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Abstract: In this work, the hot deformation behavior of 6A02 aluminum alloy was investigated by
isothermal compression tests conducted in the temperature range of 683–783 K and strain-rate range
of 0.001–1 s−1. According to the obtained true stress–true strain curves, the constitutive relationship
of the alloy was revealed by establishing the Arrhenius-type constitutive model and back-propagation
(BP) neural network model. It is found that the flow characteristic of 6A02 aluminum alloy is closely
related to deformation temperature and strain rate, and the true stress decreases with increasing
temperatures and decreasing strain rates. The hot deformation activation energy is calculated to
be 168.916 kJ mol−1. The BP neural network model with one hidden layer and 20 neurons in the
hidden layer is developed. The accuracy in prediction of the Arrhenius-type constitutive model and
BP neural network model is eveluated by using statistics analysis method. It is demonstrated that the
BP neural network model has better performance in predicting the flow stress.
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1. Introduction

Deformation behaviors of metal materials are considered as the comprehensive presentation of
material properties and processing parameters, such as temperature, strain rate and strain [1–4]. Since
the flow behaviors of materials provide valuable information and crucial instructions for thermoplastic
processing, an increasing number of researchers have paid great attention to this field. In order
to reveal the internal influence of processing parameters on the flow characteristics of materials,
some constitutive models have been established [5]. At present, mainly three kinds of constitutive
models have been broadly accepted, including analytical models, phenomenal models and empirical
models [6–8]. Specifically, analytical models are developed based on the plastic deformation theories
of kinetics and dynamics of dislocation. As a result, these models require a thorough understanding
of the physical mechanisms controlling deformation behavior of materials. However, it is almost
impossible for analytical models to be employed in practical application due to coupled influence of
various processing parameters. As for phenomenal models, though less closely related to physical
theories, they still depend on explicit understanding of deformation mechanisms. Such models usually
consist of several separate equations, each of which is responsible for a fixed processing domain.
Therefore, the generality and simplicity of phenomenal models are often limited. Empirical models are
aimed at researching the quantitative relationship between true stresses and processing parameters.
Regression analysis technique is constantly employed to establish equations and statistical methods are
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performed to evaluate the performance of the model. Therefore, empirical models do not need details
about physical or chemical revolution involved during the deformation process. The Arrhenius-type
constitutive model is recognized to be one of the most commonly used empirical models and has
been successfully applied to various alloys, including magnesium alloys [9], titanium alloys [10,11],
aluminum alloys [12] and steels [13]. In contrast, the artificial neural network (ANN) model does
not refer to any mathematical model, and it only learns from examples and recognizes patterns from
a series of inputs and outputs without any prior assumptions about their nature. Since it is not involved
in physical interpretation of plastic deformation mechanisms, the ANN model acts as a robust and
intelligent data information treatment system. It has now been recognized as a powerful tool in the field
of material science and increasingly applied by a growing number of scholars. For instance, Li et al. [14]
compared the ANN model with the Arrhenius-type constitutive model regarding the hot deformation
behavior of an Al-Zn-Mg alloy. Ji et al. [15] used a back-propagation neural network model, which was
trained with Lavenberg-Marquardt learning algorithm, to study the high-temperature flow behavior
of Aermet100 steel. In the research, the performance of the ANN model was evaluated by using a wide
variety of standard statistical indices, which turned out that the extrapolation ability of neural network
model was very high in the proximity of training domain. Li et al. [16] conducted a comprehensive and
comparative study on Zerilli–Armstrong, Arrhenius-type and ANN models in terms of their prediction
ability of hot deformation behavior of T24 steel. Quan et al. [17] applied ANN to predict the flow
stress of as-cast Ti-6Al-2Zr-1Mo-1V alloy, which suggested that the ANN model has a good capacity to
model complicated flow behavior of titanium alloy. Haghdadi et al. [18] utilized ANN to predict the
hot deformation behavior of an A356 aluminum alloy, indicating the fact that the trained ANN model
was a robust tool to characterize the high-temperature flow behavior of the studied alloy. Despite
considerable research work regarding the application of the ANN model in terms of deformation
behavior of various materials, the essential differences between the Arrhenius-type constitutive model
and the ANN model has not been clearly revealed and application limitation of both methods should
be explained.

6A02 aluminum alloy is one of the significant machinable aluminum alloys, which has been
extensively used in the fields of aerospace and auto-industry due to its good ductility, high specific
strength and satisfied corrosion resistance. In this work, the Arrhenius-type constitutive model and
the ANN model are developed and a comprehensive comparison between them is conducted to study
the high-temperature flow behavior of 6A02 aluminum alloy.

2. Materials and Methods

In the present work, the raw material was 6A02 aluminum alloy. The chemical composition and
starting microstructure of the alloy are presented in Table 1 and Figure 1, respectively. It can be seen
that the grains of 6A02 aluminum alloy are equiaxed and the average grain size is about 200 µm.
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Table 1. The chemical composition of 6A02 aluminum alloy.

Element Mg Si Fe Mn Cu Ni Ti Zn Al

Wt % 0.62 0.73 <0.05 <0.05 <0.01 <0.01 <0.01 <0.01 Bal

The cylindrical compressive specimens were obtained from a bar and subsequently machined
into 6 mm in diameter and 9 mm in height. Isothermal compression tests were carried out on the
Gleeble-1500D simulator (Harbin Institute of Technology, Harbin, China) in the temperature range
of 683–783 K with an interval of 20 K, and the strain rates were selected as 0.001, 0.01, 0.1 and 1 s−1.
The surfaces of specimens were grinded by sandpaper to remove the oxide layer and guarantee
smoothness. Thermocouples were welded in the middle of specimens to measure the temperature
during the experimental process. In addition, the graphite powder was applied on both surfaces of
specimens to reduce the friction coefficient between the specimen ends and the anvils. The specimens
were heated at a rate of 10 K/s up to deformation temperature, and held for 3 min to maintain a uniform
temperature in the sample and reduce the material anisotropy. The testing specimens were subject
to be compressed to a total true strain of approximately 0.6. The stress and strain variations were
automatically recorded by a computer equipped with a data acquisition system. As the compression
was completed, the deformed specimen was immediately quenched in water to preserve the hot
deformation microstructure. The procedure of compression tests is shown in Figure 2.
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3. Results and Discussion

3.1. Flow Behavior

The true stress–true strain curves obtained from isothermal compression tests at the strain rate
of 0.01 s−1 and the temperature of 723 K are shown in Figure 3. It can be observed from this figure
that the flow stress is strongly dependent on the strain rate and deformation temperature. At the
strain hardening stage, dislocation multiplication plays a dominant role, the true stress increases
rapidly with increasing strain up to a peak value in this stage. While at the dynamic softening stage,
the true stress drops gradually due to dynamic recrystallization. Finally, the equilibrium between
strain hardening and dynamic softening occurs and the true stress remains at a stable state. It is also
noted from Figure 3b that the flow stress at low strain rates of 0.001 and 0.01 s−1 are more likely
to become stable, which illustrates that the completed dynamic recrystallization has been occurred.
Generally, the relationship between true stress and processing parameters of the studied alloy are
highly nonlinear. Moreover, similar deformation characteristics of the other alloys are also observed
by many researchers [19–21].
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3.2. Arrhenius-Type Constitutive Model

During the hot deformation process of metals and alloys, the correlation between flow stress,
strain rate and temperature can be presented by using the Arrhenius-type constitutive model presented
as follows:

.
ε = A[sinh(ασ)]n exp(−Q/RT) (1)

where A, α and n are the material constants,
.
ε is the strain rate (s−1), σ represents the flow stress (MPa),

Q refers to the activation energy for hot deformation (J mol−1), T is the absolute temperature in Kelvin,
and R is the gas constant (8.314 J mol−1 K−1). According to the Taylor series deployment method,
the Arrhenius constitutive equation can be interpreted as:

.
ε = A1σ

n1 exp[−Q/RT] (ασ < 1.2) (2)

.
ε = A2 exp(βσ) exp[−Q/RT] (ασ > 1.2) (3)

.
ε = A[sinh(ασ)n] exp[−Q/RT] (ασ taking any value) (4)

where A1 = Aαn, A2 = A/2n, and α = β/n1.
The natural logarithm form of the equations above can be indicated as:

ln
.
ε = ln A1 − Q/RT + n1 lnσ (5)

ln
.
ε = ln A2 − Q/RT + βσ (6)

ln
.
ε = ln A − Q/RT + n ln[sinh(ασ)] (7)

The peak values of flow stress are presented in Table 2. With these experimental data fitted into
Equations (5) and (6), the values of n1 and β are derived from mean slope of the curves of ln

.
ε−lnσ

and ln
.
ε−σ in Figure 4a,b, and they are found to be 18.396 and 0.349, respectively. Therefore, α is

determined as α = β/n1 = 0.019. Besides, the value of n is calculated by:

n =

[
∂ ln

.
ε

∂ ln(sinh(ασ))

]
T

(8)
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Table 2. Peak values of flow stress of 6A02 alloy during hot deformation.

Strain Rate/s−1
Flow Stress/MPa

683 K 703 K 723 K 743 K 763 K 783 K

0.001 47.90 46.86 44.66 43.13 42.19 40.47
0.01 55.88 53.60 51.76 50.23 48.78 46.37
0.1 63.62 61.86 57.12 55.48 53.59 50.67
1 76.00 68.19 65.17 63.71 60.80 59.74

It is found that n turned out to be 13.962 from mean slope of the curves of ln
.
ε−ln[sinh(ασ)]

shown in Figure 4c. Q can be obtained by taking partial derivative of both sides of Equation (7) to 1/T:

Q = nR
[

∂ ln(sinh(ασ))
∂(1/T)

]
T
= RnS (9)

The S value is found to be 1.455 from mean slope of ln[sinh(ασ)]−1000/T illustrated in Figure 4d.
As a result, the value of Q can be determined as 168.916 kJ mol−1. The Q value of the studied alloy
is compared with that of other aluminum alloys calculated following the same procedure used for
the present 6A02 alloy [22–26], which is presented in Figure 5. It can be observed that the Q value in
this work is much smaller than most of the other kinds of aluminum alloys. In fact, 6A02 aluminum
alloy is known to exhibit greater temperature dependence in the reduction of flow stress than other
aluminum alloys, which is also proved by this work. While the hot deformation is a thermal activation
course, activation energy is recognized as a significant indicator for expression of the energy required
to overcome the barriers in the metal forming process at elevated temperatures, and it thereby directly
reflects the difficulty degree for the hot deformation. As a result, the low value of Q means that the
deformation for this alloy is easy at high temperatures and the dynamic recrystallization easily occurs.
In addition, the large difference of Q values is visible in the same series of alloys such as 6A02 and
6A82, which demonstrates that the chemical composition and heat treatment state exert a decisive
effect on the Q value of aluminum alloys. Yang et al. [23] suggested that the activation energy of
Cu-rich alloys is higher than that of Cu-free alloys. The high Q value of 6A82 aluminum alloy may be
related to the high Cu content.
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It is acknowledged that the influence of deformation temperature and strain rate on the flow
behavior can be evaluated by the Zener–Hollomon parameter [27], which can be defined as:

Z =
.
ε exp(Q/RT) (10)

Taking the natural logarithm form of Equation (10) leads to the following equation:

ln Z = ln
.
ε + Q/RT (11)

According to Equation (7), Equation (11) can be adapted as:

ln Z = ln A + n ln[sinh(ασ)] (12)

The relationship between ln Z and ln[sinh(ασ)] is plotted in Figure 6 with experimental data at
peak stress. The intercept corresponding to ln A is obtained as 21.701. It is noted that the correlation
coefficient (R) for the linear regression of ln Z−ln[sinh(ασ)] reaches 0.981, which indicates that the
hyperbolic-sine function is in good agreement with experimental results. Therefore, the Arrhenius-type
constitutive equation of the studied aluminum alloy at peak stress can be developed as:

.
ε = e21.701[sinh(0.019σ)]13.962 exp(−168916/RT) (13)
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Back-propagation (BP) neural network is a forward multi-layer network of one-way transmission [28].
It can be known that a BP neural network is made up of input layer, hidden layer and output layer.
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In the present work, the inputs were comprised of deformation temperature, strain rate and strain,
while the true stress was identified as the output variable. Each data processing unit in the layer is
called a neuron, whose property is usually controlled by an activation function. Tan-sig, log-sig and
purelin are three derivable functions that can be employed as the activation. In order to obtain the
best combination by two of them. The performance of different groups with 20 hidden layer neurons
was revealed by mean square error (MSE), which is presented in Table 3. It was found that the MSE of
the tansig-purelin group is the smallest, which was only 0.113. Therefore, tansig function is chosen
as the input-hidden layer activation function and purelin is determined as the hidden-output layer
activation function.

In the BP neural network structure, neurons of the same layer are not coupled with each other.
When the input data passes through the network, the output is calculated and subsequently compared
with the target. If the deviation exceeds the predetermined threshold, a reverse transmission process
will initiate to correct the weight of each neutron. The above actions will not terminate until the
deviation can be accepted.

Table 3. Performance of different activation function groups.

Input-Hidden Layer Activation
Function

Hidden-Output Layer Activation
Function

Mean Square Error
(MSE)

tansig tansig 0.222
tansig purelin 0.113
tansig logsig 0.289

purelin tansig 0.139
purelin purelin 1.862
purelin logsig 0.167
logsig tansig 0.732
logsig purelin 0.491
logsig logsig 1.094

In this work, a feed-forward neural network model trained with BP learning algorithm will be
established; 192 data points as the input database was used. Before training the network, both input
and output variables have to be normalized within the range from 0 to 1 in order to obtain a valid form
for the neural network model to recognize, which can be treated as Equation (14):

X∗ =
X − 0.95Xmin

1.05Xmax − 0.95Xmin
(14)

where X is the original data which refers to temperature, strain and flow stress; X* is the normalized
data of the corresponding X; Xmin and Xmax are the minimum and maximum values of X, respectively.
Given that the strain rate changes sharply and the minimum of it is too small for the network to learn,
the following equation has to be used for the normalization:

.
ε
∗
=

ln
.
ε− 0.95 ln

.
εmin

1.05 ln
.
εmax − 0.95 ln

.
εmin

(15)

where
.
ε,

.
εmin,

.
εmax and

.
ε
∗ are the original, minimum, maximum and normalized strain rate,

respectively. After pre-proceeding all the inputs, the architecture of the network needs to be elaborated.
In order to develop a BP neural network model with desired generalization, 144 random data sets
from true stress–true strain curves were adopted to train the model and the remaining 48 data sets
were employed as the testing data sets.

The neutron number of the hidden layer is a crucial factor for the efficiency and accuracy of the
BP neural network. Traditionally, the trial-and-error method is generally applied to determine the
appropriate number of neutrons in the hidden layer. In the present investigation, the performance
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of the network with 8–25 hidden neurons were compared. The performance of different numbers of
neurons was evaluated by MSE, as shown in Figure 7. It is revealed that 20 hidden-layer neurons
presented the best performance and the MSE is only 0.113. Therefore, the number of hidden-layer
neurons is determined to be 20.

Metals 2017, 7, 114  7 of 12 

purelin logsig 0.167 
logsig tansig 0.732 
logsig purelin 0.491 
logsig logsig 1.094 

In this work, a feed-forward neural network model trained with BP learning algorithm will be 
established; 192 data points as the input database was used. Before training the network, both input 
and output variables have to be normalized within the range from 0 to 1 in order to obtain a valid 
form for the neural network model to recognize, which can be treated as Equation (14): 

minmax

min*

95.005.1
95.0

XX
XXX

−
−

=  (14) 

where X is the original data which refers to temperature, strain and flow stress; X* is the normalized 
data of the corresponding X; Xmin and Xmax are the minimum and maximum values of X, respectively. 
Given that the strain rate changes sharply and the minimum of it is too small for the network to learn, 
the following equation has to be used for the normalization: 

* min

max min

ln 0.95ln
1.05ln 0.95ln

ε − ε
ε =

ε − ε
 



 

 (15) 

where ε , minε , maxε  and *ε  are the original, minimum, maximum and normalized strain rate, 
respectively. After pre-proceeding all the inputs, the architecture of the network needs to be 
elaborated. In order to develop a BP neural network model with desired generalization, 144 random 
data sets from true stress–true strain curves were adopted to train the model and the remaining 48 
data sets were employed as the testing data sets. 

The neutron number of the hidden layer is a crucial factor for the efficiency and accuracy of the 
BP neural network. Traditionally, the trial-and-error method is generally applied to determine the 
appropriate number of neutrons in the hidden layer. In the present investigation, the performance of 
the network with 8–25 hidden neurons were compared. The performance of different numbers of 
neurons was evaluated by MSE, as shown in Figure 7. It is revealed that 20 hidden-layer neurons 
presented the best performance and the MSE is only 0.113. Therefore, the number of hidden-layer 
neurons is determined to be 20. 

 
Figure 7. Performance of different numbers of neurons. MSE in the figure represents mean square 
error. 

The accuracy of the established ANN model is further verified by a wide variety of standard 
statistical performance evaluation methods. The generalization property of the training and testing 
neural network is quantitatively verified in terms of correlation coefficient (R), relative error (δ), 
average absolute relative error (eAARE), average root mean square error (eRMSE), and scatter index (IS). 
The above indexes are defined as listed, respectively. 

 

Figure 7. Performance of different numbers of neurons. MSE in the figure represents mean square error.

The accuracy of the established ANN model is further verified by a wide variety of standard
statistical performance evaluation methods. The generalization property of the training and testing
neural network is quantitatively verified in terms of correlation coefficient (R), relative error (δ),
average absolute relative error (eAARE), average root mean square error (eRMSE), and scatter index (IS).
The above indexes are defined as listed, respectively.

R =

N
∑

i=1

(
Ei − E

)(
Pi − P

)
(

N
∑

i=1

(
Ei − E

)2 N
∑

i=1

(
P − Pi

)2
) 1

2
(16)

δ =
Ei − Pi

Ei
(17)

eAARE =
1
N

N

∑
i=1

∣∣∣∣Ei − Pi
Ei

∣∣∣∣× 100% (18)

eRMSE =

[
1
N

N

∑
i=1

(Ei − Pi)
2

] 1
2

(19)

Is =
eRMSE

E
(20)

where Ei is the experimental value and Pi is the predicted value from the ANN model. E and P are the
mean values of Ei and Pi, respectively. N is the total number of data employed in the research.

The plots of experimental values versus predicted values obtained by the developed ANN
model are shown in Figure 8 for both training and testing data sets. The correlation coefficient (R)
is a powerful statistical tool to present the strength of the linear relationship between experimental
and predicted values. It can be seen from this figure that the R values of training and testing are
0.999 and 0.952, respectively, which indicates satisfactory adaptation of the established ANN model.
In addition, it is noted from Figure 9 that the average absolute relative error (AARE) and scatter index
(IS) of both training and testing network is small. Most of the relative errors for testing data sets are
located in a quite narrow range from −10% to 10%. Therefore, it is illustrated that the artificial neural
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network model has been successfully developed to predict the flow behavior of the studied 6A02
aluminum alloy.
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3.4. Evaluation of Arrhenius-Type Constitutive Model and BP Neural Network

The relationship between experimental and predicted peak stress by the Arrhenius-type
constitutive model is presented in Figure 10. It is noted that most of the data points settled randomly
beside the fitting line and the error between experimental and predicted results is obvious. The reason
for this consequence lies in accumulated error of all material constants such as n, Q and α, et al.
Although the linear relationship is not so strong, the relative error can be quite small. The absolute
relative errors (ARE) of peak stress at various deformation temperatures and strain rates are revealed
in Figure 11. It can be observed that all of the ARE values are below 0.25% and they drop down as the
strain rate increases. Generally, the Arrhenius-type constitutive model is capable of predicting flow
stress with high accuracy. However, without the combination of strain in the equation, it can only
predict peak stress or flow stress at a certain strain.

The relationship between predicted true stress by the developed ANN model and experimental
results at 743 K/0.1 s−1 is illustrated in Figure 12. The predicted true stress is much closer to that of
the experiment and the relative error is within the range of −0.004% to 0.016%, which indicates that
the ANN model has satisfied prediction ability. Moreover, it is noticed that the value of relative error
increases with increasing strain. Compared with the Arrhenius-type constitutive model, BP neural
network is available to predict true stress in the entire strain range respectively. Additionally, the most
significant advantage of BP neural network is to provide a full insight of the relationship between
true stress and hot processing parameters such as strain rate, deformation temperature and strain.
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In another words, despite the lack of physical theory support, BP neural network model possesses
excellent predicted performance in terms of numerical simulation.
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4. Conclusions

The hot deformation behavior of 6A02 aluminum alloy was investigated by isothermal
compression tests in the temperature range of 683–783 K at intervals of 20 K and strain-rate range
of 0.001–1 s−1. The Arrhenius-type constitutive model and BP neural network were established to
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characterize the flow behavior of the experimental alloy, respectively. Furthermore, the generalization
performance of both developed models were evaluated. The essential differences between the two
methods were subsequently revealed.

(1) There is a nonlinear relationship between hot processing parameters and flow stress in
the isothermal deformation of 6A02 aluminum alloy. The true stress decreases with increasing
temperatures and decreasing strain rates. Besides, typical work hardening and dynamic softening
features can be observed from the true stress–true strain curves of 6A02 aluminum alloy.

(2) The Arrhenius-type constitutive model is established to present the deformation behavior of
the studied alloy. The activation energy (Q) is calculated to be 168.916 kJ mol−1, which is much smaller
than other kinds of aluminum alloy. Moreover, the absolute relative error by this model is no more
than 0.25%, which demonstrates high accuracy of the established model.

(3) A back-propagation neural network with one hidden layer and 20 neurons in the hidden layer
was developed to characterize the flow behavior of the alloy. The relative errors were limited in the
range of −0.004% to 0.016%, which suggested an excellent predicted performance of the ANN model.
Moreover, the back-propagation neural network can be used to predict the true stresses in the whole
strain range conveniently.
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