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Abstract: To clarify the effect of niobium (Nb) on the changing behavior of oxide inclusions in alloys
containing different concentrations of Mn, Si, and Nb, heat treatment experiments at 1473 K were
conducted and changes in the morphology, size, quantity, and composition of these inclusions were
investigated. The stability of the oxide inclusions in both molten and solid Fe-Mn-Si-Nb alloys was
also estimated by thermodynamic calculation using available data. Results showed that the change
in the composition of the oxide inclusions owing to heat treatment depended on the concentrations of
Nb and Si in the alloy. MnO-SiO2-type oxide inclusions gradually transformed into MnO-Nb2O5-type
or MnO-SiO2- & MnO-Nb2O5-type inclusions in low-Si and high-Nb alloys after heating for 60 min.
However, the shape of the inclusions did not change clearly. It was indicated that, during the
heat treatment at 1473 K, an interface chemical reaction between the Fe-Mn-Si-Nb alloys and the
MnO-SiO2-type oxide inclusions occurred according to the experimental and calculation results.
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1. Introduction

By oxide metallurgy technology, fine and dispersed non-metallic inclusions in steel could not
only distribute around austenite boundaries to restrain grain growth but also act as heterogeneous
nucleus to promote acicular ferrite, which are able to greatly improve the mechanical properties
of steel [1–4]. Heat treatment is a new approach to precisely controlling and optimizing the
physicochemical characteristics of non-metallic inclusions in steel and greatly expanding the
application of oxide metallurgy technology in steel production, which is attracting more and more
attention. Shibata et al. [5] reported that, in the Fe-Cr alloy containing 10 mass % Cr, MnO-SiO2-type
inclusions transformed into MnO-Cr2O3-type inclusions with a low Si content (<0.1 mass %) after
heat treatment, while at high Si content (>0.3 mass %), the MnO-SiO2-type inclusion was stable.
Choi et al. [6] hypothesized that, in an as-cast Fe-0.028 mass % Ti alloy, Ti–O inclusions with a small
amount of Fe gradually changed to Ti–Fe–O after heating at 1473 K for 180 min. The fraction of fine
and coarse inclusions increased and decreased, respectively. Shao et al. [7] confirmed that shape
variation of slender MnS was greatly influenced by the heating rate. As heating rate rose from 0.5
to 2 K/s, the amount of split MnS decreased; while the heating rate exceeded 6 K/s, the slender
MnS remained unchanged. Liu et al. [8] studied solid-state reactions between an Fe-Al-Ca alloy
and an Al2O3-CaO-FeO oxide during heat treatment at 1473 K and found that some Al2O3 particles
and CaO·Al2O3 branch inclusions precipitated as reaction products in the alloy near the alloy-oxide
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interface, which caused the Al content in the alloy to decrease. They also [9] investigated an interfacial
reaction mechanism between CaO-SiO2-Al2O3-MgO-MnO oxides and a Fe-Mn-Si alloy during heating.
It was proved that the overall MnO and SiO2 content of the oxide decreased and increased, respectively,
after the “solid–liquid” reaction between the oxide and alloy at 1473 K.

As an important alloying element with a broad application prospect, the niobium (Nb) added into
the alloy is beneficial for the precipitation of inclusion particles such as Nb(C, N), which prevents the
growth of austenite grain by the pinning effect at the grain boundaries during heat treatment [10,11].
By combining with solute Nb in alloy, Nb(C, N) particles can also inhibit the recrystallization of
deformed austenite through the drag effect and promote fine acicular-ferrite. Moreover, Nb contributes
to the dispersive distribution of inclusions and a flexible adjustment of the toughness of the alloy in a
broad range by controlling the induced precipitation and cooling rate. Therefore, Nb in the alloy can not
only enhance the strength of the alloy but also improve the toughness, the high temperature oxidation
resistance, and the corrosion resistance of the alloy and reduce the brittle transition temperature of the
alloy to obtain a better welding and forming performance. Nevertheless, other than the precipitation
of particles such as Nb(C, N), heat treatment also results in changes in composition, morphology, size,
and the physicochemical characteristics of other inclusions with the influence of elemental Nb, which
directly affects the quality and mechanical properties of the alloy.

In the present study, experiments were designed to reveal the effect of Nb on the changing behavior
of non-metallic inclusions in the Fe-Mn-Si-Nb alloy including morphology, types, compositions, and
quantities during heat treatment at 1473 K. The stability of the oxide inclusions in both molten and
solid Fe-Mn-Si-Nb alloys was also discussed in light of thermodynamic calculations.

2. Experimental Methods

2.1. Materials

Initial compositions of the alloys with different concentrations of Mn, Si, and Nb are summarized
in Table 1. A 6 kg Fe-Mn-Si ingot was prepared by melting electrolytic iron with ferromanganese
and silicon powder in an arc melting furnace. Then, 200 g of the premelted Fe-Mn-Si alloy was taken
from the position between the center and the edge of the circular cross section in the middle part
of the ingot and then re-melted with the addition of high-grade ferroniobium in an MgO crucible
(outer diameter 48 mm, inner diameter 38 mm, height 115 mm) at 1873 K for 15 min, under an air
atmosphere in an electric resistance pipe furnace. After that, the crucible was taken out from the pipe
and quenched by immersing the crucible into water. Due to the high cooling rate and small size of the
alloy specimen, concentrations of Mn, Si, and Nb were firstly confirmed to be homogeneous by using
an Electron Probe Microscopic Analyzer (EPMA) (JEOL, Tokyo, Japan) whose primary importance
is the ability to acquire precise, quantitative elemental analyses at very small “spot” sizes (as little
as 1–2 microns), primarily by wavelength-dispersive spectroscopy (WDS), and then measured and
verified by Inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES) (Thermo Fisher
Scientific, Waltham, MA, USA).

Table 1. Initial compositions of the alloy deoxidized with Mn and Si for heat treatment at 1473 K.

Sample Fe Mn Si Nb

Mass %

1 High Si High Nb 97.57 0.63 1.09 0.61
2 Medium Si High Nb 98.21 0.67 0.37 0.65
3 Low Si High Nb 98.60 0.61 0.025 0.67
4 High Si Medium Nb 98.07 0.68 1.12 0.13
5 Medium Si Medium Nb 98.72 0.72 0.41 0.15
6 Low Si Medium Nb 99.11 0.65 0.028 0.16
7 High Si Low Nb 98.13 0.67 1.06 0.04
8 Medium Si Low Nb 98.84 0.72 0.39 0.05
9 Low Si Low Nb 99.20 0.73 0.023 0.05
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2.2. Heat Treatment

The quenched alloy specimens were machined into cylindrical pieces (φ 10 mm × 20 mm) and
hanged in the reaction pipe of an electric furnace by Mo wire. Then, specimens were heated at 1473 K
for 30 min and 60 min, and the atmosphere was replaced by high purity Ar gas (99.9 mass %, flow
rate: about 300 cm3/min). After above heat treatment, the specimens were immediately taken out of
the reaction pipe and quenched by immersion into water. The temperature curve of heat treatment
experiment is given in Figure 1. Schematic diagram of the furnace equipped with specimen quenching
under a controlled Ar gas atmosphere for heat treatment is shown in Figure 2.
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Figure 2. Schematic diagram of the furnace equipped with specimen quenching under controlled Ar
gas atmosphere for heat treatment at 1473 K.

2.3. EPMA Analysis

As cast and heated specimens were embedded in the polyester resin, and the cross section of each
specimen was ground with SiC sandpapers and polished with diamond polishing paste to prepare
metallographic samples. Characteristics including morphology, types, quantities, and compositions
of over 50 inclusions in each metallographic sample before and after heat treatment for 30 min and
60 min were observed and analyzed by an Electron Probe Microscopic Analyzer (EPMA), and the
compositions of Fe, Mn, Si, and Nb were determined.
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3. Results

3.1. Influence of Heat Treatment at 1473 K on the Morphology and Compositions of Oxide Inclusions

Figure 3 shows the morphology and compositions of typical oxide inclusions in Alloy Sample 2
(Mn: 0.67 mass %, Si: 0.37 mass %, Nb: 0.65 mass %). In an as-cast sample, nearly spherically shaped
inclusions were observed. Their typical chemical composition, measured by using the EPMA, was
51 mol % MnO-5 mol % SiO2-44 mol % Nb2O5. After the heat treatment at 1473 K for 30 and 60 min,
the shape of inclusions did not clearly change. The chemical compositions of these inclusions were
48 mol % MnO-2 mol % SiO2-50 mol % Nb2O5 and 37 mol % MnO-1 mol % SiO2-62 mol % Nb2O5,
respectively. This meant that only MnO-Nb2O5-type inclusions were observed in the case where Nb
content in the alloy sample was higher than 0.6 mass %.
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Figure 4 shows the morphology and compositions of typical oxide inclusions in Alloy Sample
4 (Mn: 0.68 mass %, Si: 1.12 mass %, Nb: 0.13 mass %). The spherically shaped MnO-SiO2-type
inclusion was also found in an as-cast sample. Its typical chemical composition was 52 mol % MnO-46
mol % SiO2-2 mol % Nb2O5. After heating at 1473 K for 30 min, although the shape of inclusions
still did not clearly change, many inclusions had two phases in an inclusion, as Figure 4b shows the
typical morphology of inclusions in Alloy Sample 4. One is MnO-SiO2-type inclusion containing
approximately 11 mol % Nb2O5. The other is Mn-Si-Nb inclusion, whose average composition is 41 mol
% MnO-24 mol % SiO2-34 mol % Nb2O5. As the heating time increased to 60 min, the Nb2O5 content
of both phases in an inclusion increased, as shown in Figure 4c. Their typical chemical compositions
were 61 mol % MnO-23 mol % SiO2-16 mol % Nb2O5 and 49 mol % MnO-7 mol % SiO2-44 mol %
Nb2O5, respectively. This phenomenon indicated that the chemical composition of the oxide inclusions
changed by heat treatment in the cases of medium Nb content and high Si content.
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The morphology and compositions of typical oxide inclusions observed in Alloy Sample 8 (Mn:
0.72 mass %, Si: 0.39 mass %, Nb: 0.05 mass %) were shown in Figure 5. The main shape and
composition of inclusions found in the as-cast sample and their changing behavior with heating were
similar to those observed in the case of Alloy Sample 4. Many observed inclusions in Alloy Sample
8 after heating also had two phases as shown in Figure 5b,c, and the Nb2O5 content of both phases
in an inclusion appears to be relatively lower, dependent on the concentrations of Nb and Si in the
alloy. After heat treatment at 1473 K for 30 min, typical chemical compositions of the two phases in an
inclusion were 47 mol % MnO-45 mol % SiO2-8 mol % Nb2O5 and 54 mol % MnO-23 mol % SiO2-23
mol % Nb2O5, respectively. After heat treatment for 60 min, the concentrations of Nb2O5 in the two
phases in an inclusion increased to 12 mol % and 31 mol %, while SiO2 concentrations decreased to
37 mol % and 22 mol %, respectively.
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3.2. Influence of Nb, Si and Mn Contents of the Alloy on Change in Type and Quantity of Oxide Inclusions

The dependence of chemical compositions of stable oxide inclusions on the concentrations of
Mn, Si, and Nb in different alloy samples before and after heating at 1473 K for 60 min is shown
in Table 2. In this table, alloy samples containing MnO-SiO2-type and MnO-Nb2O5-type inclusions
are denoted by white circles and black circles, respectively. Moreover, the alloy sample containing
both types of inclusions is denoted by crosses. Only MnO-Nb2O5-type inclusions formed in Alloy
Samples 1–3 containing about 0.65 mass % Nb before and after heating at 1473 K for 60 min, which
was very stable although Si content varied from 0.025 mass % to 1.10 mass %. As for the chemical
compositions of oxide inclusions in Alloy Samples 4–6 containing about 0.15 mass % Nb, with the
decrease in Si content in the as-cast sample, MnO-SiO2-type inclusions gradually disappeared and
MnO-SiO2- & MnO-Nb2O5-type and MnO-Nb2O5-type inclusions formed. After the heat treatment at
1473 K, original MnO-SiO2-type and MnO-SiO2- & MnO-Nb2O5-type inclusions in the as-cast samples
changed to MnO-SiO2- & MnO-Nb2O5-type and MnO-Nb2O5-type inclusions, respectively. When the
Nb content decreased to 0.05 mass % in Alloy Samples 7–9, inclusions in the as-cast samples were
mainly MnO-SiO2-type or MnO-SiO2- & MnO-Nb2O5-type before heat treatment depending on the
concentration of Si in the alloy. After the heat treatment, some of the original MnO-SiO2-type inclusions
transformed into two-phase MnO-SiO2- & MnO-Nb2O5-type inclusions, while some of the original
two-phase MnO-SiO2- & MnO-Nb2O5-type inclusions transformed into MnO-Nb2O5-type inclusions,
although the transformation was incomplete. The results strongly indicate that the relatively high
Si content and low Nb content retard the conversion from a MnO-SiO2-type to a MnO-Nb2O5-type
inclusion. This retardation occurs as long as non-equilibrium conditions persist between the alloy and
the MnO–SiO2-type oxide inclusion.

Figure 6 shows the statistical analysis of the density of oxide inclusions changing from
MnO-SiO2-type to MnO-SiO2- & MnO-Nb2O5-type and MnO–Nb2O5-type in Alloy Samples 2, 4,
and 8. At least 120 random inclusions in each sample including MnO-SiO2-type, MnO-SiO2- &
MnO-Nb2O5-type and MnO-Nb2O5-type were measured and analyzed by EPMA.
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Table 2. Dependence of chemical compositions of stable oxide inclusions on the concentrations of Mn,
Si, and Nb in different alloy samples before and after heating at 1473 K for 60 min.

Sample No. Heating Time As Cast 60 min

Fe-0.65 mass % Nb
1 High Si (1.10 mass %)
2 Medium Si (0.40 mass %)
3 Low Si (0.025 mass %)

Fe-0.15 mass % Nb
4 High Si (1.10 mass %) #× ×
5 Medium Si (0.40 mass %) × ×
6 Low Si (0.025 mass %)

Fe-0.05 mass % Nb
7 High Si (1.10 mass %) # #×
8 Medium Si (0.40 mass %) # #×
9 Low Si (0.025 mass %) × ×

Note: #—MnO-SiO2-type; ×—MnO-SiO2- & MnO-Nb2O5-type; —MnO-Nb2O5-type.
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It is clear that all inclusions observed in Alloy Sample 2 were MnO-Nb2O5-type before and
after the heating at 1473 K. For Alloy Sample 4, there were 1.35 MnO-SiO2-type inclusions and 0.43
MnO-SiO2- & MnO-Nb2O5-type inclusions within the area of 1000 µm2 in the as-cast sample, while
after the heat treatment, the density of MnO-SiO2-type inclusions and MnO-SiO2- & MnO-Nb2O5-type
inclusions increased to 1.39 and decreased to 0.31 in the area of 1000 µm2, respectively. In Alloy Sample
8, the original density of MnO-SiO2-type inclusions in the as cast was 1.94 per 1000 µm2, and then
about half of them changed to MnO-SiO2- & MnO-Nb2O5-type inclusions after the heating at 1473 K for
60 min. By comparing the statistical results of the density of oxide inclusions in Alloy Samples 2, 4, and
8 before and after heat treatment, it was proved that there was no new formation of MnO-Nb2O5-type
and MnO-SiO2- & MnO-Nb2O5-type inclusions during heating besides the transformation from the
MnO-SiO2-type inclusions. It was also clearly found that the relatively high Nb content and low
Si content promoted the transformation from MnO-SiO2-type inclusion to two-phase MnO-SiO2- &
MnO-Nb2O5-type and MnO-Nb2O5-type inclusions.

4. Discussion

4.1. Mechanism of the Interface Reaction between the Alloy and M-S-Type Inclusion

Elemental Mn, Si, and Nb in the alloy could react with dissolved oxygen to form complex oxide
inclusions, due to exposure to air atmosphere when preparing the alloy samples. It is generally known
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that both manganese and niobium are transition metals and could take several different valences in
oxides including Mn2+, Mn3+, Mn4+, Nb2+, Nb3+, Nb4+, and Nb5+. Under the oxygen partial pressure
of steelmaking, Mn2+ is dominant among other different valence states in its oxide form of MnO [12],
and Nb seems to be stable as Nb5+ in solid oxide under an oxidizing atmosphere (i.e., Nb2O5) [13].
In addition, compared with SiO, SiO2 is much more stable during the oxidation of silicon in the alloy.
Therefore, during the re-melting of Fe-Mn-Si-Nb alloy at 1873 K under air atmosphere, stable simple
oxides of Mn, Si, and Nb were MnO, SiO2, and Nb2O5, respectively. Moreover, according to the stable
components in the ternary system Nb2O5-MnO-SiO2 [14], MnO-SiO2-type, MnO-Nb2O5-type, and
MnO-SiO2- & MnO-Nb2O5-type oxides could be acquired, except for SiO2-Nb2O5-type oxide.

In this study, influenced by the chemical compositions of the alloys, the changing behavior of
inclusion from original MnO-SiO2-type to MnO-SiO2- & MnO-Nb2O5-type and MnO-Nb2O5-type
was confirmed after heating at 1473 K for 60 min. It was indicated that there are interfacial reactions
that occur between the alloy and the MnO-SiO2-type inclusions in some alloy samples. Inclusions
equilibrated with a molten alloy at 1873 K are no longer stable in a solid-state alloy. A schematic of
the interface reaction mechanism is shown in Figure 7. As the heat treatment time increased, the Nb
in the alloy gradually diffused and reacted with the inclusions, thereby resulting in the formation
of MnO-SiO2- & MnO-Nb2O5-type and MnO-Nb2O5-type inclusions, which could be expressed as
Equations (1)–(3).

MnO-SiO2 →MnO + SiO2 (1)

4[Nb] + 5SiO2 → 2Nb2O5 + 5[Si] (2)

MnO + Nb2O5 →MnO-Nb2O5 (3)
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The transformation from original MnO-SiO2-type to MnO-SiO2- & MnO-Nb2O5-type and
MnO-Nb2O5-type is beneficial to reducing cracks in alloys during rolling due to the decrease in
melting point and hardness [14]. In addition, as long as the mechanism of the interface reaction
between the alloy and M-S-type inclusion is clarified, it is probable to control and optimize the
physiochemical characteristics of the inclusions in the niobium alloy and obtain fine and dispersed
non-metallic inclusions by an appropriate heat treatment processes.

4.2. The Equilibrium Relation between the Alloy and the Oxide Inclusions

The chemical compositions of stable oxide inclusions in the alloy samples containing different
concentrations of Mn, Si, and Nb, at 1873 K and 1473 K, are estimated. This estimation is performed
using Wagner’s model for a multicomponent solution system [15], the regular solution model [16], and
correlative thermodynamic data shown in Table 3. Oxygen activities for the formation of SiO2, and
MnO-SiO2-type and MnO-Nb2O5-type inclusions, are then compared, based on the assumption that
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the most stable oxide inclusion is obtained at the lowest oxygen activity. In addition, it was observed
that a large proportion of final stable oxide inclusions were approximate MnO·SiO2 and MnO·Nb2O5

formation based on EPMA analysis. Therefore, equilibrium calculation was conducted by assuming
the formation of pure MnO·SiO2 and MnO·Nb2O5. The interaction coefficient of each element in
the alloys, which is represented as ej

i , is listed in Table 4. These thermodynamic data (see Tables 3
and 4 [17]) are also employed for approximate calculations of the equilibrium conditions between
the alloy sample and oxide inclusion at 1473 K, although these data are inadequate for extrapolation
to this temperature. The activities of MnO and SiO2 in manganese silicate were also estimated and
verified using the experimental results from [17]. At 1473 K, MnO·SiO2 and MnO·Nb2O5 exist in the
solid state, and their activities are assumed to be unity.

Table 3. Basic thermodynamic data for the equilibrium calculation.

No. Reaction ∆Gθ (J/mol) Reference

1 Nb(s) = [Nb] −134,260 + 33.05T [18]
2 4Nb(s) + 5O2(g) = 2Nb2O5(s) −3,770,150 + 834.95T [19]
3 Mn(l) + 1/2O2(g) = MnO(s) −399,000 + 82.4T [19]
4 O2(g) = [O] −234,304 − 5.78T [20]
5 Mn(l) = [Mn] 4083.6 − 38.16T [20]
6 [Si] + 2[O] = SiO2(s) −576,440 + 218.2T [21]
7 MnO(s) + SiO2(s) = MnSiO3(s) −27,960 + 2.42T [21]
8 MnO(s) + Nb2O5(s) = MnNb2O6(s) 86,940 − 49.6T [22]

Note: T—Temperature, K.

Table 4. Interaction coefficient of each element in the Fe-Mn-Si-Nb alloy (ej
i ).

j i Mn Si Nb O

Mn 0 −1838/T + 0.964 413/T − 0.217 −0.083
Si −0.0146 0.0103 0 −0.119

Nb 0.0093 −0.01 0 −19,970/T + 9.950
O −0.021 −0.066 −3440/T + 1.717 −1750/T + 0.76

Note: T—Temperature, K.

The equilibrium oxygen activities of stable oxide inclusions in alloy samples with different
Nb and Si concentrations at 1873 K and 1473 K are shown in Figures 8–10. At both temperatures,
MnO-Nb2O5-type inclusion in 0.65 mass % Nb alloy (see Figure 8) are considerably more stable than the
MnO-SiO2-type inclusion and the equilibrium oxygen activity associated with the MnO-Nb2O5-type
oxide inclusion is always lower than that of the MnO-SiO2-type inclusion, indicating that MnO-Nb2O5

forms prior to MnO-SiO2. At 1873 K, as the Nb content in the alloy decreased to 0.15 mass %, some
MnO-SiO2-type and MnO-SiO2- & MnO-Nb2O5-type oxide inclusions were generated. A critical Si
concentration of 0.78 mass % for 0.15 mass % Nb alloy and 0.20 mass % for 0.05 mass % Nb alloy
for the transformation between MnO-SiO2-type and MnO-Nb2O5-type oxide inclusion was obtained
according to the thermodynamic calculation, as shown in Figures 9a and 10a. At 1473 K (see Figures 9b
and 10b), this transformation occurs at a critical Si content of 2.5 mass % for 0.15 mass % Nb alloy and
0.8 mass % for 0.05 mass % Nb alloy. This calculation results support that, at an Si content of 0.4 mass %
and an Nb content of 0.65 mass % (Sample 2), the stable MnO-Nb2O5-type oxide inclusion is retained
during heat treatment at 1473 K, and the transformation from MnO-SiO2-type to MnO-Nb2O5-type
oxide inclusion in Alloy Samples 4 and 8 was promoted after heating. These calculation results agreed,
in general, with the experimental results and revealed the mechanism of interface reaction between
the Fe-Mn-Si-Nb alloy and MnO-SiO2 oxide inclusion. More importantly, these results contribute to
the prediction of stable oxide formation in alloy (before and after heat treatment), based on the Si, Mn,
and Nb concentrations of the alloy.
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5. Conclusions

During the heating at 1473 K, the concentrations of Nb and Si in the alloys are critical for
controlling the changing behavior of oxide inclusions. Stable oxide inclusions transformed from
MnO-SiO2-type to MnO-Nb2O5-type or MnO-SiO2- & MnO-Nb2O5-type at low concentrations of Si
and high concentration of Nb. It was indicated that an interface chemical reaction occurred between
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the Fe-Mn-Si-Nb alloy matrix and the MnO-SiO2-type oxide inclusion. Estimation on the stable oxide
inclusions in the alloys with different Nb concentrations by thermodynamic calculation at 1873 K and
1473 K basically matched the experimental results, thereby confirming the mechanism of the interface
reaction. More significantly, the calculation results contribute to the prediction of heating-induced
formation of a stable oxide, depending on the concentrations of Si, Mn, and Nb in the alloys.
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