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Abstract: The aim of this study was to investigate the effects of the cryogenic treatment (CT) using
liquid nitrogen on tensile properties and microstructures of the 2024-T351 aluminum alloy. Tensile
tests were carried out, and tensile fractures were observed using a scanning electron microscope
(SEM). The microstructure evolution of 2024-T351 subjected to CT was also studied using both
an optic microscope (OM) and a SEM. The components of the second phase were tested with an
energy dispersive spectrometer (EDS). The results showed that both the ultimate strength and the
yield strength of the 2024-T351 aluminum alloy could be improved through CT without the sacrifice
of elongation. In addition, tensile fractures showed that the plasticity of 2024-T351 aluminum might
also be improved, as the dimples in the fracture of the CTed specimens were markedly more uniform
compared with the untreated specimen. The phenomenon of grains refinement (GR) was found
through microstructure observation. It was also found that the second phases were distributed
more uniformly after CT. A conceivable mechanism concerning the shrinking effect and crystal grain
movement was raised to explain the experimental phenomena. The effects of CT on residual stress
in the 2024-T351 aluminum alloy are discussed herein. Measurements showed that tensile residual
stress in 2024-T351 was removed, and slight compressive residual stress was generated after CT.
This may also contribute to the improvement of the tensile properties of the alloy.
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1. Introduction

2024-T351 is a typical high strength aluminum that is widely used in aircraft structures, automobile
parts, and several other engineering applications [1–3]. In order to improve the mechanical properties
of this alloy, numerous treatment processes have been invented and investigated in the past several
decades. In general terms, the treatment processes could be classified into two categories: body
treatments such as heat treatments (HTs), particle reinforced metal matrix composites (PRMMCs) [4–6],
and surface treatments such as surface melting (SM) [7], shot peening (SP) [8,9], and laser peening
(LP) [10–13]. For example, Hong et al. [6], from Shanghai Jiaotong University, investigated the effect of
cryogenic pre-treatment on aging behavior of in-situ TiB2/Al-Cu-Mg composites and found that the
ultimate tensile strength and the elongation of the samples aged with a cryogenic pre-treatment were
lower than the samples without cryogenic pre-treatment, while the hardness and the yield strength
were higher. Correa et al. [13] from Universidad Politécnica de Madrid studied laser shock peening
without absorbing coating (LSPwAC) in the 2024-T351 aluminum alloy and found that a random-type
scanning pattern could reduce residual stress anisotropy, improving the mechanical properties of
2024-T351 aluminum treated by LP.
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Recently, an increasing number of scholars investigated the valid combination of body treatments
and surface treatment in order to improve the mechanical properties of several alloys. For example,
in 2015, Liao et al. [14] reviewed the processing techniques of warm laser shock peening (WLSP)
and thermal engineered-laser shock peening (TE-LSP) systematically and explained the fundamental
process mechanisms clearly. According to the review, a dislocation pinning effect based on the dynamic
strain aging (DSA) and dynamic precipitation (DP) is the main reason for improvement of residual
stress and microstructure stability of WLSP [14,15]. Chen et al. [16] in Jiangsu University studied
the effects of warm laser peening (WLP) on thermal stability of the A356 alloy and found that WLP
can effectively improve the thermal stability of residual stress compared with LP. From 2011 to 2015,
Ye et al. [17–19] studied the effect of CLSP on the mechanical properties of copper and 304 stainless
steel; it was found that due to the generation of nanotwinned microstructure during CLSP, the strength
and ductility of the materials could be improved simultaneously. In 2015, Singh et al. [20] found that
cryoforging followed by aging can simultaneously improve strength, ductility, and corrosion resistance
of the Al2024 alloy. However, to the best of our knowledge, few studies purely concerned the influence
of cryogenic treatment (CT) on the 2024-T351 aluminum alloy have been published yet.

For the very first time, the effects of CT on tensile properties and microstructures of the 2024-T351
aluminum alloy are systematically investigated in this publication, in order to better study the combined
techniques. In addition, the fractures of the tensile specimens have been analyzed. The components
of the second phase were tested with an energy dispersive spectrometer (EDS), and the precipitate
distribution of both treated and untreated specimens were observed using a Nova NanoSEM 450.
Experimental results indicate that the precipitates changed their size after cryogenic treatment. Spacing
among the fine precipitates was also changed to increase resistance of dislocation bowing. As a result,
both the ultimate strength and the yield strength of the 2024-T351 aluminum alloy were improved
through CT without the sacrifice of elongation. A mechanism concerning the shrinking effect and
crystal grain movement was conceived to further explain the experimental phenomena. Measurements
of residual stress in both untreated and CTed specimens were all carried out. The effects of CT on
residual stress in the 2024-T351 aluminum alloy were discussed. Measurements showed that tensile
residual stress in 2024-T351 was removed, and slight compressive residual stress was generated after
CT. This may also contribute to the improvement of tensile properties of the alloy.

2. Materials and Experiments

2.1. Materials

Commercial 2024-T351 aluminum was selected for this study. The chemical composition and
mechanical properties of the untreated samples at room temperature are shown in Tables 1 and 2,
respectively. The dimension and schematic diagrams of specimens used in CT and tensile tests are
shown in Figure 1. Before experiments, all the specimens were polished with Al2O3 sandpaper with
different grades of roughness (from 400# to 1500#), and then cleaned up by acetone and industrial
alcohol carefully. The physical specimens used in the experiments are shown in Figure 2.

Table 1. Chemical composition of the 2024-T351 alloy (wt %).

Elements Cu Mg Si Fe Mn Al Other

Composition 4.5 1.6 0.5 0.5 0.7 Bal. 0.5
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Table 2. Mechanical properties of the 2024-T351 alloy tested at room temperature.

Mechanical Properties Value

Tensile Strength (MPa) 421
Yield Strength (MPa) 307

Elongation (d, %) 19.6
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Poisson Ratio 0.33

Metals 2016, 6, 279 3 of 10 

 

 

Figure 1. The dimension of specimens used for cryogenic treatment (CT) and tensile tests. 

Table 2. Mechanical properties of the 2024-T351 alloy tested at room temperature. 

Mechanical Properties Value 

Tensile Strength (MPa) 421 

Yield Strength (MPa) 307 

Elongation (d, %) 19.6 

Elasticity Modulus (GPa) 72.4 

Poisson Ratio 0.33 

 

Figure 2. The specimens used in CT and tensile tests. 

2.2. Cryogenic Treatments and Microstructure Observations 

We placed the specimens in the foam box, infunded the liquid nitrogen, and covered the box, 

soaking the specimen under the temperature of 77 K for 2 h, 4 h, 6 h, 8 h, and 12 h, respectively. 

When the cryogenic treatments were complete, the specimens were initially polished using water 

sandpaper with different grades of roughness (from 800# to 2000#), after which they were polished 

Figure 2. The specimens used in CT and tensile tests.

2.2. Cryogenic Treatments and Microstructure Observations

We placed the specimens in the foam box, infunded the liquid nitrogen, and covered the
box, soaking the specimen under the temperature of 77 K for 2 h, 4 h, 6 h, 8 h, and 12 h,
respectively. When the cryogenic treatments were complete, the specimens were initially polished
using water sandpaper with different grades of roughness (from 800# to 2000#), after which they
were polished using the polishing machine, and each sample was thereafter placed in a Keller reagent
(1.0% HF + 1.5% HCl + 2.5% HNO3 + 95% H2O) for 30–60 s. The specimens were observed later
under OM.
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2.3. Tensile Tests and Fracture Observation

The tensile tests were conducted on a WDW-200G electronic universal testing machine (Jinan, China).
The maximum force of this machine is 200 kN, with a displacement velocity of 0.005–500 mm/min
and a maximum tensile travel up to 700 mm. The tensile strain rate used was 2.0 × 10−4 s−1. After the
tensile tests, the fracture was observed using a Nova NanoSEM 450 (Hillsboro, OR, USA).

2.4. Measurements of Residual Stress

The residual stresses of both untreated specimen and CTed specimens were measured by the
X-ray diffraction (XRD) technique using an X-ray diffractometer X-350A (Handan, China). The testing
points were the center of each square specimen. The S1 stress, which was parallel with the scanning
direction, was measured. The X-ray beam diameter was about 2 mm. The X-ray source was a Co Kα

beam, and the diffraction plane was a phase (420) plane in the stress calculation. The feed angle of
the ladder scanning was 0.1 deg.·s−1. The scanning starting angle and terminating angle were typical
123◦ and 116◦. The measurements were repeated three times for each condition, and an average value
was used.

3. Results and Discussion

3.1. Tensile Tests and Fracture Analysis

As shown in Table 3 and Figure 3, compared with the untreated specimen, the ultimate strength
and the yield strength of the CTed specimens improved simultaneously. For example, after CT for 6 h,
the tensile strength and the yield strength of the specimen were 478.2 MPa and 339 MPa, respectively.
The tensile strength and the yield strength improved 13.5% and 10.4%, respectively. The elongation was
all around 19.7% for the specimens N.1-0–N.1-5. Clearly, the strength of the 2024-T351 aluminum alloy
improved without the sacrifice of ductility as tested. It should be pointed out that the elongation tested
was largely related to the dimension of the specimen; as for specimens N.2-0–N.2-3, the elongation
was around 17.6%. In fact, the ultimate strength and the yield strength tested were also related to the
geometry of the specimens.

It was found that the improvement of tensile properties was largely related to the CT time. It can
be reasonably inferred that the appropriate cryogenic time is interrelated to the specific material as
well as the geometry of the specimen. As for 2024-T35l aluminum and the specimens N.1-0–N.1-5 used
in this study, the appropriate CT time was 6 h. After CT of the specimens for 2 h, 4 h, and 6 h, both the
tensile strength and the yield strength improved as cryogenic time increased. However, after the CT of
the specimens for 8 h and 12 h, the ultimate strength as well as the yield strength decreased slightly
compared with the earlier specimen after CT for 6 h. This phenomenon considerably confused us at
first, but it was later found that it was related to the “aging time” of the specimens after CT. The phase
“aging time” has a similar meaning to the generic term used in the heat treatments of metals.

Table 3. Tensile properties of 2024-T351 before and after CT.

Specimen Number Treatments Tensile Strength (MPa) Yield Strength (MPa) Elongation (%)

1-0 Untreated 421.8 307 19.6
1-1 Cryogenic for 2 h 446.5 312 19.7
1-2 Cryogenic for 4 h 467.6 335 19.9
1-3 Cryogenic for 6 h 478.2 339 19.7
1-4 Cryogenic for 8 h 475.3 336 19.8
1-5 Cryogenic for 12 h 472.9 335 19.7
2-0 Untreated 427.6 311 17.6
2-1 Cryogenic for 6 h 453.9 326 17.5
2-2 Cryogenic for 12 h 481.2 341 17.8
2-3 Cryogenic for 24 h 480.6 343 17.6
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Figure 3. The tensile curves of 2024-T351 specimens: (a) N.1-0–N.1-5; (b) N.2-0–N.2-3.

The fractures of the tensile specimens were observed with SEM, as shown in Figure 4. The basic
fracture mode of the 2024-T351 aluminum alloy is ductile fracture. The formation process of the
dimples is shown in Figure 5. Hollow points are usually formed at the location of the second phases.
If the second phases are too large, local quasi-cleavage characteristic might take shape, as shown in
Figure 4a,c. A typical fracture was observed in Specimen N.1-0. As the second phases were diminished
and equalized during the CT process, uniform and homogenized dimples were observed, as shown in
Figure 4b,d. The quasi-cleavage characteristic might have transformed to torn edges as the second
phases were diminished. In fact, the plasticity of 2024-T351 aluminum might also have improved
through CT as the fracture of the CTed specimen became more homogenized.
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Figure 5. Schematic of the formation of dimples.

3.2. Microstructure before and after CT

In order to understand the mechanism behind the improvement of tensile properties, especially
the simultaneous improvement of the strength and ductility of the 2024-T351 aluminum alloy subjected
to CT, the microstructures of the specimens before and after CT were all observed under OM, as shown
in Figure 6. It could be clearly observed that the specimen after CT for 6 h obtained much fewer
defects compared with the untreated specimen. The grains of the treated specimen were also more
clear and uniform. As shown in Figure 7, the precipitates changed their size after CT. Spacing among
fine precipitates also changed. In other words, the precipitates were distributed uniformly in the
CTed specimen. The precipitates might be an S phase containing Cu, Mg, and the base element Al,
according to EDS analysis. CT was thus considered to have great effects on the defects and precipitate
distribution in the 2024-T351 aluminum alloy. Furthermore, the defects and the distribution of the
precipitates in the alloy might affect the tensile properties of the aluminum alloy greatly, including the
tensile fracture mechanism.
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Figure 7. SEM and energy dispersive spectrometer (EDS) images of the specimens: (a) untreated;
(b) CT for 6 h; (c) EDS.

During the tensile process, due to the effect of stress concentration, it is likely to develop hollow
points, especially where the precipitates are. As shown in Figure 5, hollow points may grow up to
holes and then form the dimples. It is conceivable that the dimples will be more uniform when the
precipitates are distributed more uniformly. In addition, smaller spacing among fine precipitates could
increase the resistance of dislocation bowing and thus improve the ultimate strength and the yield
strength of the 2024-T351 aluminum alloy.

A mechanism concerning the shrinking effect and crystal grain movement was conceived to explain
the experimental phenomena, as shown in Figure 8. Firstly, dislocation density increased during the CT
process. The grain movement and precipitate movement were unlocked, and dislocation movement
promoted the process of grain refinement and precipitate redistribution. Finally, the precipitate
distribution was more uniform, and the grains became finer and more perfect after the CT process.
As a result, both the ultimate strength and the yield strength of the 2024-T351 aluminum alloy
improved through CT without the sacrifice of elongation. In other words, the tensile properties of the
2024-T351 aluminum alloy were greatly improved.
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3.3. Discussion of Residual Stress

The analysis of residual stress in the alloy is an important issue of several treatment processes.
In general, residual stress in metals could be classified into three categories. The first category of
residual stress is related to macroscopic deformation, while the second and the third categories of
residual stress are related to the microstructures of the alloy. Traditional applications of CT include the
removal of residual stress generated in the machining processes.

As shown in Table 4, the first category of residual stress in 2024-T351 was measured both before
and after CT. The value of residual stress in the untreated specimen was about 26 MPa. Tensile residual
stress was removed, and slight compressive residual stress was generated after CT. The values were all
around 10 MPa. This may also contribute to the improvement of the ultimate strength and the yield
strength of the 2024-T351 aluminum alloy. It could be hypothesized that the second and the third
categories of residual stress were also removed since the microstructures of 2024-T351 aluminum were
refined after CT. This could be further investigated in the future.

Table 4. Residual stress in 2024-T351 before and after CT.

Time of CT (h) Value of RS (MPa) Error (MPa)

0 26 ±8
2 −9 ±3
4 −13 ±5
6 −8 ±5
8 −11 ±6
12 −13 ±9

4. Conclusions

The effects of CT on 2024-T351 aluminum were investigated through both macroscopic and
microscopic methods. It was found that both the ultimate strength and the yield strength of the
2024-T351 aluminum alloy could be improved through CT without the sacrifice of elongation. Tensile
fractures showed that the plasticity of 2024-T351 aluminum might also be improved as the dimples
of CTed specimens were more uniform. In the microscopic method, it was found that the grains of
CTed specimens were finer, and the second phase of CTed specimens were distributed much more
uniformly than the untreated specimen. These phenomena might be due to the shrinking effect and
crystal grain movement during the CT process. In terms of residual stress, measurements showed that
tensile residual stress in 2024-T351 was removed, and slight compressive residual stress was generated
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after CT. This may also contribute to the improvement of tensile properties of the alloy. In addition,
it could be hypothesized that the second and the third categories of residual stress were also removed
since the microstructures of 2024-T351 aluminum were refined after CT. The present study can help us
better understand the effects of CT on 2024-T351 aluminum and push forward further studies on the
2024-T351 alloy.
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