Additionally, 2# samples showed a relatively low value of SCC
index and there is a large difference with the other two ECAPed alloys. Moreover, 8-pass samples had
the distinctly lower SCC susceptibility indices compared to the 16-pass samples fabricated at the same
temperature. Hence, it suggests that processing passes and temperature play predominant roles in
SCC behaviors of AZ61 Mg alloy. Besides, there is a phenomenon that stress jumped at constant strain,
known as the “pop-in” phenomenon, probably due to the local embrittlement at crack tips because of
the presence of impurity defects or secondary phases in material [18].
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Table 1. Mechanical properties and stress corrosion cracking (SCC) indices for the studied alloys.

Alloy Test Medium Yield
Strength (MPa)

Ultimate Tensile
Strength (MPa) Elongation (%) Absorbed Energy

to Failure (KJ/m3)
SCC Susceptibility

Index, ISCC (%)

1#
AIR 64 186 12.12 15,805.21

42.50DW 71 151 8.28 9087.45

2#
AIR 153 267 11.86 24,760.22

54.83DW 138 212 6.96 11,184.32

3#
AIR 106 235 12.50 21,401.24

69.66DW 118 186 5.01 6492.35

4#
AIR 96 261 25.14 50,594.78

67.45DW 105 206 10.77 16,467.80

3.3. Fractography

For further investigation of the susceptibility indicated by SSRT results, the SEM fractographies
of all studied samples in air and in distilled water are reported in Figure 6. The fracture surfaces of the
as-cast sample that failed in air and in distilled water are shown in Figure 6a,b, respectively. Figure 6a
reveals mixed mode with transgranular cleavage and dimpled features, as well as intergranular
fracture, mainly initiated by preferential anodic dissolution of the matrix adjacent to β-Mg17Al12 [1],
whereas the same sample tested in distilled water showed a predominantly transgranular feature
with parallel facets, attributed to hydrogen-assisted embrittlement for the AZ series alloys [5,19,20].
The primary conclusion is that the as-cast AZ61 Mg alloy behaved fairly susceptible to SCC in distilled
water. The fracture morphology of 2# samples was distinctly different. For fracture surface of 2#
sample tested in distilled water, shown in Figure 6c, intergranular features coexisted with slightly
transgranular cleavage, as well as dimpled structures. The fracture surface of 3# sample is presented in
Figure 6d, when tested in distilled water. Transgranular cleavage-like facets are observed in Figure 6d,
moreover, there were transgranular cracks accompanied by a few secondary cracks associated with
plastic accommodation of the hydride [21], suggesting the distinctive susceptibility to SCC of 3#
sample in distilled water. Remarkably, fractures in Figure 6e and f showed quite different features
from the above. When 4# samples were tested in air, the fracture showed fine and dense dimples
with few cleavage facets. For the sample tested in distilled water, dimpled features severely dropped
and definite cleavage planes developed, suggesting that 4# samples underwent enormous losses in
ductility and therefore showed intensive severity of SCC susceptibility in distilled water compared to
the as-cast one.
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4. Discussion

A conclusion about the effects of grain refinement on SCC behaviors has not been reached yet
in the limited literature. In the present study, all of the results, mainly SSRT measurements, revealed
higher ultimate tensile strength but greater SCC susceptibility of the refined samples via ECAP in
distilled water. The behaviors could be attributed to the evolution of microstructure, defects and
secondary phase in the process of ECAP.

The mechanism of grain refinement for ECAP should be the synergistic effect of mechanical shear,
dynamic recovery and dynamic recrystallization. During the continuous ECAP process, large quantities
of dislocations were generated, tangled and then converted into dislocation cells and walls, breaking
up coarse grains into subgrain boundaries to develop the refined grains. The growth of recrystallized
grains would be promoted at a relatively high temperature, especially over the recrystallization
temperature, as well as in the excessive runtime of ECAP processing. Hence, it seems reasonable
that 16-passed sample fabricated at 623 K possessed a fairly fine and homogeneous microstructure.
This indicates that temperature may play a more significant role in grain refinement than processing
pass. For the relatively low stacking default energy of Mg matrix [22], there were still considerable
dislocations tangled in the matrix as seen from Figure 3b–d, despite the dynamic recovery and
recrystallization for the duration of ECAP; more processing passes may lead to higher density of
accumulated dislocations. Increased fraction of high-angle boundaries were observed following ECAP
processing. After continuously multi-pass ECAP, coarse net-like eutectic of β-Mg17Al12 was gradually
elongated and broken to form isolated and finer particles [23]. Moreover, ultimate tensile strength
was enhanced for the fine grain microstructure in accordance with the Hall-Petch formula. It follows
that lower processing temperature favored grain refinement so as to obtain higher ultimate tensile
strength, whereas ultimate tensile strength decreased following ECAP processing at a relatively high
temperature of 673 K in a comparison between 8-pass sample and 16-pass one.

Since the AZ61 developed a mixed fracture mode of intergranular SCC and transgranular
SCC, cracks were facilitated by a combined effect of anodic dissolution and hydrogen-assisted
embrittlement. The mechanism for crack propagation involves the preferential attack of the anodic
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matrix and repetitive formation and fracture of a brittle zone simultaneously [21]. Some research
has identified that grain refinement can achieve the improved general corrosion resistance and ease
local corrosion [24]. It is believed that grain boundaries can act as a barrier to the development
of corrosion [25]. Grain refinement brought more grain boundaries, contributing to the higher
corrosion resistance compared to the coarse one. Research showed that the initial film layer formed
on Mg-Al alloys substrate would be Al2O3, accompanied by MgO outside covered with Mg(OH)2

in aqueous solution [26,27]. Higher fraction of oxide film was expected to form on the fine-grained
sample. The propensity of the corrosion medium and hydrogen to enter into the matrix would
drop considerably for the relatively more protective oxide film. Herein, general corrosion would
be advantageous to the improvement of SCC resistance accordingly. Additionally, a fine-grained
microstructure means the possibility of stress reliving to reduce stress concentration on surface
film, otherwise leading to crack initiation on the surface and therefore accelerating the corrosion
rate and diffusion of hydrogen ahead of the crack tips. Actually, the oxide film was not passive
enough to provide protection for the substrate because of its porosity and instability. Nevertheless,
grain boundaries can be a barrier to the crack propagation as well, in theory. Hence, SCC resistance
might be improved for increased energy required for crack propagation when there are more
grain boundaries per volume for the refined microstructure and differences in orientations between
adjacent grains.

Crystal defects stored high energy, such as dislocations and high-angle grain boundaries,
were introduced as well with the refined microstructure. Activation of corrosion would be promoted
due to the high energy stored in the matrix. Hydrogen was inclined to be trapped by those
defects and therefore gathered to form high pressure inside the matrix inducing crack initiation.
Besides, grain boundaries, as a kind of crystal defect, stored high energy as well and exhibited
unfavourable impact on corrosion resistance to some extent. Diffusion of hydrogen prone to grain
boundaries and diffusivity will be accelerated with the increased proportion of grain boundaries per
volume of refined microstructure [9].

An enormous amount of β-phase precipitation distributed along grain boundaries makes a
significant difference in SCC behaviors of AZ61 Mg alloy. Reports claimed that β-phase played a role
as cathode in galvanic corrosion coupling with α-phase matrix [1,28]. In the meantime, the net-like
β-phase could work as a barrier to the corrosion propagation of α-phase matrix [23]. As shown in
Figure 4, net-like β-phase existed in the as-cast samples were refined into fine particles distributing
uniformly in the matrix after ECAP processing. As a result, large quantities of micro-galvanics
distributing homogeneously in the matrix formed, leading to uniform corrosion for the ECAPed AZ61
samples. α-Mg matrix would be weakened by widespread destruction caused by micro-galvanics
corrosion despite the “small cathode, large anode”, and therefore accelerated anodic dissolution of
matrix. Additionally, β-phase would assist rather than hinder corrosion propagation of α-Mg matrix
for the crumbled barrier action of net-like β-phase. Hence, the accelerated rupture of ECAPed samples
for the refined β-phase precipitations can be seen.

Taken together, the increased SCC tendency of ECAPed AZ61 Mg alloys could be related to
the combined effect of grain refinement, introduced defects and refined β-phase following ECAP
processing. Although finer grains of the Mg matrix after multi-pass ECAP retarded cracks propagation
to some extent, enormous crystalline defects introduced by severe plastic deformation accelerated
corrosion destruction and diffusion of hydrogen along with isolated fine β-phase particles.

5. Conclusions

SCC behaviors of as-cast and ECAPed AZ61 Mg alloys were investigated by SSRT tests and the
following conclusions could be made:

1. Fine-grained AZ61 Mg alloys were fabricated via multi-pass ECAP processing both at 623 K
and 673 K. The decrease in processing temperature is favourable to the refinement of the
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microstructure, resulting in the enhancement of ultimate tensile strength and even elongation in
distilled water.

2. The as-cast AZ61 Mg alloys with about 6% Al content have a great tendency to SCC in distilled
water and the ECAPed processing increased the susceptibility to SCC at room temperature.

3. The greater SCC tendency of ECAPed AZ61 Mg alloys was related to the combined effect of grain
refinement, introduced defects and refined β-phase following ECAP processing. Fine grains of
the Mg matrix could retard cracks propagation to some extent, whereas enormous crystalline
defects introduced by severe plastic deformation accelerated corrosion destruction and diffusion
of hydrogen along with crumbled barrier action for a transition from net-like β-phase to isolated
fine β-phase particles.
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