Next Article in Journal
Structural and Corrosion Study of Uncoated and Zn-Cu Coated Magnesium-Based Alloy
Previous Article in Journal
Corrosion Fatigue of Austenitic Stainless Steels for Nuclear Power Engineering
Previous Article in Special Issue
Nanocrystallization in the Duplex Ti-6Al-4V Alloy Processed by Multiple Laser Shock Peening
Article Menu

Export Article

Open AccessFeature PaperArticle
Metals 2016, 6(12), 320; doi:10.3390/met6120320

Laser-Driven Ramp Compression to Investigate and Model Dynamic Response of Iron at High Strain Rates

Laboratoire pour l’Utilisation des Lasers Intenes (LULI)–Centre National pour la Recherche Scientifique (CNRS), Ecole Polytechnique, Commissariat à l’Energie Atomique (CEA): Université Paris-Saclay, 91128 Palaiseau CEDEX, France
Département de Physique, Université Abdou Moumouni de Niamey, BP. 10662 Niamey, Niger
Institut P’. Centre National pour la Recherche Scientifique (CNRS). Ecole Nationale Supérieure de Mécanique et d’Aérotechnique (ENSMA) , Université de Poitiers, 86961 Futuroscope CEDEX, France
Sorbonne Université, Université Pierre et Marie Curie, Université Paris 06, Centre National pour la Recherche Scientifique (CNRS), Laboratoire d’Utilisation des Lasers Intenses (LULI), Place Jussieu, 75252 Paris CEDEX 05, France
Gesellschaft für Schwerionenforschung, Planck str. 1, Darmstadt 64287, Germany
Author to whom correspondence should be addressed.
Academic Editor: Patrice Peyre
Received: 14 October 2016 / Revised: 2 December 2016 / Accepted: 8 December 2016 / Published: 18 December 2016
(This article belongs to the Special Issue Laser Shock Processing on Metal)
View Full-Text   |   Download PDF [1503 KB, uploaded 19 December 2016]   |  


Efficient laser shock processing of materials requires a good characterization of their dynamic response to pulsed compression, and predictive numerical models to simulate the thermomechanical processes governing this response. Due to the extremely high strain rates involved, the kinetics of these processes should be accounted for. In this paper, we present an experimental investigation of the dynamic behavior of iron under laser driven ramp loading, then we compare the results to the predictions of a constitutive model including viscoplasticity and a thermodynamically consistent description of the bcc to hcp phase transformation expected near 13 GPa. Both processes are shown to affect wave propagation and pressure decay, and the influence of the kinetics of the phase transformation on the velocity records is discussed in details. View Full-Text
Keywords: laser; shock compression; quasi-isentropic compression; iron; phase transition kinetics laser; shock compression; quasi-isentropic compression; iron; phase transition kinetics

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Amadou, N.; Brambrink, E.; de Rességuier, T.; Manga, A.O.; Aboubacar, A.; Borm, B.; Molineri, A. Laser-Driven Ramp Compression to Investigate and Model Dynamic Response of Iron at High Strain Rates. Metals 2016, 6, 320.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Metals EISSN 2075-4701 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top