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Abstract: The surface modification of titanium alloys is an effective method to improve their
biocompatibility and tailor the material to the desired profile of implant functionality. In this
work, technologically-advanced titanium alloys—Ti-15Mo, Ti-13Nb-13Zr and Ti-6Al-7Nb—were
anodized in suspensions, followed by treatment in alkali solutions, with wollastonite deposition
from the powder phase suspended in solution. The anodized samples were immersed in NaOH or
KOH solution with various concentrations with a different set of temperatures and exposure times.
Based on their morphologies (observed by scanning electron microscope), the selected samples were
investigated by Raman and X-ray photoelectron spectroscopy (XPS). Titaniate compounds were
formed on the previously anodized titanium surfaces. The surface wettability significantly decreased,
mainly on the modified Ti-15Mo alloy surface. Titanium alloy compounds had an influence on the
results of the titanium alloys’ surface modification, which caused the surfaces to exhibit differential
physical properties. In this paper, we present the influence of the anodization procedure on alkali
treatment effects and the properties of obtained hybrid coatings.

Keywords: titanium alloys; plasma electrolytic oxidation; coatings; alkali treatment

1. Introduction

In recent years, emerging new metallic alloys have been extensively tested for potential
use in implantation and regenerative medicine, with surface modification tailoring to match the
biocompatibility and spectrum of desired bio-functionalities [1–3]. The surface of the metallic materials,
aimed at bone implantation, is expected to comply with the ossification process. Towards satisfying
these demands, various physical, chemical, and electrochemical techniques have been developed to
obtain ceramic-type coatings on the metal surface. A plethora of ceramic layer variations with different
surface roughness, wettability, chemical and phase composition, number and size of pores have been
examined to indicate the surfaces with the most beneficial bioactivities [4,5]. The bioactivity of the ideal
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surface should promote the adhesion and well-being of desired human cells (which are biocompatibile)
while inhibiting microbe population at the same time (bacteriostatic).

Porous oxide layers formed on the metallic biomaterials via plasma electrolytic oxidation (PEO)
exhibit beneficial biological properties towards bone tissue formation. Among other applications, the
PEO-layer is often applied on the titanium used in the modification of the bone plate for othopaedic
or orthodontic application, part of endoprosthesis or dental implants which are used as long-bearing
implants [6]. The porosity and surface roughness can be precisely controlled for these functionalizations
by regulating electrochemical parameters during the PEO process [7,8]. The chemical composition
of the coatings depends on both the chemical solutions and the substrate to be coated (elements of
the substrate forming oxides). Consequently, the PEO process is widely used for the formation of the
bioactive and bacteriostatic surface of bone implants. On top of PEO, an additional treatment of the
oxide layer by heat or alkali treatment may be carried out to change the physicochemical properties of
the layer, such as its phase composition or wettability. Thus, it is possible to design a titanium alloy
surface that exhibits desirable physico-chemical and biological properties [9–11].

Selected titanium alloys, such as Ti-xMo, Ti-xTa-xNb-xZr, Ti-xZr-xNb, are considered as promising
metallic implants to bone. The novel titanium alloys are characterized by low Young’s modulus and
biocompatible alloy elements, compared to Ti-6Al-4V alloy, which is routinely used in medicine [12,13].
The titanium alloy surface is often modified by the PEO process in solution with solved compounds,
rather than in suspensions. However, bioactive powders, such as hydroxyapatite or wollastonite, are
easy to incorporate into the porous oxide layer [14]. Calcium silicate (CaSiO3) is a potential material
for bone tissue regeneration, since it has been proven to be bioactive and degradable [15]. The apatite
formation rate on the surface of CaSiO3 is found to be even faster than that of the other bio-glasses and
glass-ceramics in simulated body fluid (SBF) [16,17].

The aim of the present work is the alkali treatment of anodized vanadium-free titanium
alloy surface as a potential method for enhancing metal surface bioactivity, cytocompatibility and
antibacterial properties. The porous oxide layers were formed on the Ti-15Mo, Ti-13Nb-13Zr,
Ti-6Al-7Nb by plasma electrolytic oxidation in wollastonite suspensions. Anodized samples were
immersed in NaOH or KOH solution at various concentrations and various times of treatment to
determine the most appropriate conditions for the oxide layers’ alkali treatment.

2. Materials and Methods

2.1. Materials and Procedures of Surface Treatment

Three vanadium-free titanium alloys were chosen for their surface treatment: Ti-15Mo,
Ti-13Nb-13Zr, Ti-6Al-7Nb alloys (BIMO Metals, Wroclaw, Poland). The chemical composition of the
titanium alloys is presented in Table 1. The metal surface was grinded and etched in solution composed
of 1 M HF and 4 M H2SO4. Then, the titanium alloys were anodized according to the parameters
determined based on our previous results presented in papers [18,19]. A plasma electrolytic oxidation
process was carried out in suspensions composed of 0.1 M Ca(H2PO2)2 (Alfa Aesar, Karlsruhe,
Germany) and 150 g/dm3 of wollastonite (CaSiO3) powder (Carl Jäger, Hilgert, Germany). The voltage
limits were 300 V for the Ti-15Mo alloy and 350 V for the Ti-13Nb-13Zr and Ti-6Al-7Nb alloys.
The applied voltage and current density were chosen based on our previous investigations, to obtain
the best surface morphology after anodization. All of the samples were immersed in various alkali
solutions. For each sample, the additional alkali treatment of the anodized surface was carried out.
The titanium alloy samples were immersed in 1 M or 5 M of NaOH or KOH solution at 40 ◦C, 60 ◦C
and 80 ◦C for 8 h. The titanium alloy surface modification was carried out according to the scheme
presented in Figure 1.
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Table 1. The chemical composition of the titanium alloys (wt %).

Titanium Alloy Al Nb Zr Ta Mo Fe C N H O Ti

Ti-6Al-7Nb (TAN) 6.05 6.80 - 0.35 - 0.08 0.04 0.01 0.003 0.11
balanceTi-13Nb-13Zr (TNZ) - 13.30 13.00 - - 0.08 0.05 0.0009 0.005 0.10

Ti-15Mo (TM) - - - - 14.73 0.06 0.08 0.016 0.01 0.15
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Figure 1. Scheme of titanium alloy surface treatment.

2.2. Characterization of the Anodized Surfaces

2.2.1. Microstructure, Surface Wettability and Roughness

The microstructure of all of the modified titanium alloys was investigated using a scanning
electron microscope (SEM, Hitachi S-3400N, Tokyo, Japan; accelerating voltage = 25 kV). The contact
angles were determined using a drop shape analysis system (DSA 10 Mk2, KRÜSS, Hamburg,
Germany). Ten drops of 0.20 µL ultra-high-purity water at room temperature were used of the
measurements for each sample. The surface roughness was measured using a non-contact optical
profilometer (Wyko NT9300, Veeco, New York, NY, USA). The surface parametres were determined
according to appropriate standard [20].

2.2.2. Chemical Composition

XPS measurements and Raman spectroscopy were performed using a high spatial and
energy-resolution PHI XPS Versaprobe 5000 spectrometer (ULVAC Physical Electronics, Chanhassen,
MN, USA) and a high-resolution Nicolet Almega XR Thermo Electron Corp. (Waltham, MA, USA)
system equipped with a 50 mW, 532 nm, frequency-doubled neodymium-yttrium-aluminium-garnet
(NdYAG) laser, respectively. The parameters used for investigations were similar to those used in our
previous investigations, and details of the measurements are presented in reference [18].

3. Results and Discussion

3.1. Microstructure of the Modified Titanium Alloy Surfaces

Alkali treatment is an easy method to improve the bioactivity of the oxide layers formed on
the titanium alloy surfaces. The formation of additional titanate compounds on the oxide layers can
increase the surface area [21]. The amorphous titanate layers facilitate the formation of the apatite-based
compounds in physiological solution [22]. During the alkali treatment, a partial dissolution of
the titanium oxide occurs, and the amorphous alkali titanate hydrogel is formed on the surface.
The amorphous layer can be transformed into crystals by additional heat treatment after surface
modification [23].

In our case, titanium alloy samples were anodized in suspensions containing calcium
hypophosphite and wollastonite. The best electrochemical parameters for the titanium alloy surfaces’
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treatment in the suspensions were determined in our previous works [18,19]. Wollastonite is a
bio-compatible compound that enhances osseointegration [24]. The wollastonite particles were
incorporated into the oxide layer during the PEO process, and the characteristic particles were
observed on the top of the formed layers. Then, the titanium alloy samples were immersed in a
variety of alkali solutions for 8 h at a temperature up to 80 ◦C. The microstructures of the treated
titanium alloy surfaces in 1 M NaOH or 1 M KOH are presented in Figures 2 and 3. Immersion in
NaOH solution slightly changed the morphology of the anodized sample (Figure 2A–I). The layers
were not filled by crystals, on the top of the surfaces’ characteristic longitudinal crystals of wollastonite
incorporated from the anodizing bath, and fibers were observed. The fibers were formed due to the
formation of titanate-based compounds, the corresponding characteristic morphologies of the oxide
layers after alkali treatment were presented in papers [25,26]. The anodized TNZ (Ti-13Nb-13Zr)
(Figure 3D–F) and TAN (Ti-6Al-7Nb) (Figure 3G–I) alloys soaked in KOH solution resulted in the
formation of additional crystals on their surfaces. The layers were cracked when the temperature of
the alkali solution was higher than 40 ◦C, especially on the anodized TNZ sample (Figure 3F). For the
anodized T-15Mo (TM) surface (Figure 3I), a single crack was observed, indicated that this coating was
the most resistant for cracking in 1 M KOH solution at 80 ◦C. Interesting results were obtained for the
anodized TM alloy samples (Figure 3A–C). The type of the alkali solutions and temperature did not
cause cracks in the oxide layer and formation of crystals. In our previous papers, we reported that the
oxide layer formed on the TM alloy was more compact than others layers [18,19]. In all probability, the
alkali solutions have not penetrated the coatings deeper than that in other oxide layers. The compact
oxide layers were more resistant to higher temperatures of alkali solutions.
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The microstructures of the coatings soaked in the solutions at higher concentrations of NaOH or
KOH (5 M) are presented in Figures 4 and 5. The treatment of the surface in alkali solutions caused the
formation of the characteristic nano-fibers of titanate on the oxide layers. No significant changes in
layer morphologies were observed on the anodized TM, TNZ, TAN surfaces after immersion in 5 M
NaOH at 40 ◦C (Figure 4A,D,G). Small cracks were observed on the anodized TNZ and TAN samples
soaked in KOH at 40 ◦C (Figure 5A,D,G). Increasing the temperature of the alkali solution resulted in
the formation of more prominent cracks in the porous oxide layers. Among these conditions, the 5 M
KOH solution caused the highest destruction of the coatings (Figure 5).
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G.L. Zhao at al. reported that treatment of the PEO layers in solution with concentration of NaOH
higher than 5 M, was unfavorable for the layer morphology [27]. However, in our case the oxide layers
treated in a higher concentration of NaOH (10 M or 15 M) exhibited a higher ability to form apatite in
SBF solution. The cracking of inorganic films might be caused by several factors, one of which is the
drying stress related with the temperature and concentration of the alkali solution, and the crystallinity
of formed layer. Thicker titaniate layers were probably formed in 5 M NaOH or 5 M KOH solution, and
layers were more able to crack during drying. Jalota et al. [28] investigated the influences of the drying
process on the formation of biomimetic coatings on the titanium alloy surface. They reported that CO2

dissolved in deionized water forms carbonic acid (H2CO3), which reacts with sodium ions from the
solution, and then NaHCO3 is formed. Sodium bicarbonate easily forms sodium carbonate, which
might be present in the formed coatings on the top of Ti alloy surface. Carbonate compounds during
drying tended to evaporate CO2 from the layer, causing layer cracking. It was reported that a crack-free
apatite layer was also formed on the Ti alloy surface, when carbonate compounds were removed from
the titaniate-based coating prior to SBF soaking. Notably, for medical application, the layer formed on
the implant surface must not be cracked, due to the possibility of the layer’s delamination.

Based on these results, it can be concluded that the KOH solution better penetrated the oxide
layers formed on the titanium alloys surface than NaOH solution. The temperature of the alkali
solution higher than 60 ◦C caused cracking of oxide layers. Higher concentration of alkali solution
(5 M) also negatively influenced the coatings morphologies. Thus, the anodized titanium alloy samples
soaked in 1 M NaOH at 60 ◦C (Figure 2B,E,H) were chosen for the further investigation. The labels for
the chosen samples after anodization and alkali treatments (AT) were TM-AT, TNZ-AT, TAN-AT, while
for samples that were only anodized, the labels used were TM-PEO, TNZ-PEO, TAN-PEO, respectively,
for each titanium alloy.

3.2. Wettability and Surface Roughness

The results of the contact angle and surface roughness measurements of the selected samples
are presented in Table 2. The contact angles of the coated samples were much lower compared to
the non-coated substrates, probably as a function of the oxide layer formed on substrates. First of all,
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the wettability of the surface was changed by the compounds formed on the top of the layers after
alkali treatment. The additional compounds and ions adsorbed on the surface during alkali treatment
influenced the surface wettability. The contact angle of the TM-AT sample was the lowest, with
2.3 ± 0.7◦, this surface appeared superhydrophilic. For TNZ-AT, surface modification improved
the wettability when compared to the non-coated surface, TNZ. The contact angle decreased from
120 ± 5.0◦ to 21.8 ± 4.6◦ after surface modification. Surface treatment of the TAN caused a decrease
in the contact angle from 51.2 ± 4.7◦ to 11.7 ± 2.7◦. Depending on the parameters applied during
the PEO process, the surface is characterized by different surface roughness parameters. Usually, the
highest value of applied voltage causes higher surface roughness, however, to the stage when the
outer layer of the coatings might be melt and become smoother. The oxide layers are mainly composed
of titanium oxide in the anatase or rutile phase. The nanostructure of TiO2 also has an influence on
the hydrophilicity [29], which regulates the biological processes for bone cell attachment. In the end,
however, the bioactivity and cytocompatibility of the materials also affect the surface topography
and the chemical composition of the layer [30]. Most investigations on the dental implant surface
focus on mimicking the bone’s hierarchical structures due to the formation of bioactive, hydrophilic
layers at the micro and/or nanoscale. It was reported that the contact angle of medical dental implants
ranges from value near 0◦ (superhydrophilic) to near 150◦ (superhydrophobic) [31]. According to
Gittens at al., surface wettability affects (i) the adhesion of proteins and other macromolecules, (ii) hard
and soft tissue cell interactions, (iii) bacterial adhesion and biofilm formation, and (iv) the rate of
the osseointegration in in vivo conditions. Fast processes/reactions on the surface complete within
milliseconds. It was reported that dental implant surface should be hydrophilic to enhance adhesion
and orientation of selected proteins [32,33].

The formation of porous layers significantly increased the surface roughness, similar observation
was reported in paper [34]. Surface treatment slightly changed the titanium alloys surface roughness
(Ra, Rq, Rz). The Ra parameter determined for the TNZ-AT and TAN-AT was approximately similar,
2.74 µm and 2.37 µm, respectively. The maximum height of the roughness (Rz) for the TNZ-AT was
higher compared to Rz for TAN-AT. The oxide layer formed on the TNZ-AT was thicker and less
uniform, thus the Rz parameter was higher. The surface roughness was characterized using an optical
profilometer, so the characterization of the nanostructures and small sharp pores or cracks might be
less precise due to the resolution of the equipment. Thus, the surface roughness was not compared
between samples after anodization and samples after anodization and alkali treatment.

Table 2. The sample labels, wettability, surface roughness and 3D image of the investigated samples
determined by an optical profilometer. (TM: Ti-15Mo; TNZ: Ti-13Nb-13Zr; TAN: Ti-6Al-7Nb; AT:
Alkali treatments.)

Sample Contact Angle/◦
Surface Roughness, µm

Ra Rq Rz

TM 47.6 ± 5.7 0.28 0.36 0.30
TM-AT 2.3 ± 0.7 1.08 2.19 309.06

TNZ 120 ± 5.0 0.51 0.63 9.77
TNZ-AT 21.8 ± 4.6 2.74 3.39 168.09

TAN 51.2 ± 4.7 0.30 0.48 1.48
TAN-AT 11.7 ± 2.7 2.37 2.91 92.40

The thicknesses of the oxide layers formed on the titanium alloys were determined in our
previously published studies [18,19]. For the anodized TNZ sample, the oxide layer thickness
was between 7.47–9.30 µm, for anodized TAN it was 5.58–7.91 µm, and for anodized TM it was
3.40–4.60 µm. The thicknesses of the layers after PEO and alkali treatment were not determined,
because the additional treatment of the oxide layer usually does not significantly affect the layer
thickness; moreover, the procedure of sample preparation for cross-section analysis may destroy the
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thin layer composed of titanate. The thickness of the anodized TM sample was lower compared to
others, because the substrate was anodized at lower voltage 300 V, while the TAN and TNZ alloys
were anodized at 350 V. Usually, the higher voltage applied during the PEO process leads to increased
layer thickness. The applied voltage is also correlated with the surface roughness. Accordingly, the
Ra parameter of the TM-AT sample was lower. The differentiation, proliferation rate, cell mobility,
extracellular matrix synthesis, protein synthesis of human osteoblast-like cells MG-63, all depend on
the wettability and surface roughness. An investigation on the biocompatibility of the titanium surface
with various roughness was evaluated in detail by Martin et al. [35]. It was suggested that surface
roughness may determine the phenotypic characteristics of cells in vivo.

3.3. Chemical Composition Analysis

After samples immersion in NaOH (or KOH) solutions, structures composed of Na2TiO3,
Na2Ti6O13, Na4Ti5O12, Na2Ti9O19 can be formed. The alkali treatment can be coupled with the other
additional techniques for surface treatment, e.g., heat treatment. The mechanisms of the formation of
titanate compounds in alkali solution are described in publication [36].

3.4. XPS Measurement

The XPS survey spectra of PEO-treated TAN, TM and TNZ alloys are presented in Figure 6.
The surface composition determined from these spectra (see Table 3) shows that Na, Ca and Si atoms
are incorporated to the surface of these alloys. It can be seen that CaSiO3 coatings primarily consist
of Na, Ca, Ti, Al, Nb, Mo, Zr and O elements, with 0.6 ± 0.2% of Si content. The spectrum for Na 1s
overlapped with the Ti Auger line; hence, the position of the Na 1s line could not be precisely defined,
and the bond between Na–O or Na–OH could not be recognized with sufficient confidence. However,
based on these results, it was clear that compounds containing Na were present on the treated titanium
alloy surface.
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Table 3. Surface composition of alkali-treated titanium alloys.

Sample Concentration, at %

Ti Al Nb/Mo Ca Na Zr C O Si

TM-AT 17.1 - 0.1 2.4 13.4 - 11.1 55.3 0.6
TNZ-AT 9.5 - 0.5 3.4 6.3 0.9 27.7 50.9 0.8
TAN-AT 9.8 0.3 0.3 5.6 7.5 - 24.6 51.4 0.5
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The high-energy resolved XPS Ca 2p, Ti 2p, Si 2p and O 1s spectra of treated Ti alloys are presented
in Figure 7a–d. The binding energy of XPS Ca 2p3/2 peak (at 347.0 eV) is found to be the same for all
three alloys and corresponds to the Ca–O bond of CaSiO3 [37]. The XPS Si 2p peak position could be
well fitted at 102.0 eV, relating to Si 2p in CaSiO3, but different from that of SiO2 (at 103.3 eV). The XPS
Ti 2p spectra of the coatings show a peak-doublet of Ti 2p3/2 at 458.6 eV and Ti 2p1/2 at 464.4 eV,
which are binding energies typical for TiO2 [38] The XPS O 1s-spectra showed the splitting into two
lines corresponding to O–Ti bonds (at 530.2 eV), O–Ca bonds (531.8 eV) and hydroxyl group OH−

(at 532.8 eV). The contribution of O–Ca bonds is maximal for TAN alloy and reduced in TM and TNZ
alloys in correspondence with Ca-concentration (see Table 3).
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XPS valence band spectra (Figure 8) showed that the intensity ratio of Ca 3p/O 2s lines
corresponded to Ca/O composition (see Table 3). The top of the valence band for all alloys is
found to be very similar and close to that of TiO2 [39], which means that a corrosion-resistant TiO2

thin film is formed during PEO treatment. The high-energy structure at 9–14 eV can be related to
contribution of OH− groups. The appearance of such an active functional group can be favorable
for the biocompatibility of treated surfaces; in particular, to fibrinogen adsorption and the enhanced
affinity for albumin binding over fibrinogen [40].
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3.5. Raman Spectroscopy

Figure 9 presents the Raman spectra of anodized titanium alloy samples (red line), and those
additionally immersed in NaOH solution (black line). For all of the samples, the bands characteristic
for the PO4

3− group at 961 cm−1, 430–450 cm−1, 580–620 cm−1, and 1030–1080 cm−1 were detected.
The signal at 144 cm−1 is characteristic for the crystal form of anatase. The signal at 156 cm−1 was only
observed for the TAN-PEO sample (Figure 9C), which is related to TiO2. The bonds with signals near
2900 cm−1 and 3400 cm−1 were recognized as the OH− group. For the TM-PEO sample (Figure 9A, red
line) the signals were less intensive compared to the other samples treated by anodization only. It could
be concluded that the titanium oxide formed on the TM-PEO sample took an amorphous form rather
than crystalline. For the TNZ-PEO sample (Figure 9B, red line), the signals at 1085 cm−1, 1250 cm−1,
1320 cm−1 and 1600 cm−1 were difficult to annotate to one compound; these signals are probably
connected with compounds composed of carbon bonds, such as C–O, C=C, C–OH. Some of the calcite
might possibly be formed on the treated titanium alloy surface during the immersion in alkali solution.
For all of the Raman spectra (spectra with black line on the Figure 9), the signals between 100–880 cm−1

became broad, with lower intensity. The bond signals observed on the anodized samples between 1600
cm−1 and 3400 cm−1 disappeared. A decreasing of the signals and broad shape near 280 cm−1 and
456 cm−1 are both related to the presence of the titanate phases of Ti–O broad in sodium titanate or
compounds such as H3Ti3O7, H2Ti4O9 [41]. The broad shape of the signals near 150 cm−1, 217 cm−1,
650 cm−1 and 880 cm−1 may indicate the deformation of the octahedron of TiO2 and a changing in the
bond length of Ti–O.

Bioactive compounds, including titanate, in appropriate concentration might stimuli bone
cell proliferation and, in the case of mesenhymal cells, their differentiation, proliferation and
mineralization [42]. It was reported that wollastonite and pseudowollastonite show a high bioactivity
in the simulated body environment [43]. Thus, this kind of ceramic is considered as an excellent
material for formation scaffolds and other composite materials which offers advancements in
bone repair [24,44]. However, in our previous paper, we showed that wollastonite particles can
be successfully incorporated into the porous oxide layer during the anodizing process [18,19].
Osteoconduction and osseosubsitution properties of the materials can be enhanced by surface
immersion in solutions such as trimethanol aminomethane, sodium or potassium hydroxide to obtain
a negatively charged surface [17]. Calcium ions attracted a functional group more easily and created
apatite crystals. The chemical and phase composition, as well as the shape of crystals, depend on
titanate-oxide layer binding. Due to the various composition of the titanium alloys, the chemical
composition of the formed oxide layer after anodization is expected to be different, and thus the results
of additional alkali treatment will be also different.
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4. Conclusions

In our study, the porous oxide layer formed on the titanium was achieved using the alkali
solutions. In this case, the optimal condition for the oxide layers’ treatment was a solution containing
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1 M NaOH at temperature of 60 ◦C for 8 h. On the oxides, characteristic flakes were formed, due to
the formation of the titanate compounds. The highest concentration of sodium was determined for
the treated Ti-15Mo surface. The alkali treatment of anodized Ti-13Nb-13Zr and Ti-6Al-7Nb alloy
caused the formation of Na-based compounds to be similar. Surface treatment strongly decreased the
water contact angle of Ti alloys, and most hydrophilic properties exhibited coated Ti-15Mo. However,
the highest influence of alkali treatment on physical properties was determined for the anodized
Ti-13Nb-13Zr alloy. The surface morphology and chemical composition of the alkali-treated oxide
layer may exhibit high bioactivity. The proposed techniques for the titanium alloy surface modification
present a simple way to obtain a functional surface for biomedical applications.
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