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Abstract: This work investigated the isothermal holding time dependence of the densification,
microstructure, weight loss, and tensile properties of Fe-Mn-Si powder compacts. Elemental Fe,
Mn, and Si powder mixtures with a nominal composition of Fe-28Mn-3Si (in weight percent) were
ball milled for 5 h and subsequently pressed under a uniaxial pressure of 400 MPa. The compacted
Fe-Mn-Si powder mixtures were sintered at 1200 ◦C for 0, 1, 2, and 3 h, respectively. In general,
the density, weight loss, and tensile properties increased with the increase of the isothermal holding
time. A significant increase in density, weight loss, and tensile properties occurred in the compacts
being isothermally held for 1 h, as compared to those with no isothermal holding. However, further
extension of the isothermal holding time (2 and 3 h) only played a limited role in promoting the
sintered density and tensile properties. The weight loss of the sintered compacts was mainly caused
by the sublimation of Mn in the Mn depletion region on the surface layer of the sintered Fe-Mn-Si
compacts. The length of the Mn depletion region increased with the isothermal holding time. A single
α-Fe phase was detected on the surface of all of the sintered compacts, and the locations beyond the
Mn depletion region were comprised of a dual dominant γ-austenite and minor ε-martensite.

Keywords: Fe-Mn-Si alloy; isothermal holding time; powder sintering; density; weight loss;
tensile properties

1. Introduction

Fe-Mn-Si alloys have been intensively investigated due to the so-called shape memory effect
(SME) caused by the reversible phase transformation between face-cantered cubic (fcc) γ-austenite
and hexagonal close-packed (hcp) ε-martensite [1–3]. In the family of metallic shape memory
alloys (SMAs), Fe-Mn-Si SMAs exhibit relatively low costs of both raw materials and processing
in comparison with their Ni-Ti alloys and Cu-based counterparts [4,5]. This makes Fe-Mn-Si shape
memory alloys promising candidates for various civil engineering applications such as pipe joints and
rail couplings [6–10]. Recently, temporary biomedical devices such as cardiovascular stents and bone
fixation plates have been discussed as potential applications of Fe-Mn-Si alloys due to their reasonable
biodegradability, good biocompatibility, and mechanical properties [11–15]. So far, Fe-Mn-Si SMA
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alloys are traditionally fabricated by melting and casting as it is favourable to obtain fully dense bulk
materials with homogenized composition.

Powder metallurgy (PM) is a cost-effective metal forming technology that provides various
benefits for industrial production in comparison to melting and casting. The products manufactured
by PM techniques exhibit a near net shape that requires few or no further machining steps [16–19].
Moreover, it presents the ability to synthesise products with controlled porosity and microstructure [20].
Mechanical milling (MM) is an efficient technique to refine powder particles, which is beneficial for
improving the densification and mechanical properties of the PM alloys in the subsequent sintering
process [21–24].

In the past, only a few published works have discussed the powder preparation and the sintering
behaviors of Fe-Mn-Si alloys using elemental Fe, Mn, and Si powders [25–27]. We sintered mechanically
milled Fe-28 wt. %-xSi powder mixtures with different Si contents (x) at 1200 ◦C in a high vacuum
furnace, and compared their mechanical and corrosion properties to wrought alloys [11].

It is noted that the sublimation of Mn must be considered when sintering Mn-containing Fe-based
alloys in high vacuum, especially those with high Mn concentration (≥20 wt. %). The high vapor
pressure of Mn at high sintering temperatures may lead to the serious sublimation/evaporation
of Mn, and consequently change the composition of the sintered Fe-Mn-based alloys [28]. This is
harmful to the resulting microstructure and mechanical properties of the sintered compacts. Thus,
it is of importance to study the sublimation behaviour of Fe-Mn-Si compacts as a function of
the isothermal holding time during vacuum sintering. Currently, the available references on the
sublimation/evaporation behaviour of Mn-containing Fe-based alloys mainly focuses on alloys with
low Mn content (≤5 wt. %) [28–30]. We recently reported on the sublimation behaviour of Fe-28Mn-3Si
alloys [31] at different sintering temperatures ranging from 1000 ◦C to 1200 ◦C. For the first time, we
calculated the sublimation rate of the sintered samples as a function of sintering temperature and
discussed the factors that affect the sublimation of the Fe-Mn samples. However, the effect of the
isothermal holding time at the sintering temperature on the microstructure and mechanical properties
has not yet been reported. It is therefore necessary to reveal how the sublimation rate changes over the
isothermal holding time. In this study, we also aim to explore the effect of the isothermal holding on
the microstructure and tensile properties of the sintered Fe-28Mn-3Si alloys.

2. Experiment

2.1. Powder Preparation

Three elemental powders were selected as starting materials in this study: Fe (99.7 wt. % purity),
Mn (99.7 wt. % purity), and Si (99.9 wt. % purity). The mean particle sizes of the Fe, Mn, and Si
powders are 38.6, 38.7, and 43.4 µm, respectively. The details on the morphologies and purities of
these particles are summarised in our previously published work [11], where the Fe powder exhibits
an irregular shape, while both the Mn and Si powders are of angular shape.

Powder mixtures with a nominal composition of 69% Fe, 28% Mn, and 3% Si (all in weight percent)
were prepared by 10 h mixing and subsequent 5 h mechanical milling (MM) in a planetary ball mill
(Pulverisette 6, Fritsch, Idar-Oberstein, Germany) under Ar protection to avoid the oxidation of the
powders. More details on the MM parameters are available elsewhere [11].

2.2. Press and Sinter

The MM powder mixtures were then compacted in a rectangular die under a pressure of 400 MPa
at room temperature. The dimensions of the green compacts were 40 mm × 16 mm × 4.2 mm, and
the green density of the ball milled Fe-Mn-Si compacts was ~65%, as determined in reference [15].
The green compacts were subsequently sintered in a high vacuum furnace with a vacuum level of
5 × 10−3 Pa. The heating ramp was 10 ◦C/min below 800 ◦C and 5 ◦C/min above 800 ◦C. All samples
were sintered at 1200 ◦C with a wide range of isothermal holding times from 0 to 3 h, as shown in
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Figure 1. The cooling was carried out in the furnace under high vacuum (5 × 10−3 Pa) with an average
cooling rate of 60 ◦C/min if the temperature was above 600 ◦C.
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Figure 1. Heating profile of the Fe-28Mn-3Si powder mixture sintered at 1200 ◦C for different isothermal
holding times.

2.3. Characterisation and Analysis

The density and open porosity of all the sintered alloys were evaluated by the Archimedes’
principle according to the standard ASTM B962-14 [32]. The measurement used distilled water as
the immersing medium in air at ~25 ◦C. The theoretical density of a pore-free Fe-28Mn-3Si alloy is
7.50 g/cm3 [11]. The relative density, R (percentage of theoretical density), was introduced to reflect
the densification of the sintered compacts, and calculated by R = ρs/ρt where ρt is the theoretical
density of the fully dense Fe-28Mn-3Si alloy (i.e., 7.50 g/cm3), and ρs is the measured absolute
density of sintered porous Fe-28Mn-3Si alloys. The weight of both the green and sintered compacts
was measured using a precision electronic balance (KINO, Norcross, GA, USA). The weight loss is
expressed as (m0 − m1)/m0, where m0 is the weight of the green compacts before sintering, while m1

is the weight of the corresponding specimens after sintering. The microstructure and morphologies
of the sintered PM alloys were examined using a scanning electron microscope (SEM, Quanta 200F,
FEI, Hillsboro, OR, USA) attached with an X-ray energy dispersive spectrometer (EDS). An X-ray
diffractometer (XRD D2 Phaser, Bruker, Karlsruhe, Germany) with Cu Kα radiation (λ = 1.54 Å)
was used to analyse the phase compositions of the PM compacts at room temperature. A universal
testing machine (Instron 3367, Norwood, MA, USA) equipped with an extensometer was used to
measure the tensile properties of the sintered PM parts. The tensile bars were flat dog-bone shaped
specimens cut from the sintered blocks. The gauge length of the tensile bars was 8 mm and the size
of the cross-section was 13 mm × 3 mm. The tensile testing was measured at a cross-head speed of
0.2 mm/min, equivalent to an initial strain rate of 4.2 × 10−3 s−1.

2.4. Principle to Calculate the Vapor Pressure

The equilibrium partial pressure (Pe
i ) of an element in the ternary system can be expressed as:

Pe
i = αi · Pi (1)

where αi and Pi are the activity and equilibrium vapor pressure of a pure element i, respectively.
The values of PFe, PMn, and PSi are 6.3 × 10−2, 78, and 8.7 × 10−2 Pa at 1200 ◦C, which is determined
according to reference [33].

The activity of element i is given as:

ai = exp

(
µi − µ0

i
RT

)
(2)
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where µi is the chemical potential of i in a certain state, µ0
i is the chemical potential of i in the standard

state, R is the gas constant, and T is the temperature in K. Therefore, the activity is 1 for a pure element
in the standard state.

The chemical potential of element i is calculated from the Gibbs energy:

µi =

(
∂G
∂ni

)
T,P,nj(j 6=i)

(3)

where the temperature (T), pressure (P), and composition of the other elements are constants.
At equilibrium, µi is the same value for all of the phases. For instance, the following relationship

is fulfilled for a three-phase equilibrium (α + β + γ phases) in a ternary A-B-C system:

µαi = µ
β
i = µ

γ
i (4)

The Gibbs energy of a solution phase (ϕ) in a ternary A-B-C system can be described by the
Redlich–Kister polynomial [34]:

0Gϕm = xA
0GϕA + xB

0GϕB + xC
0GϕC + RT(xA ln xA + xB ln xB + xC ln xC) + xAxBLϕA,B + xBxCLϕB,C

+xAxCLϕA,C + 0GϕA,B,C + ∆Gϕmag
(5)

where xi is the molar fraction of element i, 0Gϕi is Gibbs energy at the standard state, the terms
Lϕi,j (i, j = A, B, C) are the interaction parameters from the binary systems, 0GϕA,B,C is the excess Gibbs

energy, and ∆Gϕmag is the magnetic contribution to the Gibbs energy.
The Gibbs energies of all phases in the Fe-Mn-Si system were given in Reference [35] using the

CALPHAD method [36], used to calculate the activities of Fe, Mn, and Si of the ternary system in the
present study.

3. Results

3.1. Weight Loss and Chemical Composition

Figure 2 shows the weight loss rate of the alloys sintered for different isothermal holding times.
In general, the weight loss rate increases with the increase of the isothermal holding time. In detail, the
weight loss of the sintered MM alloys with no isothermal holding is very mild, only ~2 wt. %. When
the isothermal holding time increases to 1 h, the weight loss increases significantly to ~7.5 wt. %, which
is a ~4-fold increase compared to its counterpart with no isothermal holding. However, the weight
loss rate of the alloys sintered for 2 h and 3 h increases by only ~2 wt. % and 3 wt. %, as compared
with that sintered for 1 h. This indicates that the weight loss mainly happens during the first hour of
isothermal holding, and the weight loss rate decreases with the increase of the isothermal time.Metals 2017, 7, 81 5 of 16 
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EDS line scans were performed on the cross-sections of the sintered alloys to examine the
distribution of Fe, Mn, and Si in the sintered Fe-Mn-Si alloys. As shown in Figure 3, the EDS line
scan direction is perpendicular to sample surface-resin interface, and all scans were recorded from
the sample surface to the middle of the cross-sections. Figures 4 and 5 illustrate two typical EDS line
scan results of the alloys sintered for no isothermal holding and for 1 h isothermal holding. It can be
seen that a Mn depletion layer exists on the surface of the sintered Fe-Mn-Si samples. The Mn content
increases parabolically with the increase of the scan distance, starting from the resin-sample interface
of the sintered samples until it is stabilized at ~27.5 wt. %. By contrast, the Si content is constant at
~3.1 wt. % for the scale of the entire distance. We define the scan distance (x) between the resin-sample
interface (x = 0) of the sintered samples and the location where the Mn content reaches a stable value
(~27.5 wt. %) as the length of the Mn depletion region (LD). Table 1 presents the average surface
chemical compositions and LD of the sintered alloys for different isothermal holding times at 1200 ◦C.
Interestingly, the LD increases with the increase of the isothermal holding time, as shown in Table 1.
It is noted that the LD regions were removed from all the samples for the following microstructure
observations (Section 3.4) and tensile testing (Section 3.5).

Table 1. The average chemical composition and Mn depletion region (LD) of the MM Fe-Mn-Si alloys
sintered at 1200 ◦C for different isothermal holding times.

Holding
Time/h

Chemical Composition on the Surface x = 0 (wt. %)
LD (µm)

Chemical Composition (wt. %) at Positions ≥LD

Mn Si O Fe Mn Si O Fe

0 1.12 ± 0.12 3.21 ± 0.03 0.45 ± 0.04 Bal. 12 ± 5 27.65 ± 0.38 3.07 ± 0.04 0.45 ± 0.03 Bal.
1 1.14 ± 0.08 3.18 ± 0.06 0.43 ± 0.07 Bal. 405 ± 29 27.58 ± 0.41 3.09 ± 0.06 0.39 ± 0.06 Bal.
2 1.19 ± 0.09 3.09 ± 0.05 0.46 ± 0.07 Bal. 445 ± 31 27.67 ± 0.38 3.11 ± 0.04 0.47 ± 0.08 Bal.
3 1.13 ± 0.07 3.11 ± 0.06 0.47 ± 0.05 Bal. 500 ± 36 27.49 ± 0.45 3.05 ± 0.09 0.42 ± 0.09 Bal.
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with no isothermal holding.

3.2. Density and Porosity

Figure 6 shows the evolution of the relative densities and open porosities of the Fe-28Mn-3Si
alloys sintered at 1200 ◦C as a function of the isothermal holding time. A drastic increase of the relative
density occurs in the alloy sintered for 1 h. In detail, the relative density of the alloys sintered for 1 h is
approximately 80%, an increase of 11% as compared to those with no isothermal holding. However,
the excessive holding time only plays a limited role in improving the sintered density. For example,
the density in the alloy sintered for 3 h is ~85%, which increases by only ~4% and ~1% with respect to
their counterparts sintered for 1 and 2 h, respectively.Metals 2017, 7, 81 7 of 16 
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Figure 6. Relative densities and open porosities of the Fe-Mn-Si compacts sintered at 1200 ◦C as a
function of the isothermal holding time.

In general, the open porosities of all the sintered alloys decrease with the increase of the isothermal
holding time. The open porosity in alloys sintered with no isothermal holding is approximately 25%.
When the isothermal holding time extends to 1 h, the open porosities sharply reduce to 12%. However,
further increasing the isothermal holding time to 2 h or 3 h only has a limited effect on eliminating the
open porosities.

3.3. Phase Identification

Figures 7 and 8 present the XRD results on the surface and the middle parts (outside the LD
region) of the sintered ternary Fe-Mn-Si alloys, respectively. The surface region of all the sintered



Metals 2017, 7, 81 7 of 16

alloys presents a single α-Fe phase, regardless of the duration of the isothermal holding time (Figure 7).
Figure 8 reveals that no peaks belonging to Fe, Mn, or Si are observed in the locations beyond LD.
This indicates that both Mn and Si have been dissolved in the Fe-Matrix at the ramp stage. It is also
noted that all the sintered alloys consist of a duplex major γ-austenite and minor ε-martensitic phase,
as shown in Figure 8.
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Figure 8. XRD results on the middle parts (outside the LD region) of the ternary Fe-28Mn-3Si alloys
sintered at 1200 ◦C for different isothermal holding times. (a) Green compact before sintering; (b) MM
alloys without isothermal holding; (c) MM alloys with 1 h isothermal holding; (d) MM alloys with 2 h
isothermal holding; (e) MM alloys with 3 h isothermal holding.

3.4. Microstructure

Figure 9 shows the SEM graphs of the Fe-28Mn-3Si alloys sintered at 1200 ◦C as a function of the
holding time. Figure 9a illustrates that a large number of interconnected irregular pores are distributed
in the alloys with no isothermal holding, indicating that sintering at this stage is incomplete. When
the holding time increases to 1 h, the pore size as well as the overall porosities, especially the open
porosities, reduce to a large extent. However, most of the pores still exhibit an irregular shape. As long
as the isothermal holding time increases to 2 h, the pore size further decreases, and some pores become
spherical and isolated. The morphology of the alloys sintered for 3 h is similar to that sintered for 2 h.



Metals 2017, 7, 81 8 of 16

However, more isolated and spherical pores are observed in the alloys sintered for 3 h, as shown in
Figure 9d.
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times: (a) no isothermal holding; (b) 1 h; (c) 2 h; (d) 3 h.

3.5. Tensile Properties

Figure 10 and Table 2 illustrate the stress-strain curves and the tensile properties of the sintered
alloys with different holding times. As shown in Table 2, the isothermal holding time plays an
important role in upgrading the tensile properties of the sintered Fe-Mn-Si compacts. In detail, the
ultimate tensile strength (UTS) and fracture strain of the alloys sintered for 1 h are ~258 MPa and
6.4%, which are ~2 times and ~3 times higher, respectively, than their counterparts with no isothermal
holding. However, a further extended sintering time only has a limited effect on improving the tensile
properties. Taking the UTS for example, the UTS of the alloys sintered for 3 h is 330 MPa, which is
slightly higher than that of the sintered sample for 2 h (310 MPa).
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Table 2. Average static tensile properties of Fe-Mn-Si alloys sintered at 1200 ◦C for different isothermal
holding times.

Sintering
Temperature/◦C

Holding
Time/h

Ultimate Tensile
Strength/MPa

Fracture
Strain/%

Young’s
Modulus/GPa

1200

0 125 ± 9 2 ± 1 53 ± 4
1 258 ± 9 6 ± 1 69 ± 3
2 310 ± 15 8 ± 1 71 ± 3
3 330 ± 23 9 ± 1 74 ± 3

4. Discussion

4.1. Weight Loss Mechanism

Figure 2 shows that the weight loss rate of the samples sintered with no isothermal holding is
~2%, which is only ~1/4 of the sintered sample sintered for 1 h. This reveals that the weight loss
mainly occurs during the isothermal holding stage at 1200 ◦C. In other words, the weight loss in the
entire sintering process can be approximately equal to that in the isothermal holding stage. In this case,
we only discuss the weight loss in the isothermal holding stage.

Table 1 reveals that Fe, Mn, and Si are homogenously distributed, and the concentration of Fe, Mn,
and Si is stabilized at ~69 wt. %, 27 wt. %, and 3.1 wt. % if the detection point is located at a distance
from the surface ≥LD. This can be further supported by the EDS line scan results in Figures 4 and 5.
According to the XRD result (Figure 8) and the SEM micrographs (Figure 9), this composition is a
typical solid γ-austenite phase. At the distance from the surface <LD, the Si content stabilizes at ~3.1%,
while the Mn content increases with increasing distance until it stabilizes at ~27 wt. %. The isothermal
section of the ternary Fe-Mn-Si phase diagram [37] at 1200 ◦C reveals that these compositions are solid
α-Fe and γ-austenite depending on the composition. Based on the above discussion, the sublimation
of Fe, Mn, and Si contributes to the weight loss of the ternary Fe-28Mn-3Si compacts at 1200 ◦C.

The sublimation rate of a certain component in the bulk materials can be determined by the
Langmuir theory, which is given as [38–40]:

Ni = −KL · ε · Pe
i

√
Mi/T (6)

where Ni is the sublimation rate (g·cm−2·s−1) of component i, KL is the Langmuir constant, ε is the
condensation coefficient depending on the materials (for metals ε = 1), Pe

i is the partial pressure of
component i in the Fe-Mn-Si system, Mi is the molecular weight of component i, and T is the absolute
temperature in K.

In our case, all the samples were sintered at the same temperature (1200 ◦C). Therefore, according
to Equation (6), the sublimation rate of component i in the ternary Fe-Mn-Si system is determined by
the partial pressure Pe

i and Mi.
The partial pressure of Fe, Mn, and Si as a function of the Mn concentration (1 wt. %–28 wt. %) in

the ternary Fe-Mn-Si alloys was calculated and is presented in Figure 11.
To evaluate the difference in the sublimation rate between these three components in the LD

region of the ternary Fe-Mn-Si compacts, the sublimation rate ratio of the two components i and j can
be calculated with Equation (7). As the KL, ε, and T are constant in all of the Fe-Mn-Si compacts during
sintering, the sublimation rate ratio (B) is then given as,

B =
Ni
Nj

=
Pe

i
√

Mi

Pe
j
√

Mj
(7)

wherePe
Fe, Pe

Mn, and Pe
Si at 1200 ◦C are shown in Figure 11, while MFe, MMn, and MSi are 56 g·mol−1,

55 g·mol−1, and 28 g·mol−1, respectively.
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Figure 11. The partial pressure of Fe, Mn, and Si in Fe-Mn-Si sintered at 1200 ◦C as a function of
Mn concentration.

Figure 12 shows that the sublimation rate of Mn is at least 3.41 × 105-fold higher than that of
Si at all compositions in the ternary Fe-28Mn-3Si system, and the NMn/NFe ratio ranges from 15 to
420 depending on the composition at a certain location in the Fe-28Mn-3Si compacts during sintering.
A high ratio of NMn/NSi and NMn/NFe reveals that the sublimation of the sintered Fe-Mn-Si compacts
is mainly caused by the sublimation of Mn. Therefore, the Mn depletion regions (LD) exist in all the
sintered compacts, as shown in Table 1 and Figure 4.Metals 2017, 7, 81 11 of 16 
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It is noted that the weight loss of the sintered compacts isothermally held at the second and
third hour is ~1.7% and ~1.1%, respectively, which is only ~1/3 and ~1/5 of that of the holding at
the first hour, as illustrated in Figure 2. This demonstrates that the sublimation rate of Mn decreases
with the increase of the isothermal holding time. The change to the sublimation rate of the compacts
sintered for different isothermal holding times may be caused by their different open porosities during
sintering. This is because open pores create large amounts of walls in the interior of the compacts,
which contribute to the sublimation of these components. Moreover, open pores are the flowing
channels that move the Mn vapor from the interior areas to the outside of the porous samples.

The composition of the starting powder mixtures and sintering conditions (i.e., sintering
temperature and heating rate) for all the samples are identical during isothermal holding, and the
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only difference between the compacts during sintering is the open porosities. It is therefore believed
that a different volume of the open porosities leads to the decrease in the sublimation rate during
isothermal holding.

The porous Fe-Mn-Si alloys with higher open pores present a higher sublimation rate due to the
larger areas of open pore walls and more flowing channels for Mn vapor transfer. In our case, the
volume of the open pores in the compacts sintered at the beginning of isothermal holding is ~25%, and
it significantly decreases to ~12%, 9%, and 8% after 1 h, 2 h, and 3 h of isothermal holding, respectively.
The remarkably higher open pore volume during holding at the first hour gives rise to a significantly
higher weight loss compared to that sintered at the second and third hour. By contrast, the number
of open pores sintered for 2 h is only ~3% higher than its 3 h counterparts. Thus, the weight loss of
the Fe-Mn-Si compacts sintering at the second and the third hour is very limited compared with that
sintered at the first hour.

4.2. Densification

It is recognised that the elimination of surface energy is the driving force for powder
densification [20]. It is noted that the green density of the ball milled Fe-Mn-Si compacts was ~65%,
as determined in reference [15]. The density of the sintered alloys with no holding was ~5% higher
than their green compacts. Alloying during heating is further demonstrated in the XRD result; a single
γ-austenite phase was formed and the diffraction peaks indexed to α-Fe, Mn, and Si all disappear
in the samples sintered without holding. Although MM does not cause alloying during milling [15],
the much refined particles, larger particle surface areas, and stored strain energy during MM might
assist in densification in the temperature rising stage.

Interestingly, a rapid densification of the Fe-Mn-Si compacts occurs at the first hour of isothermal
holding. Figure 6 shows that the density of the compacts after 1 h isothermal holding increased by 11%
compared to that with no isothermal holding. As discussed above, alloying was completed before the
start of isothermal holding; therefore, the rapid densification of compacts at the first hour of isothermal
holding may be driven by the diminution in the surface energy due to the reduction in the volume and
the surface areas of the pores.

However, a further increase in isothermal holding time (>1 h) has a limited promotion in
densification. This may be attributed to the following factors. Firstly, the remarkable decrease in open
porosities contributes to the slow densification of the compacts when the isothermal holding time >1 h.
This is confirmed in Figure 6. The significant decrease in the open porosities of the compacts sintered
for longer than 1 h results in significant reduction in the surface area, and hence reduces the driving
force. In addition, the Mn sublimation in the pores, especially in isolated pores, plays an important
role in preventing the densification of the sintered alloys. Densification is a process of pore elimination.
Published work reveals that the pore elimination depends on a balance between the surface energy
in the curved surface of the pores and the gas pressure trapped in the pores [20]. For example, the
pore shrinkage stops if the gas pressure trapped in the pores is larger than the surface energy on the
surface of the pores. In our case, as shown in Figure 11, the partial pressure of the component Mn
in the ternary Fe-Mn-Si alloys is as high as 16.6 Pa. In other words, the pressure in the pores is kept
at ~16.6 Pa during isothermal holding in high vacuum conditions. This inhibits the pore shrinkage,
especially for the isolated pores, and consequently prevents the densification of the sintered compacts.

4.3. Tensile Properties and Fracture

As show in Table 2, the tensile properties of all the sintered PM alloys increase gradually with the
increase of the isothermal holding time. The variation in tensile properties is attributed to the different
porosities of the sintered alloys, which can be illustrated by the Gibson-Ashby model [41]:

σ

σ0
= C1

(
ρ

ρ0

)n1

(8)
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E
E0

= C2

(
ρ

ρ0

)n2

(9)

where σ and σ0 are the tensile stress of the sintered and pore-free alloys, respectively, and E and
E0 are the modulus of elasticity of the sintered and pore-free alloys, respectively. (1 − ρ/ρ0) is the
porosity and ρ/ρ0 is the relative density, and C1, C2, n1, and n2 are material constants depending
on the pore structure. The Gibson-Ashby relationship demonstrates that both the tensile strength
and modulus of elasticity of the PM alloys increase with the decrease of porosities. Figure 6 shows
that the porosities of all the sintered alloys decrease with the increase of the isothermal holding time.
It is then expected that the tensile properties of the sintered alloys increase as the isothermal holding
time increases. Data fitting reveals a linear relationship between log (ρ/ρ0) and logσ, with R2 = 1.00
(see Figure 13 for details). This linear relationship is also observed for the plot of log (ρ/ρ0) vs. logE
with R2 = 0.988 (see Figure 14 for details). The extrapolation of these double logarithmic plots suggests
a Young’s modulus and tensile strength for a fully dense Fe-28Mn-3Si alloy as ~96 GPa and 740 MPa,
respectively. This extrapolated Young’s modulus is lower than the reported value of E0 = 175 GPa for a
(Twining-induced plasticity) TWIP steel [42], and the discrepancy might be because the Gibson-Ashby
model is more suitable for porous materials with a porosity level ≥70% [41].Metals 2017, 7, 81 13 of 16 
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Figure 15 presents the SEM images of the sintered Fe-Mn-Si alloys with various isothermal times.
Shallow dimples are observed on the fracture surface of all of the sintered alloys. This indicates that all
the sintered alloys exhibit ductile fracture. As shown in Figure 15, the number of dimples was similar
in all the sintered alloys if the isothermal holding time is >1 h. This again reveals that the extension of
the isothermal holding time has a limited effect on increasing the ductility of the Fe-Mn-Si compacts.
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5. Conclusions

This work presents the effect of the isothermal holding time on the densification, microstructure,
weight loss behavior, and tensile properties of the sintered Fe-Mn-Si compact at 1200 ◦C. The following
key conclusions can be summarised.
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(1) The weight loss of the sintered Fe-Mn-Si compacts with no isothermal holding is only ~2%.
The weight loss of the sintered Fe-Mn-Si compacts increases significantly to ~7.6% after the
first hour of isothermal holding. A further increment in weight loss is very limited when the
isothermal holding time is >1 h. An Mn depletion region exists on the surface layer of all of the
sintered compacts. The length of the Mn depletion region (LD) increases with the increase of the
isothermal holding time. The weight loss is mainly caused by the sublimation of Mn.

(2) The density of the sintered ternary Fe-Mn-Si alloys increases drastically during the first hour of
isothermal holding, while densification slows down when the isothermal holding time is >1 h.
The drop in open porosities mainly occurs during the first hour of isothermal holding.

(3) The surface of the sintered Fe-Mn-Si is comprised of a single α-Fe phase. The sintered compacts
in locations ≥LD consist of a major γ-austenite and minor ε-martensite.

(4) The tensile properties of the sintered compacts increase with the increase of the sintering time.
The tensile strength, elongation, and elasticity drastically increase from 125 MPa, 2.1%, and
52 GPa for the samples with no isothermal holding to 258 MPa, 6.4%, and 69 GPa for the samples
with isothermal holding for 1 h.
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