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Abstract: In this work we present a collocation method for the structural analysis of shells of
revolution based on Non-Uniform Rational B-Spline (NURBS) interpolation. The method is based
on the strong formulation of the equilibrium equations according to Reissner-Mindlin theory, with
Fourier series expansion of dependent variables, which makes the problem 1D. Several numerical
tests validate convergence, accuracy, and robustness of the proposed methodology, and its feasibility
as a tool for the analysis and design of complex shell structures.
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1. Introduction

The application of differential quadrature or collocation methods for the solution of engineering
boundary value problems dates back to the initial works by Bellmann and Casti [1,2], who are credited
to have introduced the term differential quadrature operator, as the counterpart of quadrature operator
for the approximation of a differential operator, i.e., the strong form of the equation; and having
applied this strategy to first-order ordinary non-linear differential equations. The terminology of
collocation method is, to the best of the authors’ knowledge, associated with the work by Petersen [3],
and subsequently with the work by Karpilovskaya [4], Vainikko [5,6] and Kaspshitskaya [7]. The two
methods share substantial similarities, namely the main idea of solving the strong form of the
problem with a proper choice of discrete function spaces of approximation. By introducing a proper
interpolation of the dependent variables, which is substituted in the governing differential equations,
a linear set of equations for the unknown variables can be written by enforcing (i.e., collocating)
the discretized form of the governing equations at a set of locations on the domain, known as
collocation points.

The method appears to have gained more interest in the scientific research community in the
last two decades, rather than immediately following the presentation in the scientific literature.
Nowadays, there is discussion as to whether this methodology may become a valid and general
purpose alternative to more established methods such as the finite element method [8]. Without trying
to give a general answer to this question, and without trying to provide a detailed literary review of
the many applications of the collocation or differential quadrature method in past works, the aim of
the present communication is to present an innovative formulation of the collocation method for the
analysis of shells of revolution based on Non Uniform Rational B-Spline (NURBS) functions.

The collocation method is ideal in application to structural theories and has found several instances
in the scientific literature [9]. With reference to the analysis of shell structural elements, Mirfakhraei and
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Redekop [10] applied a Lagrangian differential quadrature method to the study of buckling phenomena
of orthotropic thin shells of revolution; Wu et al [11,12] presented solutions to problems of axisymmetric
bending of shells of revolution, introducing the so-called generalized differential quadrature rule.
Viola and Artioli [13,14] and Artioli et al. [15,16] proposed a Lagrange differential quadrature solution
for complex rotational shells with Fourier series expansion of dependent variables, both for the
free vibration analysis, and for the static analysis of shells of revolution subject to unsymmetrical
loading. The application of a collocation or differential quadrature method using Spline interpolants
had been already proposed by Bellman and co-workers to solve general fourth-order differential
equation problems [17], and later applied by Zhong and Guo [18,19] to static and buckling problems
for Kirchhoff plates and to the non-linear free vibration analysis of straight Euler beams, respectively.
Dade Huang proposed a Spline based collocation method for laminated plates and shells [20], while
Viswanathan introduced the collocation method with Spline basis function in application to shear
deformable laminated plates and shells [21–23].

The recent exponential growth of the isogeometric analysis [24–29] has raised attention on
collocation methods based on NURBS and/or T-Splines trial functions. Given their higher-order
smoothness and their favorable approximation properties, NURBS basis functions constitute an
efficient interpolation tool for collocating differential operators, i.e., for the approximation of the strong
formulation of PDEs; furthermore they apply even to irregular or complex geometric domains. The
newly developed IGA Collocation methods [8,30–33], set in the realm of weighted residuals [35],
have been applied to a variety of solid, structural mechanics and engineering problems, with
excellent performances in terms of efficiency, accuracy and robustness if compared to standard
Galerkin methods.

The objectives of this work are the development and validation of the proposed methodology
as an efficient, accurate numerical tool for the analysis and design of shells of revolution. The paper
is organized as follows. In section 2 we formulate the differential problem of free vibration and of
static equilibrium for a shell of revolution in the framework of Reissner-Mindlin theory. In this section,
consistent cross-reference to Appendix A—Fundamental relationships for shells of revolution—and
Appendix B—Equilibrium and boundary conditions operators—is made to make treatment more
concise. In Section 3 some introductory elements on B-Splines are recalled from classic geometrical
interpolation theory. Section 4 presents the basic one-dimensional NURBS interpolation basis functions
as a result of certain projective transformations of B-Spline function spaces and its application to the
NURBS-based collocation method, object of the present work. Section 5 collects an extensive set of
numerical tests focused on the analysis of the convergence properties of the proposed method, as
well as the validation in terms of accuracy and robustness by comparison with existing results. Last,
the collocation method is applied to a problem of design for a complex shell structure, showing its
feasibility as a numerical tool for engineering applications. Conclusions and future work perspectives
are drawn in Section 6.

2. Statement of the Problem

2.1. Geometry

We consider a shell of revolution defined by its mid-surface, obtained by rotating a plane generator
curve around an axis to form a closed surface, as shown in Figure 1a. Curvilinear coordinates on the
mid-surface are chosen to be associated to two families of mutually orthogonal curvilinear lines over
the mid-surface, i.e., meridians and parallels, respectively. In particular, z is the coordinate measured
along the axis of rotation, any value of z indicates a fixed parallel, whereas θ is the circumferential
angle, indicating a given meridian. The third orthogonal coordinate is ζ, the distance of a point from
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the mid-surface, measured along n, the outward unit normal to the mid-surface. The shell thickness
will be denoted by t. Thus, the mid-surface can be described by the bounded open set:

Ω = {(z, θ, ζ) ∈ R3|(z, θ, ζ) ∈ (zi, z f )× [0, 2π]× {0}} (1)

and its boundary

∂Ω = {(z, θ, ζ) ∈ R3|(z, θ, ζ) ∈ {zi, z f } × [0, 2π]× {0}} (2)

Figure 1. Geometry of shells of revolution.

For subsequent developments, it is here assumed that description of shell geometry is given in
terms of the parallel radius equation R = R(z), which defines the shape of the meridian curve, plus
the thickness variation t = t(z), for z ∈ [zi, z f ]. Nonetheless, it is pointed out that this hypothesis
is not mandatory: R(z) and t(z) need not be specified analytically; i.e., they can be obtained from
interpolated data, for instance with the use of NURBS basis functions [36]. According to the above
geometry description, metrics of the shell of revolution mid-surface are resumed in Appendix A.

2.2. Displacement Field

Following the classical Reissner-Mindlin theory [37,38], and referring to Figure 1a, the
displacements of a material point of the shell are u, v, and w, where u is the translation along t1,
the unit vector tangent to the mid-surface and directed along the local meridian, v is the translation
along t2, the unit vector tangent to the mid-surface and directed along the local parallel, and w is the
displacement along n, orthogonal to the mid-surface. Moreover, β1 and β2 represent the rotation of n
about meridian t1 and circumferential t2 direction, respectively. In accordance with the aforementioned
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theory, the components u and v vary linearly with respect to ζ, while w, β1, and β2 are constant through
the thickness. The degrees of freedom are collected in the algebraic vector:

u(z, θ) = [u v w β1 β2]
T (3)

depending on the mid-surface coordinates z and θ.

2.3. Internal Actions

In the present theory, equilibrium equations are written in terms of internal actions, or stress
resultants and couples per curvilinear coordinate line unit length, defined as the integrals of the stress
components through the shell thickness [37]. In Figure 1b, stress resultants and couples are represented
acting on a mid-surface element, identified by two couples of curvilinear coordinate lines, having
in-plane outward normal unit vectors t1 and t2, respectively. These internal actions can be grouped as
membrane normal N11, N22, [resp. shearing N12] forces; flexural bending M11, M22, [resp. twisting
M12] couples; and transverse shear forces Q11, and Q22, respectively. The set of stress resultants and
couples are collected in the algebraic vector:

S(z, θ) = [N11 N22 N12 M11 M22 M12 Q11 Q22]
T (4)

Finally, q(z, θ) = [qu qv qw 0 0]T are surface distributed load components per unit mid-surface
area corresponding to the degrees of freedom u. Surface distributed bending loads are not considered
in the present development.

2.4. Equilibrium

Following classical arguments [38], the free vibration problem, as well as the static equilibrium
problem for a shell of revolution, are formulated as a set of five differential equations for the internal
actions, a format which is classified as statically indetermined [37]. Nevertheless, the above problem
may be formulated as five differential equations for displacements and rotations plus boundary
conditions, introducing proper shell-like strain measures, defined through a strain-displacement linear
differential operator and choosing an isotropic linear elastic constitutive law between internal actions
and strain components (see Appendix A). The strain components are conjugate to internal actions S,
and are collected in the algebraic vector:

ε(z, θ) = [ε11 ε22 ε12 κ11 κ22 κ12 χ1 χ2]
T (5)

where ε11, ε22 [resp. ε12] are membrane normal [resp. membrane shearing] strains, κ11, κ22 [resp. κ12]
are bending normal [resp. bending twisting] curvature variations, while χ11, and χ22 are transverse
shearing strains. The equilibrium formulation amounts to a set of five linear differential equations
for displacements and rotations u(z, θ) on the two dimensional domain Ω, plus boundary conditions
on ∂Ω.

Applying Fourier series expansion of dependent variables (3), (4), and (5) with respect to the
circumferential angle θ, the latter form can be reduced to a series of sets of five linear differential
equations for the displacement harmonic amplitudes, on a one dimensional domain: the meridian
curve. Since this treatment is quite consolidated [37–40], and the present work focuses on the
Fourier series form of the equilibrium operator, for conciseness, we hereby present the displacement
formulation in the so called harmonic form, postponing notations and the above recalled intermediate
derivations to Appendices A and B.
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2.4.1. Free Vibration Problem

The free vibration problem is governed by the classical linear eigenvalue problem:
Find (u(j), ω(j)) s.t. for any natural number j,

L(j)(u(j)) = (ω(j))2Mu(j), ∀z ∈ (zi, z f ),

B(j)(u(j)) = 0, z ∈
{

zi, z f

} (6)

where (u(j), ω(j)) is the couple formed by the jth eigen-mode harmonic amplitude (in the sense
specified in (35)), and the associated natural frequency. The inertia operatorM is here taken as:

M = ρA1R diag
{

t t t t3/12 t3/12
}

where ρ is the material mass density [38].

2.4.2. Static Equilibrium Problem

The static equilibrium problem is governed by the following linear elliptic problem:
Find u(j) s.t. for any natural number n,

L(j)(u(j)) = q(j), ∀z ∈ (zi, z f ),

B(j)(u(j)) = 0, z ∈
{

zi, z f

}
.

(7)

The equilibrium operator L(j) and the boundary conditions operator B(j) appearing in (6) and (7)
are reported in Appendix A, depending on the equation R = R(z), i.e., on the meridian shape, and on
the relative metric quantities.

3. B-Spline Basis Functions

Non-Uniform Rational B-Splines - NURBS - are obtained from linear combination of B-Splines
basis functions locally defined over patches of intervals [41]. A B-Spline of degree p is
defined through an ordered set of non-decreasing coordinates in the parametric space: the knot
vector Ξ = {ξ1 = 0, ξ2, . . . , ξn+p+1 = 1}, where p represents the polynomial degree of the interpolation,
and n is the number of basis functions associated to the knot vector. Consequently, it results that
p = 0, 1, 2, 3 . . . refers to constant, linear, quadratic, cubic,... piecewise polynomials, respectively. An
open knot vector has the first and the last knots repeated p + 1 times ensuring that the basis functions
are interpolatory at the extrema of the parametric space [41]. In the following, we assume uniform, i.e.,
equally spaced, open knot vectors.

The B-Spline basis functions Ni,p can be defined starting with piecewise constants (p = 0) by
means of a recursive formula

Ni,0 =

{
1 if ξi ≤ ξ < ξi+1
0 otherwise

i = 1, 2, ..., n (8)

For p = 1, 2, 3, ... it results:

Ni,p =


ξ − ξi

ξi+p − ξi
Ni,p−1 +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1 , if ξi ≤ ξ < ξi+p+1

0 , otherwise
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Accordingly, basis functions of order p have (p− 1) continuous derivatives. If a knot is repeated
k times, then the number of continuous derivatives decreases by k. A knot with multiplicity p, implies
the basis functions to be interpolatory at that knot.

3.1. One Dimensional NURBS Interpolation

A non-uniform rational B-Spline in Rd is the projection onto d-dimensional physical space of a
polynomial B-Spline defined in (d + 1)-dimensional homogeneous coordinate space [41,42]. NURBS
can be used to construct a vast gallery of geometrical entities, starting, for instance, from a discrete set
of measured data [36]. The projective transformation of a B-Spline curve yields a rational polynomial
curve. Inductively, the order p of a NURBS basis is identified as the order of the polynomial basis from
which it was generated by projection.

A NURBS interpolation in Rd is constructed starting from a data set Bw
i (i = 1, ..., n) or control

points, for a B-Spline curve in Rd+1 with knot vector Ξ. The control points for the NURBS curve are
given by [41]:

(Bi)k =
(Bw

i )k

wi
k = 1, ..., d (9)

where (Bi)k is the kth component of the vector Bi and wi = (Bw
i )d+1 is referred to as the ith weight.

The NURBS basis functions of order p are then defined as:

Ri,p(ξ) =
wi Ni,p(ξ)

∑n
i=1 wi Ni,p(ξ)

(10)

Their first and second derivatives are given, respectively, by:

(Ri,p)
′(ξ) =

wi N′i,p(ξ)

∑n
i=1 wi Ni,p(ξ)wi

−
wi Ni,p(ξ)N′i,p(ξ)wi(

∑n
i=1 wi Ni,p(ξ)

)2 (11)

and

(Ri,p)
′′(ξ) =

wi N′′i,p(ξ)

∑n
i=1 wi Ni,p(ξ)

+

+
2wi Ni,p(ξ)

(
∑n

i=1 wi N′i,p(ξ)
)2

(
∑n

i=1 wi Ni,p(ξ)
)3 +

−
2wi N′i,p(ξ)∑n

i=1 wi N′i,p(ξ) + wi Ni,p(ξ)∑n
i=1 wi N′′i,p(ξ)(

∑n
i=1 wi Ni,p(ξ)

)2 (12)

A pth degree NURBS curve is defined by:

C(ξ) =
n

∑
i=1

Ri,p(ξ)Bi (13)

4. NURBS-Based Collocation Method

The main idea in the collocation method is to approximate the strong form of the equilibrium
equations, without addressing a weak formulation typical of the finite element approach [8].
With reference to problem (6) or (7), the method consists in the approximation of the solution u(j),
j = 0, 1, 2, ..., as:

ũ(j) =
n

∑
i=1

Ri,p(ξ)ũ
(j)
i (14)
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where the interpolation functions Ri,p(ξ) follow (10). The discrete form of (6)-(7) is thus obtained
substituting (14) into the equilibrium operator L(j) and into the boundary conditions operator B(j),
respectively. This leads to a set of 5n linear equations for the control values corresponding to (14).
These unknown control values are obtained by enforcing the resulting discrete governing equations at
n prescribed points in the parametric space, ξc (c = 1, ..., n), defined collocation points:

• Free vibration problem L(j)(ũ(j)(ξc)) =
(

ω(j)
)2
M(ξc)(ũ(j)(ξc)) , c = 2, ..., n− 1

B(j)(ũ(j)(ξc)) = 0 , c = 1, n
(15)

• Static equilibrium problem{
L(j)(ũ(j)(ξc)) = q(ξc) , c = 2, ..., n− 1
B(j)(ũ(j)(ξc)) = 0 , c = 1, n

(16)

Solution is thus obtained by solving for the unknown control values ũ(j)
i .

Collocation points are a set of natural coordinate values ξc, c = 1, ..., n, related to the knot vector.
In the present case we will adopt the so called Greville nodes [36,43], i.e.,:

ξc =
1
p

c+p

∑
k=c+1

ξk, c = 1, ..., n (17)

The choice for collocation points is generally guided by an accuracy/efficiency criterion. The
idea is to have a set of points for which known solutions of certain differential operators are exactly
recovered by the numerical scheme [17,44–46]. The choice for collocating governing equations as in
Equation (17) has proved efficient in previous NURBS-based collocation approaches [8,32,33], as it
grants high-order accuracy and smoothness of the parametrization of the unknown with excellent
convergence properties. Noteworthy, according to Johnson [46], Greville collocation points are
associated to the property of linear precision [43], in the sense that if these are used to compute
a B-Spline approximation of a straight line of the form l(u) = au + b, the corresponding B-Spline curve
is a straight line.

Given the interesting performance of standard Lagrange interpolation spaces, for the
implementation of 1D collocation methods for shells of revolution, reported by previous
researches [13–16], in what follows, we explore the superior accuracy of the NURBS approximation
in conjunction with the collocation approach. The attractiveness of this approximation is twofold:
(i) the NURBS high regularity suggests the possibility of obtaining smooth solutions even with
low order approximation and low number of degrees of freedom, (ii) the capability of describing
complex geometries is interesting especially from a structural design point of view, when constructing
geometrical models from measured data is required.

The discretization and solution of problem Equations (6) or (7) is programmed as follows:

1. Define NURBS order p, number of control points n, build open knot vector Ξ, build NURBS basis
and derivatives;

2. Compute collocation points ξc, c = 1, 2, ..., n;
3. Parametrize curvilinear space coordinate z = [zi, z f ] as z = z(ξ), and relevant geometric

quantities, i.e., R(z(ξ)), A1(z(ξ)), sin φ(z(ξ));
4. Collocate above mentioned quantities at collocation points;
5. Approximate equilibrium, mass matrix, and boundary conditions operators: L(j)(z(ξ)),
M(z(ξ)), and B(j)(z(ξ)), respectively, and applied load distribution q(j)(z(ξ)), through
NURBS interpolants;
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6. Collocate discrete governing equations, i.e., equilibrium [resp. boundary condition] equations at
internal [resp. boundary] collocation points;

7. Assemble linear equations, viz. (15)-(16);
8. Solve for ũ(j)

i , j = 0, 1, ...;
9. Post-process solution through NURBS interpolation.

As it is well known, such a discretization procedure does not lead to symmetric banded linear
sets of equations as it is the case with finite element procedures. In particular, the coefficient matrix
is sparse and nonsymmetric [44]; accordingly, factorization methods are generally not the most
efficient, especially when dealing with large scale simulations. It is therefore recommended to resort
to iterative methods such as conjugate gradient methods and residual based methods; is nonetheless
noted that, albeit nonsymmetric, the pattern of coefficient matrices in displacement-based collocation
approaches results competitive with respect to Galerkin finite element approaches which as known
lead to symmetric systems [8].

5. Numerical Results

The present section is dedicated to numerical tests validating the NURBS collocation method for
shells of revolution presented in the previous section. In subsection 5.1, we first present the asymptotic
analysis of the fundamental eigenfrequency for shells of revolution of different Gaussian curvature
(see (34)), an evidential benchmark test for assessing robustness with respect to membrane and shear
locking in rotational shell numerical formulations. Secondly, we address the classical free vibration
problem for different shells of revolution and different boundary conditions, comparing results with
reference solutions. In subsection 5.2, a set of static problems are taken into consideration, in order
to address the question of accuracy and convergence with respect to the order of interpolation and
discretizaion. Finally, a simple technical problem is considered, validating the applicability of the
present approach to problems of shell analysis and design, for shells with complex geometry.

5.1. Free Vibration Problems

5.1.1. Asymptotic Analysis of Fundamental Frequency

Following [47–49], in this section we study the dependence of the lowest (fundamental) frequency
on the thickness t as this quantity approaches zero. Three representative cases of Parabolic (zero
Gaussian curvature), Elliptic (positive Gaussian curvature), and Hyperbolic (negative Gaussian
curvature) shells of revolution are considered. The shells have clamped boundary conditions, in
order to study the inhibited pure bending behavior [49]. The three cases reported in the following are
characterized, respectively, by meridian equation of:

• Parabolic shape:

R(z) = 1, z ∈ [−H, H] (18)

• Elliptic shape:

R(z) =

√
b2
(

1− z2

a2

)
, z ∈ [−H, H] (19)

with a2 = 25
9 H2, b2 = H2;

• Hyperbolic shape:

R(z) =

√
a2
(

1 +
z2

b2

)
, z ∈ [−H, H] (20)
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with a2 = H2, b2 = 16
9 H2.

and H = 1. Material constants for the numerical simulations are E = 2.1 × 1011 Pa, ν = 0.3,
ρ = 7868 Kg/m3. The scope of this test is to check the asymptotic behaviors of the square of
the fundamental, i.e., lowest, eigenfrequency ω2

0 when computed with the NURBS collocation method.
In passing, it is recalled that the lowest eigenfrequency ω2

0 does not necessarily correspond to harmonic
number j = 0, nor any specific a-priori-known value j. Expected asymptotic rates are [47,50]:

• Parabolic shell:
lim
t→0

ω2
0 = t (21)

• Elliptic shell:
lim
t→0

ω2
0 = t0 (22)

• Hyperbolic shell:
lim
t→0

ω2
0 = t2/3 (23)

In Figure 2 we report the logarithmic dependence of ω2
t vs. thickness ratio t/H, for the three

considered geometries. Accuracy in the low thickness range requires a fine discretization and high
NURBS interpolation order, namely n = 101 and p = 11. In Table 1 we report the eigenvalues
at specified thickness values, delimiting subsequent thickness branches in the logarithmic scale.
The slopes of these branches are in agreement with the theoretical prediction on asymptotic behavior
of the fundamental frequency Equations (21)–(23). The above results prove the present method is
capable of efficient treatment of situations in which geometry, boundary conditions and regularity
of applied loads induce a so called intermediate state for which nor the bending strain energy or the
membrane strain energy dominates on one another in the asymptotic regime, and interior or boundary
layers concentrate the majority of the strain energy. Such situations are prone to numerical locking and
strong instabilities in the solution [34,48]. In this regard, a necessary condition for a numerical scheme
to be locking-free is given by Equations (21)–(23), which are satisfied by the present method.
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Figure 2. Asymptotic analysis of fundamental frequency. Asymptotic pattern of lowest eigenfrequency
ω0 with respect to thickness ratio t/H approaching zero. Different shells of revolution: elliptic - red
dashed line with stars, parabolic - blue solid line with circles, hyperbolic - black dashed-dot line
with bullets.
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Table 1. Asymptotic analysis of fundamental frequency ω2
0 with respect to thickness ratio t/H for

elliptic, parabolic, and hyperbolic shells of revolution. Slope values for different branch values in the
asymptotic regime.

t/H Parabolic Slope Elliptic Slope Hyperbolic Slope

10−2 104.215276 464.007232 323.741324
0.86531 0.11402 0.54346

10−3 38.483324 406.921457 173.166457
0.97565 0.07091 0.65487

10−4 12.515376 375.017756 81.474984
0.953114 0.03469 0.66104

10−5 4.025786 360.333432 38.062875
0.98518 0.01484 0.66326

10−6 1.289914 354.228976 17.736469
0.98857 0.00610 0.66686

10−7 0.417654 351.74876 8.211765

5.1.2. Clamped Hemispherical Shell in Free Vibration

A clamped hemispherical dome with radius a and uniform thickness t (a/t = 100), see Figure 3,
is considered [51,52]. The values of the non-dimensional frequency parameter λ = aω(j)(ρ/E)1/2 are
reported in Table 2, for the first six modes and for different values of the harmonic number j. Reference
results obtained with a Lagrange collocation method [14], and those from a Spline finite element
solution by Luah and Fan [53] are reported for validation. The present frequency parameter values
are obtained selecting n = 35, p = 4 for the lowest mode frequencies, up to n = 85, p = 8 for higher
modes. Noteworthy, the closed apex condition required by this type of shell [16,37] can be modeled by
the present approach straightforwardly, as it implies enforcement of special homogeneous Dirichlet
boundary condition at z = 0, depending on the harmonic number j:

u(0) = v(0) = β
(0)
1 = β

(0)
2 = 0 (24)

u(1) + v(1) = 0, w(1) = 0, β
(1)
1 + β

(1)
2 = 0 (25)

u(j) = v(j) = w(j) = β
(j)
1 = β

(j)
2 = 0, j ≥ 2 (26)

Figure 3. Clamped hemispherical shell in free vibration. Cross section.

The present results are in agreement with the reference results, confirming the accuracy of the
proposed technique, even for cases in which shear locking is expectable [54]. The method proves
computationally efficient as even in the higher mode regime, the size of the eigenvalue problem is
smaller than that associated to the reference results.
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5.1.3. Simply supported circular plate in free vibration

A circular plate of radius a and thickness t, simply supported along the boundary, is considered.
For conciseness, we shall refer to the shell geometry and boundary conditions as shown in Figure 7
even if related to the numerical test reported in Section 5.2.2. The non-dimensional parameter
λ = [12(1− ν2)ρa4(ω(j))2/(Et2)]1/2 computed with the present method is reported in Table 2, in
agreement with reference values obtained in [14], and with those available from a Spline finite element
approach by Luah and Fan [53]. The results confirm the interesting capabilities of the proposed
approach for the free vibration analysis of rotational shells with different shapes and boundary
conditions at a low computational cost. Numerical simulations show monotonic convergence to the
computed eigenfrequencies, for increasing interpolation order p up to p = 5, and discretization order
n up to n = 35. No spurious modes arise.

Figure 4. Cantilever cylindrical shell under tip load. Cross section.

Table 2. Clamped hemispherical shell in free vibration. Non-dimensional frequency parameter
λ = aω(j)(ρ/E)1/2. Reference results from [53] (parentheses) and from [14] (brackets).

Harmonic Number j Mode Number m
1 2 3 4 5 6

0.761 0.939 0.988 1.029 1.087 1.172
0 (0.761) (0.938) (0.984) (1.021) (1.021) (−)

[0.760] [0.938] [0.984] [1.020] [1.070] [1.146]

0.567 0.893 0.965 1.003 1.047 1.112
1 (0.567) (0.894) (0.966) (1.002) (1.046) (1.106)

[0.567] [0.893] [0.965] [1.002] [1.046] [1.115]

0.901 0.966 0.998 1.030 1.079 1.151
2 (0.901) (0.966) (0.998) (1.031) (1.081) (1.153)

[0.901] [0.966] [0.997] [1.029] [1.077] [1.150]

0.947 0.989 1.023 1.065 1.121 1.203
3 (0.948) (0.990) (1.024) (1.066) (1.124) (1.207)

[0.947] [0.988] [1.022] [1.063] [1.119] [1.206]

0.969 1.005 1.043 1.094 1.162 1.259
4 (0.969) (1.005) (1.045) (1.095) (1.167) (1.264)

[0.969] [1.004] [1.042] [1.091] [1.159] [1.266]

0.984 1.020 1.065 1.124 1.208 1.321
5 (0.985) (1.021) (1.066) (1.127) (1.213) (1.327)

[0.985] [1.019] [1.062] [1.120] [1.204] [1.341]
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5.2. Static Equilibrium Problems

5.2.1. Cantilever Cylindrical Shell under Tip Load

A circular cylindrical shell, clamped at one end, with a uniform radial line load Q̄ = 1 kN/m
acting on the free edge, is considered, see Figure 4. The geometric data are R = 5 m, t = 0.01 m,
H = 6 m, the Young’s modulus and the Poisson ratio are, respectively, E = 107 kN/m2, and ν = 0.3.
Axial symmetry permits to address the equilibrium problem for the j = 0 harmonic only. The line
load is taken into account by modifying the free boundary conditions at z = 0, Equations (59)–(61), to
guarantee that Q11 equals the applied force on that boundary.

The present classical benchmark is here adopted as a tool for calibrating the model with respect to
parameters n and p, i.e., mesh discretization (h−refinement) and order of interpolation (p−refinement),
and for a given accuracy level. To this end, a reference solution proposed by Timoshenko and
Woinowsky-Krieger [55] for semi-infinite circular cylindrical shells in axisymmetrical bending, is here
taken into consideration for comparison and accuracy assessment. The structural behavior, which
shifts from shear-flexural near the loaded edge to membrane dominated at the clamped boundary, is
correctly reproduced by the NURBS-based collocation approach, as can be seen in Figure 5a,b, where
M11 and Q11 are plotted, respectively, for an overkilling discretization with n = 250 and p = 7 with
a relative error norm below 10−12, together with values computed through the reference solution at
selected locations. The results are in agreement, plus the static boundary condition is exactly satisfied
in solution.
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(b)

Figure 5. Cantilever cylindrical shell under tip load. (a) Bending moment M11: blue solid line—present
results vs. blue bullets—reference results [55]. (b) Shear force Q11: blue solid line—present results vs.
blue bullets—reference results [55].

Moreover, in order to assess the method convergence properties, we have plotted the H1-error
norms, of the tip transverse displacement w(0), Figure 6a, and of bending moment M11(0), Figure 6b,
for odd and even NURBS order p, and for increasing discretization refinements n. The asymptotic
tendency of the error norm is consistent with analogous results reported in [31], where the static
problem for Timoshenko spatial beams is addressed with a NURBS based collocation method.
In particular, the logarithmic error is of the order n−p for any duplets of orders (p, p + 1), with
even p, as theoretically predicted [32].
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Figure 6. Cantilever cylindrical shell under tip load. Accuracy and convergence assessment for
h−refinement and p−refinement. H1-norm relative error log− log plot for different on-Uniform
Rational B-Spline (NURBS) interpolation order p and different discretization size n: (a) transverse tip
displacement w(0); (b) shear force Q11(0). blue diamonds - p = 3, red stars - p = 4, black circles - p = 5,
green squares p = 6, magenta bullets p = 7.

5.2.2. Simply Supported Circular Plate Subject to Uniform Pressure

We consider a simply supported circular plate under uniform normal load qw, Figure 7. This
benchmark has a closed-form solution, cfr. [56]. The material parameters are E = 106 kN/m2, ν = 0.0,
the plate radius is a = 1 m, the thickness is t = 10−3 m, and the applied surface load is qw = 1 kN/m2.
The load presents axial symmetry and requires to solve (7) for the j = 0 harmonic only; closed apex
conditions plus straight meridian geometry is fully taken into account by the present approach as the
former amounts to special homogeneous Dirichlet boundary conditions (24), the latter is contemplated
by (30)-(31). We report in Table 4 the results obtained with the present approach, compared with
an analytical solution [37], and with a hybrid mixed rotational finite element solution [57]. A space
discretization characterized by n = 7 and p = 4 is sufficient to obtain accurate results. Resorting to
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the NURBS basis structure, post-processed quantities such as the bending and twisting moments in
Figure 8a, and the rotation degrees of freedom in Figure 8b, can be plotted.

Figure 7. Simply supported circular plate subject to uniform pressure. Cross section.
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Figure 8. Simply supported circular plate subject to uniform pressure qw. (a) Bending moment
M11 - blue solid line, bending moment M22 - red dotted line), twisting moment M12 - black dashed-dot
line; (b) Rotation β1 - blue solid line, rotation β2 - red dotted line.

Table 3. Simply supported circular plate in free vibration. Frequency parameter
λ = [12(1− ν2)ρa4(ω(j))2/(Et2)]1/2. Reference results from [14] (parentheses) and from [53] (brackets).

Harmonic Number n Maude Number m
1 2 3 4 5 6

4.93542 29.7232 74.171 138.356 222.303 325.953
0 (4.93515) (29.7201) (74.1553) (138.324) (222.164) (324.896)

[4.93515] [29.7301] [74.1576] [138.329] [224.264] [326.013]
13.8981 48.4784 102.771 176.794 270.551 384.048

1 (13.6586) (49.9285) (102.909) (178.803) (270.489) (384.078)
[13.8982] [48.4791] [102.776] [176.816] [270.630] [384.279]
25.6131 70.1160 134.295 218.209 321.919 445.651

2 (25.6132) (70.1163) (134.295) (218.195) (321.826) (445.187)
[25.6128] [70.1150] [134.296] [218.213] [321.909] [445.467]
39.9569 94.5470 168.668 262.470 375.990 509.272

3 (39.9570) (94.5476) (168.670) (262.474) (375.991) (509.231)
[39.9573] [95.5496] [168.681] [262.519] [376.142] [509.661]
56.8408 121.699 205.841 309.588 433.026 576.244

4 (56.8411) (121.700) (205.845) (309.593) (433.021) (576.155)
[56.8416] [121.703] [205.859] [309.649] [433.205] [576.673]
76.2018 151.513 245.765 359.507 492.896 646.089

5 (76.2022) (151.514) (245.769) (359.513) (492.884) (645.932)
[76.2031] [151.519] [245.787] [359.581] [493.104] [646.548]
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Table 4. Simply supported circular plate subject to uniform pressure. Comparison of present results
for w, β1, and M11 at different locations z, for cp = 7, p = 4. Theoretical results from [56], reference
results from [57].

z [m] Theor. [56] Present Ref. [57]

0.00 0.938 0.938 0.939
0.25 0.868 0.868 0.868

w× 10−3 [m] 0.50 0.668 0.668 0.668
0.75 0.364 0.364 0.364
1.00 0 0 0
0.00 0 0 0
0.25 0.551 0.551 0.551

β1 × 10−3 0.50 1.031 1.031 1.031
0.75 1.371 1.371 1.371
1.00 1.500 1.500 1.500
0.00 0.188 0.188 0.188
0.25 0.176 0.176 0.176

M11 [kN m/m] 0.50 0.141 0.141 0.141
0.75 0.082 0.082 0.082
1.00 0 0 3× 10−14

5.2.3. Hemispherical Shell under Uniform Pressure

This numerical test presents a spherical shell of radius a = 1 and uniform thickness t = 0.01,
see Figure 9. The shell is loaded by a uniform internal pressure qw = 1. The Young modulus is
E = 2.1× 1011 and the Poisson ratio is ν = 0.3. Due to symmetry, only the upper half shell is modeled,
with closed apex conditions at z = 0 and sliding edge boundary condition at z = R. The solution for
displacement and strain components is expected to in a pure membrane dominated regime with zero
shear/bending deformation. Henceforth, given the aim of the present test, no reference solution is
here taken into account. The NURBS collocation is applied with n = 35 and p = 5, sufficient to grant
the exact solution reported in the following. The results shown in Figure 10a,b for displacement and
strain components are in agreement with theory, in particular zero tangential displacements v as well
as null membrane shearing strains ε12 are correctly recovered, for a pure membrane equilibrium state
of the spherical shell characterized by ε11 = ε22. It is readily checked that curvature variations and
shear strains are identically zero as expected.

Figure 9. Hemispherical shell under uniform pressure. Cross section.
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Figure 10. Spherical shell under uniform pressure. (a) Displacement components: u - blue solid line
with stars, v - red dotted line with circles, w - black solid line. (b) Strain components: ε11 - blue solid
line with stars, ε22 - red dotted line with circles, ε12 - black solid line.

5.2.4. Hyperboloid of Revolution under Wind Load

The example presents a doubly curved hyperboloid of revolution, a typical cooling tower structure,
Figure 11, subject to wind pressure. Geometrical data for the shell are, a = 84 ft, T = 60 ft, H = 330 ft,
t = 7 in. The Young modulus is E = 432× 106 lb/ft2, Poisson ratio is ν = 0.15. The surface load
qw is constant along the tower height, and is not symmetric with respect to the axis of revolution;
in particular, qw varies with the circumferential coordinate θ as reported in Figure 12 [57]. The
distributed load is expanded in Fourier series taking into account the first ten harmonic components
j = 0, 1, ..., 9. The present analysis aims at determining both displacements and stress resultants for
the structure, which are respectively plotted in Figures 13 and 14, where a comparison with different
reference solutions available in the literature is carried out [58], together with a reference solution
computed with SHORE III, a ring finite element code developed by [59]. The proposed methodology
yields reliable results for n = 35 and p = 8 even for the case of a doubly curved rotational shell with
unsymmetrical loading, which produces complex stress resultants and couples patterns. The numerical
test confirms the present method capability of analyzing real shell structures under complex loading
conditions with favorable accuracy.

Figure 11. Hyperboloid of revolution under wind load. Cross section.
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Figure 12. Hyperboloid of revolution under wind load. Wind pressure qw vs. circumferential angle θ.
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Figure 13. Hyperboloid of revolution under wind load. Displacement components: u—blue solid line,
v—red dotted line, w black dashed-dotted line - present results vs. black bullets— reference results [58].
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Figure 14. Hyperboloid of revolution under wind load. (a) Membrane stress resultant N11: blue solid
line—present approach vs. blue bullets—reference results [58]; membrane stress resultant N22: red
solid line - present approach vs. red bullets—reference results [58]. (b) Bending moment M11: blue
solid line—present approach vs. blue bullets—reference results [59]; bending moment M22: red solid
line - present approach vs. red bullets—reference results [59].

5.2.5. Torispherical tank subject to uniform internal pressure

The example presents a technical problem for a so called compound shell, namely a shell of
revolution obtained by the smooth blending of different shell segments, each having a particular
meridian curve geometry [37], see Figure 15. The shell comprises a closed-apex spherical cap OA1 of
radius a1 = 172.8981 in. and length H1 = 18.675 in., a torus segment A1 A2 of radius a2 = 32.74 in. and
length H2 = 29.2 in., and a cylindrical portion with radius a3 = 96.1 in. and length H3 = 24 in.; the
thickness t is uniformly equal to 0.20 in. The Young modulus is E = 3.0× 104 psi, the Poisson ratio is
ν = 0.3.

Figure 15. Torispherical tank subject to uniform internal pressure. Cross section.

In order to model the pre-buckling elastic stress pattern, which is known to induce particularly
severe compressive circumferential stresses in the toroidal region, the shell is loaded by a uniform
internal pressure qw = 150 psi [37]. The geometry in the present analysis is constructed using three
different NURBS control polygons, each one pertaining to a single shell segment, and each set with an
equal number of basis functions. The three subdomains are then patched together, granting regularity
of the meridian at the junctions and C0 continuity of displacements and rotations, a procedure referred
to as domain decomposition [44,45]. Nonetheless, it is pointed out that it is possible to use a single basis
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to describe the entire geometry and to collocate governing equations over the single control polygon.
NURBS basis for collocation is characterized by n = 55 on the spherical and toroidal segments, and
n = 7 on the cylindrical region. The order of the interpolants is p = 5. The reference solution for this
benchmark is provided by the finite element code SHORE III, adopting a fine mesh discretization with
128 quartic displacement based elements on both spherical and toroidal parts, and with 8 elements on
the cylindrical segment. Results and comparison are plotted in Figure 16, reporting displacements u
and w, and in Figure 17 for rotation β1. Figure 18a [resp. 18b] show the axial σ11 and circumferential
σ22 normal stress components at inner (ζ = −t/2) and outer (ζ = t/2) surface of the shell [60]:

σii =
Nii
t
± 6Mii

t2 i = 1, 2 (27)

obtained by post processing of stress resultants and couples. Remarkably good agreement is observed
between present and reference results, confirming the capability of the proposed technique to study
complex technically relevant problems for shells of revolution, as the aforementioned pre-buckling
analysis of a cylindrical tank with torispherical head.
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Figure 16. Torispherical tank subject to uniform internal pressure. Displacement components: u blue
solid line - present approach vs. blue bullets - reference solution [53], w red solid line - present approach
vs. red bullets - reference solution [59].
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Figure 17. Torispherical tank subject to uniform internal pressure. Rotation β1 solid blue line - present
approach vs. blue bullets - reference solution [59].
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Figure 18. Torispherical tank subject to uniform internal pressure. (a) Axial normal stress σ11—inner
(ζ = −t/2) blue solid line -present approach vs. blue bullets— reference solution [59], outer (ζ = t/2)
red solid line—present approach vs. red bullets—reference solution [59]. (b) Circumferential normal
stress σ22—inner (ζ = −t/2) blue solid line—present approach vs. blue bullets— reference solution [59],
outer (ζ = t/2) red solid line - present approach vs. red bullets—reference solution [59].

6. Conclusions

In this paper we have presented a NURBS-based collocation method for the elastic analysis of
shells of revolution. Both the free vibration and the static equilibrium problems have been investigated
in the realm of Reissner-Mindlin theory. Use of Fourier series expansion of dependent variables
with respect to the circumferential angle permits to solve the problem as a series of one-dimensional
differential equation sets. A NURBS-based collocation method has been presented exploiting the
superior behavior of such interpolation methodology which grants higher order accuracy and
regularity. The proposed method has been tested on different free vibration and static equilibrium
benchmark problems, showing its versatility and accuracy in computing free vibration modes and
frequencies, as well as stresses and displacement patterns. Comparison with existing results seems
encouraging and confirm the interesting approximation properties of NURBS basis functions which
grant avoidance of numerical problems such as locking and instability. The robustness shown by
the proposed methodology suggests implementation into a general purpose code for the structural
analysis and design of complex shell structures.

Acknowledgments: M.L.D.B. and E.A. wish to thank R.L. Taylor and L. Beirão da Veiga for valuable comments
during the preparation of this work.

Author Contributions: M.L.D.B. and E.A. equally contributed to modeling and numerical campaign in the
present work.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Fundamental Relationships for Shells of Revolution

For later convenience, we introduce the diagonal matrix operators:

D̃(j)
1 (θ) = diag {cos jθ, sin jθ, cos jθ, cos jθ, sin jθ} , (28)

D̃(j)
2 (θ) = diag {cos jθ, cos jθ, sin jθ, cos jθ, cos jθ, sin jθ, cos jθ, sin jθ} , (29)

j = 0, 1, 2, ...
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Appendix A.1. Metric Quantities on Shell Mid-Surface

Given the meridian equation R = R(z), the first fundamental form for shells of revolutions and
the principal curvature radii of meridian read [37]:

A1 = A1(z) = [1 + (R,z)
2]1/2 (30)

R1(z) = −[1 + (R,z)
2]3/2/(R,zz) (31)

R2(z) = R(z)/ sin φ(z) (32)

where the sinus of colatitude angle φ (cfr. Figure 1) is given by:

sin φ(z) = [1 + (R,z)
2]−1/2 (33)

The Gaussian curvature of the meridian is defined by:

κ(z) =
1

R1(z)R2(z)
(34)

Appendix A.2. Fourier Series Expansions

Fourier series expansions with respect to the circumferential coordinate θ, for quantities relevant
to the problem under consideration, are reported in the following:

• Displacements and rotations.

u(z, θ) =
∞

∑
n=0

D̃(j)
1 (θ)u(j)(z) (35)

with the vector

u(j)(z) =
[
u(j) v(j) w(j) β

(j)
1 β

(j)
2

]T
(36)

collecting the 5 displacement components harmonic amplitudes.

In the case of a free vibration problem, harmonic motion is assumed, i.e., the time dependence of
u(j)(z, τ) is taken as:

u(j)(z, τ) = u(j)(z) exp[−iω(j)τ]

• Stress resultants and couples.

S(z, θ) =
∞

∑
n=0

D̃(j)
2 (θ)S(j)(z) (37)

with the vector

S(j)(z) =
[

N(j)
11 N(j)

22 N(j)
12 M(j)

11 M(j)
22 M(j)

12 Q(j)
11 Q(j)

22

]T
(38)

collecting the 8 stress resultants harmonic amplitudes.
• Strain components.

ε(z, θ) =
∞

∑
n=0

D̃(j)
2 (θ)ε(j)(z) (39)
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with the vector

ε(j)(z) =
[
ε
(j)
11 ε

(j)
22 ε

(j)
12 κ

(j)
11 κ

(j)
22 κ

(j)
12 χ

(j)
11 χ

(j)
22

]
(40)

ordering the 8 strain components harmonic amplitudes.
• Surface loads.

q(z, θ) =
∞

∑
n=0

D̃(j)
1 (θ)q(j)(z) (41)

with q(j)(z) =
[
q(j)

u q(j)
v q(j)

w 0 0
]
.

Appendix A.3. Strain-Displacement Operator

Strain-displacement relationships, viz. Equation (5), are defined in Fourier series form, through
the linear differential (8-row by 5-column) matrix operator A(j) which gives the 8 strain components
harmonic amplitudes ε(j)(z), viz. Equation (40) in terms of the 5 displacement components harmonic
amplitudes u(j)(z), viz. Equation (36):

ε(j) = A(j)u(j) (42)

whose non-null components turn out to be:

A(j)
11 = (1/A1)(...),z ;A(j)

13 = (1/R)1(...) (43)

A(j)
21 = (R,z/RA1)(...) ;A(j)

22 = (j/R)(...) ;A(j)
23 = (sin φ/R)(...) (44)

A(j)
31 = −(j/R)(...) ;A(j)

32 = (R,z/RA1)(...) + (1/A1)(...),z (45)

A(j)
44 = (1/A1)(...) (46)

A(j)
54 = (R,z/RA1)(...) ;A(j)

55 = (j/R)(...) (47)

A(j)
64 = −(j/2R)(...) ;A(j)

65 = −(R,z/2RA1)(...) + (1/2A1)(...),z (48)

A(j)
71 = −(1/R1)(...) ;A(j)

73 = (1/A1)(...),z ;A(j)
74 = (...) (49)

A(j)
82 = −(sin φ/R)(...) ;A(j)

83 = −(j/R)(...) ;A(j)
85 = (...) (50)

for j = 0, 1, 2, .... The entries of differential operator A(j) are of the form: A(j)
lm = f (z)(...) + g(z)(...),z

(l = 1, ..., 8; m = 1, ..., 5), which represents the contribution to the l − th component of ε(j)(z)
Equation (40) from the m − th component of u(j)(z) Equation (36). In particular, the term f (z)(...)
stands for pre-multiplication of the function f (z) by the m− th component of u(j)(z); the term g(z)(...),z

stands for pre-multiplication of the function g(z) by the first derivative of the m− th component of
u(j)(z) with respect to z.

Appendix A.4. Linear Elastic Constitutive Equation

For linear elastic isotropic material, with Young’s modulus E, and Poisson ratio ν, the constitutive
equation relating internal action and strain components in Fourier series form, reads [37,38]:

S(j)(z) = Cε(j)(z), j = 0, 1, ... (51)

being:
C = diag {Cm,Cb,Cs} (52)
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The constitutive matrix operator C is given by:

Cm =

 E1 E2 0
E2 E1 0
0 0 E3

 ; Cb =
t2

6
Cm ; Cs =

[
E7 0
0 E7

]
(53)

where E1 = Et/2(1− ν2), E2 = νE1, E3 = (1− ν)E1/2, and E7 = (5/6)E3.

Appendix B. Equilibrium and Boundary Conditions Operators

Appendix B.1. Equilibrium Operator

With reference to Equations (6) and (7), the equilibrium operator L(j) is defined as follows:

L(j)
11 = 1/[R(1 + R2

,z)]{E1R2
,z/R

+ E2R,zz[R2
,z/(1 + R2

,z)− 1]

+ j2E3/R(1 + R2
,z) + E7R/R2

1(1 + R2
,z)}(...)

+ E1R,z/[R(1 + R2
,z)][(RR,zz)/(1 + R2

,z)− 1](...),z

− E1/(1 + R2
,z)(...),zz

L(j)
12 = jR,z/[R2(1 + R2

,z)
1/2](E1 + E3)(...)

− j(E1 + E2)/[R(1 + R2
,z)

1/2](...),z

L(j)
13 =1/[R(1 + R2

,z)
1/2]{E1R,z/R[1/(1 + R2

,z)
1/2

− R/R1 − R2/R,z(1/R1),z]}
+ E2R,z[1/R1 + R,zz/(1 + R2

,z)
3/2]}(...)

+ 1/[R(1 + R2
,z)

1/2][−R/R1(E1 + E7)

+ E2/(1 + R2
,z)

1/2](...),z

L(j)
14 =− E7/R1(...)

L(j)
15 =0

L(j)
21 = jR,z/[R2(1 + R2

,z)
1/2](E1 + E3)(...)

+ j(E2 + E3)/[R(1 + R2
,z)

1/2](...),z

L(j)
22 = 1/[R2(1 + R2

,z)][E1 j2(1 + R2
,z)/R

+ E3RR2
,zR,zz(1/(1 + R2

,z)
1/2 + 1/(RR,zz)− 1)

+ E7](...)

+ E3R,z/[R(1 + R2
,z)](RR,zz/(1 + R2

,z)− 1)(...), z

− E3/(1 + R2
,z)(...),zz

L(j)
23 = j/[R2(1 + R2

,z)
1/2][E1

+ E2R(1 + R2
,z)

1/2/R1 + E7](...)

L(j)
24 = 0

L(j)
25 = E7/[R(1 + R2

,z)
1/2](...)
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L(j)
31 = 1/[R(1 + R2

,z)
1/2][E1R,z/[R(1 + R2

,z)
1/2]

+ E2/R1 + E7/R1,z(R− R,z)](...)

+ 1/[R(1 + R2
,z)

1/2][E1/(RR1) + E2/(1 + R2
,z)

1/2

+ E7R/R1](...),z

L(j)
32 = j/[R(1 + R2

,z)
1/2][E1 + E2(1 + R2

,z)
1/2/R1

+ E7/R](...)

L(j)
33 = [E1(1/R2 + 1/[R2(1 + R2

,z)
1/2])

+ E2(R1/[R(1 + R2
,z)

1/2]

+ 1/[R1R(1 + R2
,z)

1/2]) + E7 j2](...)

+ E7R,z/[R(1 + R2
,z)][1− RR,zz/(1 + R2

,z)](...),z

− E7/(1 + R2
,z)(...),zz

L(j)
34 = −E7R,z/[R(1 + R2

,z)]
1/2(...)

− E7/[R(1 + R2
,z)]

1/2(...),z

L(j)
35 = −jE7/R(...)

L(j)
41 = −E7/R1(...)

L(j)
42 = 0

L(j)
43 = E7/(1 + R2

,z)
1/2(...),z

L(j)
44 = 1/[R(1 + R2

,z)]{E4R2
,z/R

+ E5R2
,z[1/(1 + R2

,z)− 1] + j2E6/R(1 + R2
,z)

+ E7R(1 + R2
,z)}(...)

+ 1/[R(1 + R2
,z)

2][E4R,z(RR,zz/(1 + R2
,z)− 1)](...),z

− E4/(1 + R2
,z)(...),zz

L(j)
45 = jR,z/[R2(1 + R2

,z)
1/2][E4 + E6](...)

− j/[R(1 + R2
,z)

1/2](E5 + E6R)(...),z

L(j)
51 = 0

L(j)
52 = −E7/[R(1 + R2

,z)
1/2]

L(j)
53 = −jE7/R

L(j)
54 = jR,z/[R2(1 + R2

,z)
2](E4 + E6)(...)

+ j/[R(1 + R2
,z)

2](E5 + E6)(...),z

L(j)
55 = 1/[R(1 + R2

,z)][E4 j2(1 + R2
,z)/R

+ E6R,zz(1− R2
,z/(1 + R2

,z) + R2
,z/(RR,zz))

+ E7R(1 + R2
,z)](...)

+ 1/[R(1 + R2
,z)][E6R,z(RR,zz/(1 + R2

,z)− 1)](...),z

− E6/(1 + R2
,z)(...),zz
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The entries of differential operator L(j) are of the form: L(j)
lm = f (z)(...) + g(z)(...),z ++h(z)(...),zz

(l = 1, ..., 5; m = 1, ..., 5), which represents the contribution to the l − th equilibrium Equations (6)
and (7) from the m− th component of u(j)(z) (Equation (36)). In particular, the term f (z)(...) stands for
pre-multiplication of the function f (z) by the m− th component of u(j)(z); the term g(z)(...),z stands
for pre-multiplication of the function g(z) by the first derivative of the m− th component of u(j)(z)
with respect to z; the term g(z)(...),z stands for pre-multiplication of the function h(z) by the second
derivative of the m− th component of u(j)(z) with respect to z.

Appendix B.2. Boundary Conditions

Boundary conditions operators relevant to the present treatment, Equations (6) and (7), are
reported in the following:

• Free edge

B(j)
11 = E1A

(j)
11 (...) + E2A

(j)
21 (...) (54)

B(j)
12 = E2A

(j)
22 (...) (55)

B(j)
13 = E1A

(j)
13 (...) + E2A

(j)
23 (...) (56)

B(j)
21 = E3A

(j)
31 (...) (57)

B(j)
22 = E3A

(j)
32 (...) (58)

B(j)
31 = E7A

(j)
71 (...) (59)

B(j)
33 = E7A

(j)
73 (...) (60)

B(j)
34 = E7A

(j)
74 (...) (61)

B(j)
44 =

t2

6

[
E1A

(j)
44 (...) + E2A

(j)
54 (...)

]
(62)

B(j)
45 =

t2

6
E2A

(j)
55 (...) (63)

B(j)
54 =

t2

6

[
E3A

(j)
44 (...) + E3A

(j)
54 (...)

]
(64)

B(j)
55 =

t2

6
E3A

(j)
55 (...) (65)

• Simply supported edge

B(j)
11 = B(j)

22 = B(j)
33 = B(j)

55 = 1 (66)

B(j)
44 =

t2

6

[
E1A

(j)
44 (...) + E2A

(j)
54 (...)

]
(67)

B(j)
45 =

t2

6
E2A

(j)
55 (...) (68)

• Sliding edge

B(j)
11 = B(j)

22 = B(j)
44 = B(j)

55 = 1 (69)

B(j)
31 = E7A

(j)
71 (...) (70)

B(j)
33 = E7A

(j)
73 (...) (71)

B(j)
34 = E7A

(j)
74 (...) (72)

• Clamped edge
B(j)

11 = B(j)
22 = B(j)

33 = B(j)
44 = B(j)

55 = 1 (73)
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