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Abstract: The microstructure evolution and the corrosion behavior of welding heat affected zone
(HAZ) of Q315NS steel in 50 wt % H2SO4 at 20 ◦C was investigated with thermal simulation
technique, surface analysis and electrochemical tests. The microstructure of ferrite and pearlite was
observed in base metal (BM), fine grained region (FGHAZ) and inter critical region (ICHAZ) while
coarse grained region (CGHAZ) consisted of granular bainite. The CGHAZ exhibited the highest
microhardness and the largest average grain size. The passivation process occurred on the surface of
all specimens. Different microstructure give birth to different corrosion behaviors between CGHAZ
and BM, FGHAZ, ICHAZ. The dense oxide film were formed on the surface of ferrite while oxide
film with micro voids were formed on the surface of pearlite in BM, FGHAZ and ICHAZ after
immersion in 50 wt % H2SO4 solution for 12 h. The rod-shaped corrosion product was formed on the
surface of CGHAZ while the porous-structured corrosion product was formed on the surface of BM,
FGHAZ and ICHAZ after immersion in 50 wt % H2SO4 solution for 72 h. The corrosion resistance
of BM, CGHAZ, FGHAZ and ICHAZ increased during the first 12 h and then declined slowly with
increasing immersion time. The BM had the best corrosion resistance while the CGHAZ had the
lowest corrosion resistance throughout the corrosion process.

Keywords: Q315NS steel; heat affected zone; sulfuric acid solution; corrosion behavior;
electrochemical tests

1. Introduction

As the main corrosion form of coal- or heavy oil-fired boilers, sulfuric acid dew-point corrosion
occurs when sulphur in fossil fuels is converted to sulfuric acid at low temperature (<200 ◦C) on
various parts (economizers, air preheaters, chimneys, etc.) [1–3]. When the service temperature is
lowered to improve energy efficiency, sulfuric acid dew-point corrosion becomes more serious [4].
Sulfuric acid dew-point corrosion-resistant steel like Q315NS steel produced by appropriate alloy
design, has been used to reduce cost by increasing service time due to its excellent sulfuric acid
dew-point corrosion resistance. Welding is widely used in the manufacture of fired boilers, and the
microstructure and properties of heat affected zone (HAZ) are more complex than the base metal (BM)
and weld metal (WM) due to the presence of microstructure gradients caused by welding thermal
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cycle [5]. The microstructure evolution and mechanical properties of HAZ have been studied [6–13],
but research focused on corrosion behavior and corrosion mechanisms in HAZ is lacking.

Electrochemical measurement technique is an efficient and rapid method to analyze the corrosion
behavior and it is able to provide much information on corrosion behavior. Several studies have shown
that the corrosion behavior of HAZ was different from BM and the corrosion resistance decreased after
welding thermal cycle [14–19]. Dastgiri [14] carried out failure analysis of the welded pipe made of
AISI 1518 low carbon steel based on the available documents, metallographic studies and corrosion
behavior. Electrochemical impedance spectroscopy (EIS) investigations showed that HAZ and WM
were susceptible to corrosive media. Wei [15] studied the corrosion resistance of HAZ of 22SiMn2TiB
ultra-high strength steel weld joint in 3.5 wt % NaCl solution by polarization measurement, then the
relation between the microstructure and the HAZ corrosion resistance was established. Zhang [16,17]
researched the corrosion behavior of welded X70 pipeline steel by polarization, electrochemical
impedance spectroscopy (EIS) and scanning vibrating electrode technique (SVET). Bordbar [18]
investigated the effect of heat treatment on the corrosion properties and the protective properties of the
corrosion products layer of X70 welded joint by EIS measurements. Verma and Taiwade [19] assessed
the intergranular corrosion resistance and pitting characteristics of the dissimilar welds between 22%
Cr series duplex 2205 and 316L austenitic stainless steel by polarization measurements.

In this work, thermal simulation experiments were carried out on the HAZ of Q315NS steel with
excellent dew-point corrosion-resistant to sulfuric acid. Surface analysis were conducted to investigate
the microstructure evolution of the HAZ and the corresponding corrosion behavior in sulfuric acid
solution. Electrochemical tests were carried out to evaluate the corrosion resistance of different zones
identified with different microstructure in the HAZ.

2. Experimental

2.1. HAZ Thermal Simulation

To investigate microstructural evolution in the HAZ, thermal simulation experiments were
performed using the computer-controlled Gleeble-3800 (DSI, Poestenkill, NY, USA) thermal-force
simulation testing machine which is capable of providing rapid and programmable heating and
cooling cycles. For steels, the microstructure varied greatly in the different regions of the HAZ due to
different peak temperatures. Complete austenitizing occurs in coarse grained region (CGHAZ) when
the peak temperature is significantly above the end temperature of ferrite to austenite transformation
(Ac3). However, it occurs in fine grained region (FGHAZ) even when the peak temperature is slightly
above the Ac3. Incomplete austenitizing often occurs in inter critical region (ICHAZ) because the
peak temperature is between Ac3 and the start temperature of ferrite to austenite transformation
(Ac1) [20–22].

The chemical compositions (wt %) of Q315NS steel used in this study is as follows: 0.06% C,
0.27% Si, 0.87% Mn, 0.02% S, 0.01% P, 0.11% Ni, 0.10% Mo, 0.31% Cu, 0.09% Sb and bal Fe. Austenite
formation temperatures (Ac1 and Ac3) can be predicted according to the following empirical equation
proposed by Andrews [23]:

Ac1 (◦C) = 732 − 10.7 ω(Mn) − 3.9 ω(Ni) + 29 ω(Si) + 16.7 ω(Cr) + 290 ω(As) + 6.38 ω(W) (1)

Ac3 (◦C) = 910 − 230 ω(C)0.5 − 15.2 ω(Ni) + 44.7 ω(Si) + 104 ω(V) + 31.5 ω(Mo) + 13.1 ω(W) (2)

where ω(X) is the mass fraction of elements (X = Mn, Ni, Si, etc.). It was found that Ac1 was 721 ◦C
while Ac3 was 909 ◦C. As a result, 1320, 930 and 830 ◦C were selected as the peak temperature in
CGHAZ, FGHAZ and ICHAZ simulation procedure. The heat input is usually 10–20 kJ/cm in welding
process of Q315NS steel. The heat input of thermal simulation experiments was set as 15 kJ/cm.
Therefore the cooling rate and the cooling time from 800 to 500 ◦C (t8/5) were 20 ◦C/s and 15 s
respectively, according to the equation (3) proposed by Vwer [24].
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t8/5 = (0.043 − 4.3 × 10−5 T0)[1/(500 − T0)2 − 1/(800 − T0)2] Q2·δ−2·F (3)

where T0 is the initial temperature of steel (◦C), Q is the heat input of welding process (J/cm), δ is
the thickness of steel (cm) and F is the shape factor (F = 1 in 2D heat transfer model of thin steel
plate welding).

The specimens were heated to the peak temperature at a linear rate of 150 ◦C/s, maintained
for 1 s, and then cooled at cooling rate of 20 ◦C/s. The heating and cooling parameters selected to
simulate the welding thermal cycles are shown in Table 1. The simulated HAZ specimens with sizes of
10 mm × 10 mm × 55 mm were prepared from a hot-rolled Q315NS steel plate with the longitudinal
axis parallel to the rolling direction. Cuboid specimens measuring of 10 mm × 10 mm × 3 mm
were used for microstructure observation and for electrochemical experiments, the specimens were
sectioned from the middle of simulated HAZ specimens.

Table 1. Parameters of thermal cycles in welding heat affected zone (HAZ) simulation experiment.

Simulated
Welding HAZ Peak Temperature, ◦C Heating Rate, ◦C/s Holding Time at Peak

Temperature, s Cooling Rate, ◦C/s

CGHAZ 1320 150 1 20
FGHAZ 930 150 1 20
ICHAZ 830 150 1 20

2.2. Microstructure Observation

The BM and simulated welding HAZ specimens were ground with emery paper to 1200# and
then polished by flannelette for less than 1 min. All specimens were cleaned in an ultrasonic bath
with ethanol for 5 min and then dried in hot air. The microstructure of the BM and simulated welding
HAZ were observed by a Zeiss Merlin Compact field emission scanning electron microscope (FESEM,
ZEISS, Oberkochen, Germany) after being etched with an alcohol solution containing 4 vol % nitric
acid. The average grain size were measured by Intercept Procedure according to the Chinese national
technique standard GB/T 6394-2002. In addition, the corrosion product morphologies after different
immersion time in 50 wt % H2SO4 solution were observed by FESEM.

2.3. Electrochemical Experiments

The polarization measurements were conducted in accordance with the Chinese national
technique standard GB/T 24196-2009. A three-electrode electrochemical system was set up, in which
a Saturated calomel electrode (SCE) was used as the reference electrode with a platinum electrode
as the auxiliary electrode and the simulated welding HAZ as working electrodes. The aggressive
solution was 50 wt % H2SO4 which was prepared by dilution of analytical reagent grade 98 wt %
H2SO4 with de-ionized water. Before the electrochemical experiments, the working electrodes were
welded with wire, mounted in epoxy resin, ground with 1200# emery paper, cleaned with alcohol and
dried with cool air. The area of the working electrode exposed to 50 wt % H2SO4 for electrochemical
experiments was 10 mm × 10 mm. Potentiodynamic polarization curve tests were conducted with
a sweep rate of 0.5 mV/s. Electrochemical impedance spectroscopy (EIS) plots were measured with
10 mV amplitude and within 10 mHz to 10 kHz frequencies. All electrochemical experiments and
immersion experiments were performed at 20 ◦C and exposed to air. All potential is relative to SCE if
not specified.
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3. Results and Discussion

3.1. Microstructure Evolution

The SEM images of Q315NS steel and simulated welding HAZ are shown in Figure 1. Besides,
the average grain size and hardness values of the various zones are as shown in Figure 2. The BM of
Q315NS steel exhibits a typical microstructure of polygonal ferrite (F) and pearlite (P) as shown in
Figure 1a. The final microstructure of the HAZ is largely determined by the applied thermal cycle.
In the CGHAZ as shown in Figure 1b, a granular bainite (GB) with coarse primary austenite grain
boundaries were observed. GB consisted of bainitic ferrite matrix and the martensite/austenite (M/A)
phase as the second phase [25]. The M/A islands were systematically arranged between the bainitic
ferrites and accompanied by surface relief effect. This structure formed because the carbon quickly
diffused away from the ferrite/austenite interface as compared to the upper bainite, and there was no
simultaneous formation of interlath cementite [26]. Carbonenriched austenite regions are formed by
rejecting of carbon from ferrite to austenite following the transformation of bainite ferrite. With further
cooling down to room temperature, the retained austenite may completely or partially transform to
martensite. The content of martensite naturally depends upon the content of carbon and the other
alloying elements in the austenite and the cooling rate. The M/A phases exhibiting beam-like or
granular morphology were parallel to each other in the prior-austenite grains. Both FGHAZ and
ICHAZ consist of ferrite and pearlite. During heating of FGHAZ and ICHAZ, austenitizing occurred
when the temperature reached above Ac1. Then the austenite was transformed to ferrite (F) and pearlite
(P), which resulted in the microstructure of FGHAZ and ICHAZ as shown in Figure 1c,d, respectively.

Figure 1b also shows that the grain size of CGHAZ is larger than that of BM, FGHAZ and ICHAZ.
It is well known that peak temperature affects the microstructure by changing the austenite grain
size [27]. The austenite grain size increases with peak temperature because the mobility of solute
atoms at high temperature is higher than that of low temperature [28]. The diffusion rate of carbon
atoms can be calculated according to an Arrhenius equation as follows [29,30]:

D = D0 exp(−Q·R−1·T−1) (4)

where D0 is the initial diffusion rate (6.2 × 10−7 m2·s−1), Q is the diffusion activation energy
(80 kJ·mol−1), R is the ideal gas constant (8.31 J·mol−1·K−1) and T is the absolute temperature. As a
result, the CGHAZ with the highest peak temperature had the largest diffusion rate. The CGHAZ had
the largest grain size as shown in Figure 1. The grain of FGHAZ was even refined due to fast cooling
rate when austenite transformed to ferrite and pearlite.

In addition, the micro-hardness of CGHAZ was the highest which was the result of the existence
of GB. The grain size and micro-hardness of BM, FGHAZ and ICHAZ were at the same level.
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shown in Figure 5b. The corrosion product of the FGHAZ is similar to that of the BM, but the surface 
of the FGHAZ corroded for 72 h was rougher with deeper holes. There was almost no difference in 
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3.2. Corrosion Behavior

The biggest challenge in corrosion research is to accurately predict how materials will dissolve in
a given environment [31]. In this paper, the corrosion behaviors of the specimens were studied through
observing the surface morphology after different corrosion time. The SEM images of the surface of BM
and HAZ immersed in 50 wt % H2SO4 solution for different time are shown in Figures 3–5. As shown
in Figure 3a, dense oxide film were formed on part of the surface of BM after immersion for 4 h, mainly
on the surface of ferrite zone. There were even micro voids rather than dense oxide film on the surface
of pearlite zone. The pearlite without the dense oxide film was corroded more seriously. As a result,
the oxide film with micro voids was formed on pearlite after immersion for 12 h as shown in Figure 4a.
The porous-structured corrosion product was formed on the surface of the BM after immersion for
72 h as shown in Figure 5a. There was oxide film formed on the surface of CGHAZ throughout the
corrosion process as shown in Figures 3b and 4b. The oxide film formed on the surface of CGHAZ
was not dense and can not inhibit the corrosion well. A rod-shaped corrosion product was formed
on the surface of CGHAZ after immersion for 72 h as shown in Figure 5b. The corrosion product of
the FGHAZ is similar to that of the BM, but the surface of the FGHAZ corroded for 72 h was rougher
with deeper holes. There was almost no difference in the surface morphology, size and density of the
corrosion product between BM and ICHAZ.

The difference in corrosion product between BM and CGHAZ means that BM and CGHAZ
have undergone the different corrosion processes. Some studies on the dissolution of steel in acidic
solutions have been undertaken showing that anodic reaction is the oxidation of steel [32]. The passive
film (dense oxide film) was formed on the surface of BM due to concentrated sulfuric acid solution.
However, the dense oxide film was almost formed on the surface of ferrite zone in the initial stage
of corrosion. The film inhibited the corrosion of ferrite. Then the pearlite of BM was preferentially
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corroded acting as an anode in the corrosion reaction. The original grain boundaries of BM were still
obvious after 12 h corrosion as shown in Figure 4b. Under the condition of continuous corrosion, the
pearlite zone of BM was severely corroded and the oxide film formed on the ferrite zone was partly
dissolved. As a result, the porous-structured corrosion product as shown in Figure 5a was formed.
The SEM images of FGHAZ and ICHAZ as shown in Figures 3–5 suggested that FGHAZ and ICHAZ
underwent the similar corrosion process to BM. There was oxide film formed on the surface of CGHAZ
after immersion for 4 h in 50 wt % H2SO4 solution. The oxide film formed on the surface of CGHAZ
was sparser than the oxide film formed on the surface of BM as shown in Figure 4b, which may result
in more severe corrosion process in CGHAZ. The rod-shaped corrosion product was formed on the
surface of CGHAZ after immersion for 72 h as shown in Figure 5b, which may be resulted from the
preferential growth of corrosion product on the surface.

The corrosion product formed on the surface of electrodes usually inhibited the corrosion process.
However, the porous and rod-shaped structure may have negative effects upon inhibiting corrosion.
Moreover, the porous-structured corrosion product may exhibit better performances in inhibiting
corrosion than the rod-shaped corrosion product did because the compactness of the porous-structured
corrosion product was higher than that of the rod-shaped corrosion product.
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3.3. Electrochemical Characteristics in H2SO4 solution

The open circuit potential (OCP) of different electrodes at the initial immersion stages (after
10 min) are shown in Table 2. It can be found that the OCP of the BM is lowest, and the OCP of
CGHAZ is slightly higher than that of FGHAZ and ICHAZ. It is indicated that the electrode potential
of Q315NS can be turned positive after experiencing welding thermal cycle.

Table 2. Open circuit potential (OCP) for BM and simulated welding HAZ immersed in 50 wt %
H2SO4 solution.

Electrode BM CGHAZ FGHAZ ICHAZ

OCP value, mV −431.24 −339.15 −379.22 −353.73

The polarization curves of BM, CGHAZ, FGHAZ and ICHAZ in 50 wt % H2SO4 solution are
shown in Figure 6. It can be seen that the shape of the cathode polarization curves of all the specimens
was basically the same and the slope had no significant difference. It was indicated that they had
undergone a similar polarization process during cathodic polarization. Generally, hydrogen was
generated in the cathodic polarization of steel under strong acid condition [33,34]. The anodic
polarization curves can be divided into three regions: active region, passive region and transpassive
region. In active region, the anode current density increased rapidly with the increase of the scanning
potential. In passive region, the anode current density obviously decreased firstly, which indicated
that the passive film started to be formed in this region. Then the anode current density got steady
rather than fluctuated indicating that the passive film was able to prevent deepening corrosion.
In transpassive region, the anode current density obviously decreased again with the increase of the
scanning potential, which meant that the secondary passivation process occurred.

Electrochemical parameters including corrosion potential Ecorr (mV), corrosion current density icorr

(µA/cm2), cathodic Tafel slopes βc (mV/dec), anodic Tafel slopes βa (mV/dec), passive potential Epp

(mV), breakdown potential Eb (mV), passive current density ip (µA/cm2) and corrosion rate (mm/a)
were calculated from the polarization curves and presented in Table 3 which provide more information
about the kinetics of corrosion. The corrosion parameters were calculated by the method (Tafel Curve
Fitting) proposed by Cao [35]. It can be found from Table 3 that Ecorr was at its lowest value for the BM
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while the Ecorr of CGHAZ was more positive than the others, which is consistent with the OCP values.
In addition, the CGHAZ has the highest icorr while icorr of BM, FGHAZ, ICHAZ were about at the
same level with the maximum difference of no more than 25%. It may be contributed to the different
passivation process occurred in CGHAZ and the other specimens. The CGHAZ had the highest ip with
the lowest Eb indicating the lowest stability of the passive film of CGHAZ. The corrosion resistance of
CGHAZ was suggested to be the poorest by the above analysis while the corrosion resistance of BM
was the greatest.
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Table 3. Electrochemical parameters for the BM and simulated welding HAZ immersed in
50 wt % H2SO4.

Specimens Ecorr,
mV

icorr,
µA/cm2

βc,
mV/dec

βa,
mV/dec

Epp,
mV

Eb,
mV

ip,
µA/cm2

Corrosion Rate,
mm/a

BM −371.9 121.2 91.6 22.2 −184 425 5.19 3.313
CGHAZ −321.3 316.9 98.7 23.6 −159 403 8.71 7.39
FGHAZ −333.9 148.4 91.7 25.3 −165 409 6.87 3.927
ICHAZ −358.8 124.3 89.1 22.4 −162 420 6.60 3.419

To further reveal the corrosion mechanism of the BM and HAZ of Q315NS in 50 wt % H2SO4

solution, EIS tests were carried out to acquire more information about the corrosion process at the
open circuit potentials. Nyquist plots for the BM and simulated welding HAZ immersed in 50 wt %
H2SO4 solutions for different time are shown in Figure 7. It was shown that the plot was one single
semi-circular without obvious Warburg-type diffusion, which suggested that the corrosion of all
specimens in 50 wt % H2SO4 solutions was mostly dependent upon charge transfer processes [36].
The radius of the Nyquist plot curves increased along the immersion time, which indicated the
corrosion resistance increased.

Furthermore, the equivalent circuit as shown in Figure 8 was adopted to simulate the solid/liquid
interface of electrodes immersed in 50 wt % H2SO4 solution. This circuit was used by M. Shirinzadeh
Dastgir et al. in 1 M H2SO4 solution to investigate the corrosion behaviors of the welded joint of AISI
1518 low carbon steel pipeline [14]. Rs, Rc, Cc and Rct represented the solution resistance, the resistance
owing to the corrosion product formed on the surface, the capacitance of corrosion product and the
charge transfer resistance. Constant phase element (CPE) was used for the double layer to account for
the interfacial heterogeneities [37].

Table 4 presented the electrochemical parameters calculated by ZSimpWin (3.30d, Echem Software,
Ann Arbor, MI, USA, 2004) for EIS data obtained after different immersion time. It was be found that
Rct was obviously greater than Rc and Rs meaning the corrosion of all specimens in 85 wt % H2SO4
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solution was mainly controlled by charge transfer process [38,39]. The Rct of BM, CGHAZ, FGHAZ and
ICHAZ increased during the first 12 hours and then declined slowly. The increasing of Rct indicated
that the increasing of the corrosion product layer blocks the ion and charge transport effectively,
increases the electrochemical reaction impedance, and improves the corrosion resistance [40]. The Rct

declined slowly duo to the erosion of corrosion product besides the growth of corrosion product.
The value of Cc is closely related to the morphology of corrosion product layer. The value of Cc

gets smaller as the layer gets denser. On the contrary, the higher Cc means looser corrosion product
layer [41]. The Cc of CGHAZ was the biggest and correspond to the loosest corrosion product layer.
The CGHAZ also showed the lowest Rc and the highest Y0 of CPE while Rc and Y0 were at the same
level, respectively, for BM, FGHAZ and ICHAZ. This observation indicated that there were differences
in corrosion product and the electrical double layer between CGHAZ and the other zones including
BM, FGHAZ and ICHAZ.
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Table 4. Electrochemical parameters for the BM and simulated welding HAZ immersed in
50 wt % H2SO4.

Specimens
Immersion

Time, h Rsol, Ω·cm2 Cc, µF Rc, Ω·cm2 Rct, Ω·cm2
CPE

Y, S·sn/cm2 n

BM

0 1.004 × 10−13 1.177 0.947 81.86 6.966 × 10−5 0.9628
4 1.225 × 10−9 0.9849 0.9551 131.6 3.728 × 10−4 0.9381

12 1.003 × 10−7 1.142 1.189 147.2 5.024 × 10−4 0.9647
72 9.999 × 10−8 1.282 1.031 116.6 5.362 × 10−4 0.9626

CGHAZ

0 9.924 × 10−8 1.929 0.669 31.38 1.381 × 10−4 0.9719
4 2.467 × 10−11 3.422 0.4024 48.74 8.371 × 10−4 0.9552

12 8.983 × 10−12 2.967 0.4973 77.23 7.9 × 10−4 0.9681
72 2.45 × 10−6 1.296 0.8698 65.55 9.823 × 10−4 0.9422

FGHAZ

0 7.662 × 10−7 0.4751 1.576 41.24 5.826 × 10−5 0.9391
4 1 × 10−7 0.8941 1.171 78.75 7.8 × 10−4 0.9410

12 1.269 × 10−9 0.9385 1.214 94.12 7.193 × 10−4 0.9564
72 1.001 × 10−7 0.7065 1.699 99.41 6.427 × 10−4 0.9565

ICHAZ

0 9.571 × 10−8 0.2447 2.681 62.06 4.027 × 10−5 0.9349
4 5.769 × 10−8 0.9239 1.321 91.47 4.287 × 10−4 0.9528

12 7.769 × 10−12 0.6154 1.865 99.58 5.969 × 10−4 0.9573
72 1.495 × 10−7 1.19 1.048 91.55 7.242 × 10−4 0.9582

4. Conclusions

This work investigates the microstructure and corrosion resistance of simulated welding HAZ
of Q315NS steel in 50 wt % H2SO4 solution. The main conclusions drawn based on the experimental
results are as follows:

(1) The BM, FGHAZ and ICHAZ consisted of ferrite and pearlite, whereas the microstructure in
the CGHAZ was mainly granular bainite. The CGHAZ has the highest microhardness and the
largest average grain size due to the highest peak temperature.

(2) Passivation process occured in all specimens in 50 wt % H2SO4 solution. A porous structure
product was formed on the surface of the BM while a rod-shaped structure corrosion product
was formed on CGHAZ after immersion for 72 h in 50 wt % H2SO4 solution.

(3) All specimens underwent the similar polarization process. The electrochemical tests showed that
the corrosion current density of CGHAZ was the largest while the corrosion current density of
BM was the lowest.

(4) The corrosion process of all specimens was mainly controlled by charge transportation
process. The charge transfer resistance of BM and CGHAZ were the greatest and the weakest
respectively. The corrosion product of CGHAZ had the biggest capacitance due to the loosest
distribution character.
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