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Abstract: Solid-state interfaces play a major role in a variety of material properties. They are
especially important in determining the behavior of nano-structured materials, such as metallic
multilayers. However, interface structure and properties remain poorly understood, in part because
the experimental toolbox for characterizing them is limited. Neutron reflectometry (NR) offers unique
opportunities for studying interfaces in metals due to the high penetration depth of neutrons and
the non-monotonic dependence of their scattering cross-sections on atomic numbers. We review the
basic physics of NR and outline the advantages that this method offers for investigating interface
behavior in metals, especially under extreme environments. We then present several example NR
studies to illustrate these advantages and discuss avenues for expanding the use of NR within the
metals community.
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1. Interfaces in Metals

Metals form a wide variety of interfaces, including grain and phase boundaries [1], surface-liquid
interfaces [2,3], solidification fronts [4], and mechanical contacts [5]. Although they typically occupy
a small fraction of the total volume, interfaces play an outsized role in determining the properties of
metals [6-9]. Understanding interfaces is therefore critical to predicting and controlling the behavior
of metals.

Experimental investigation of interfaces presents significant challenges. Because they are
often buried within the material, accessing them frequently requires destructive characterization
or sample preparation methods, such as transmission electron microscopy (TEM) [10] or atom
probe tomography (APT) [11]. Interfaces in metals typically have low thickness; indeed, some are
atomically sharp [12]. Thus, characterizing them requires high—sometimes A-level—spatial resolution.
Moreover, certain interfaces only exist at high temperatures and pressures [13-15] or under contact
with external media, such as gases or liquids [2,16]. Investigating such interfaces requires special in situ
characterization methods.

An expanded experimental toolbox promises to accelerate progress in understanding metal
interfaces, especially in extreme environments. This paper offers a primer on neutron reflectometry
(NR): a characterization method with several advantages for studying metal interfaces [17-21]. NR is
a mature experimental tool. The first NR experiments were conducted by Fermi and Zinn [22] and
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Fermi and Marshall [23]. The technique has experienced continuous improvement since then [17,24-26].
Nevertheless, use of this method within the metals community has been relatively limited. We illustrate
the potential benefits of NR to investigations of interfaces in metals by explaining the physics of the
NR experiment and by presenting several example studies.

2. The Physics of Neutron Reflectometry (NR)

Figure 1 shows a schematic of a typical NR measurement. The sample is a thin, planar film
on a substrate. The experiment is usually conducted in air or vacuum, but may also be carried it
out in other media (e.g., see Section 6.4) [27]. The neutron source may be a fission nuclear reactor
or a spallation source. In the nuclear reactor, the sustained nuclear fission of 2>°U- or ?*Pu-rich
fuels immersed in H,O, D;0, or solid graphite produces neutrons that may be used for scattering
experiments. Spallation sources usually utilize pulsed high-energy (~GeV) protons to bombard targets
made of heavy elements (such as W, Hg, U) to extract neutrons [28,29].
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Figure 1. Schematic of a neutron reflectometry measurement.

In material property studies, the neutrons extracted from nuclear reactors or spallation sources
are moderated to decrease their energies and therefore increase their wavelengths to A ranges.
Such moderation, depending on the final wavelength of neutrons required, is usually achieved
by passing high-energy neutrons through H;O, liquid Hj, or solid methane. Low energy neutrons
are typically detected indirectly through absorption reactions with materials of high cross-sections
for such reactions. Typically, *He, °Li, or 1B is used to emit high-energy particles, whose ionization
signatures may be detected by a number of means.

Upon interacting with the sample at a particular angle of incidence, 0 (or a particular value of
the neutron momentum transfer vector, Q), the incoming neutron beam can undergo absorption,
reflection, transmission, or refraction. Consequently, there is a difference between the intensity of the
outgoing, specularly reflected neutron beam and that of the incident beam. This difference—measured
as a function of Q,—encodes information about the distribution of the nuclear scattering length
density along the direction normal to the sample surface. Moreover, the neutron is a %-spin fermion
and possesses a magnetic moment oppositely oriented to the spin. Therefore, its interaction with
matter may depend on the sample’s spin or magnetic field. Neutrons interact both with nuclear
spins and the magnetic moments of unpaired electrons via dipole-dipole processes. Interactions with
unpaired electrons may be of similar magnitude as nuclear scattering. However, they are not inherently
isotropic. Rather, they depend on the orientation of the sample’s magnetization vis-a-vis the direction
of the neutron momentum wavevector transfer Q,: only the component of sample’s magnetization
which is perpendicular to Q, affects the neutron scattering. Therefore, the intensity of specularly
reflected neutrons measured as a function of Q; also encodes information about the distribution of the
magnetization in the sample as a function of depth [30].

Depending on the specific NR technique, NR can take advantage of a range of different
neutron-sample interactions [31]. However, this short review focuses on elastic specular NR, which
is by far the most widely used NR technique. Elastic scattering conserves energy. Thus, we exclude
any energy-dissipating neutron-matter interactions, except neutron absorption. In specular NR, the
detector is positioned so as to measure outgoing neutrons at the same angle of incidence as the
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incoming neutrons, as illustrated in Figure 1. The experiment measures reflectivity, R, defined as the
ratio of the number of reflected neutrons to the number of incoming neutrons.

The de Broglie expression, A =

, relates the neutron’s wavelength A with its momentum,
n

p = myv (where  is Planck’s constant and n, = 1.6749 x 102/ kg is the neutron mass). Based on this
formula, some simple relationships between the wavelength A (A), energy E (meV), and speed v (m/s)
of the neutron can be developed: E = 81.89/ A2 and v = 3960/A. Thus, for example, a neutron with
de Broglie wavelength of 1.5 A has an energy E = 36.4 meV and velocity v = 2640 m/s. NR utilizes
neutrons with wavelengths from sub-A to tens of A. By contrast, the size of an atomic nucleus is on
the order of ~10 fm (1 fm = 10~'> m = 10~ A). Thus, to an excellent approximation, the incoming
neutrons may be thought of as waves interacting with a uniform medium whose properties are
determined by the density and type of atoms it contains. Their behavior may be described using
Schrodinger’s equation.

The assumption of elastic and specular conditions greatly simplifies the analysis the NR
measurement. We further assume that the scattering properties of the sample vary only in one
direction—namely, along the sample’s normal—and therefore the components of the neutron
wavevector parallel to the sample surface are not affected. Under these conditions, the component of
the neutron wavevector parallel to the sample surface is conserved and the magnitude of the outgoing

— —

wavevector, k fr equals that of the incoming wavevector, k;:

—

ki

k f’ = 77[ The difference between

them, Q, = k - k ;, is known as the “momentum wavevector transfer” and lies perpendicular to the

= 47tsin (0)
Qe ==
Quantum mechanics describes the incoming and outgoing neutron beams as a wavefunction, 1,

sample surface. From the geometry of the measurement (Figure 1), we calculate

consisting of a superposition of plane waves:
w(}’) _ ek X g kg 1)

Here, r is the amplitude of the outgoing (reflected) wave, normalized by the amplitude of the
incoming wave (taken as unity). Knowing r, we may calculate reflectivity as R = |r[%. To compute 7,
however, we must model the interaction of the incoming neutron beam with the sample and substrate.

Because the component of the wavevector parallel to the sample surface is conserved, we may
rewrite 1p as solely a function of z—the distance perpendicular to the sample surface—and kf-—the

component of k; in the z-direction:
L L
P (z) = ek ? 4 reiki Z 2)

where we have used kf = —ki. Indeed, the entire NR measurement may be analyzed as
a one-dimensional problem in the z-direction [32]. We write down wavefunctions of the type shown in
Equation (2) for every distinct layer of material in the experiment, including air (or any other external
medium), every layer of material in the sample, and the substrate (though in the substrate there is no
reflected wave).

1
In free space, the neutron has kinetic energy Ex = -~m,v* and zero potential energy (if

gravity is neglected). By contrast, within a material, it has a potential energy given by the Fermi
pseudopotential [33]:

h*B
2rm,,

®)

VFermi =
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where 3 is the nuclear scattering length density (SLD). 3 describes the mean neutron scattering
effectiveness of the material, which depends on the number of nuclei of type i per unit volume, Nj;,
and the coherent neutron scattering length, b;:

B = Z N;b; )

b; may be complex with its imaginary component describing absorption. Its real part may be either
positive or negative, depending on the isotope [34,35]. Since neutrons have spin, their interactions
with magnetic materials require an extended description that tracks changes in spin polarization [30].
The interaction of a neutron’s spin with atomic magnetism (or other source of magnetic induction) can
lead to magnetic scattering length density distributions that may be of the same order of magnitude as
the nuclear scattering length densities. However, depending on the neutron’s spin orientation (spin-up
or spin-down) vis-a-vis the magnetic field of reference, the magnetic component is either added or
subtracted from the nuclear one.

Often, samples investigated by NR may be described as a stack of discrete layers: each with its
own composition, density, and thickness. In such cases, the NR experiment may be described with
a 1D, time-independent Schrodinger equation on a piece-wise linear potential [19,26,32]. By matching
wave functions and their derivatives at the interfaces between successive layers (as well as in the
surrounding medium and in the substrate), one may solve for the amplitudes of all the waves in the
setup. In particular, r—the amplitude of the outgoing wave measured at the sample surface—may be
found. This amplitude comes about by coherent interference of partial waves on all interfaces in the
film. From it, we determine the quantity measured by the neutron detector in Figure 1: reflectivity, R.

Thus, the SLD and thickness of the sample and substrate determine R. Since SLD in turn depends
on composition and density, R is an indirect measure of these characteristics as well as the thickness
of the individual material layers in the sample and substrate [17,26]. The goal of the reflectivity
experiment is to measure R(Q;) and then infer (z) by fitting a model of the SLD distribution to the
data. Q, may be varied by changing the angle of incidence, 6 (if the neutron beam is monochromatic,
i.e., A = const.), or by changing the neutron wavelength, A. The latter method of varying Q. is typical of
NR measurements at facilities where different neutron wavelengths, A, are distinguished by the time
of flight method. Figure 2 shows calculated reflectivity curves corresponding to a 500 A Ni film on
a quartz substrate in air. To illustrate the sensitivity of NR to isotopic composition, the calculation is
carried out for two different isotopes: *®Ni and ®?Ni.

Figure 2 illustrates some of the common features of reflectivity curves. Whenever the energy of the
neutron is at or below the potential of the substrate (i.c., whenever k? < 47Bgpstrate), the neutrons are
totally reflected from the surface. The onset of total reflection is called the critical edge and the value of
Q; at that point is referred to as Qritical- The fringes in Figure 2 arise from interference between waves
reflected from the top surface and the buried interface between the substrate and the layer. For this
n , where tj,yer is

tlayer
the thickness of the Ni layer. The amplitude of the fringes relates to the contrast between the layer and

the substrate. The overall falloff of the curve obeys the Fresnel law: R ~ Q, . Most interfaces are not
discontinuous, but rather graded due to chemical mixing or surface roughness. The surface roughness
(which can be characterized by the root mean square displacement from the average interface, o) may
also be obtained from the reflectivity curve [36,37]. In general, the falloff of R(Q;) for rough or diffuse
interfaces is even faster than that given by Fresnel’s law.

simple case, the spacing of the fringes may be calculated analytically: dginge =
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Figure 2. Calculated neutron reflectivity curves for 500 A films of 58Ni (dashed line) and ®2Ni (solid
line) on a quartz substrate. The inset shows the SLD distributions for each isotope. The simulation

was performed using MOTOFIT assuming RMS roughness parameters of 5 A and the experimental
resolution AQ; /Q; = 3%.

3. Interpreting Reflectivity Curves

R(Q;) contains information about the SLD distribution perpendicular to the sample surface, 3(z).
Inferring (3(z) from R(Q;), however, is not trivial [38]. Because the NR measurement only collects
the intensity of the reflected beam and not its phase, there is no unique mathematical transformation
from R(Q;) to 3(z). Therefore, NR data is usually interpreted by iteratively adjusting a trial SLD
distribution, B (z), until the reflectivity it predicts, R (Q), matches the measured reflectivity, R(Q;), to
within a specified tolerance.

The continuous function 3(z) may often be approximated by a series of discrete layers—referred to
as “boxes” or “slabs”—each with a constant SLD. Inter-layer roughness may be taken into account using
an error function centered at each interface [36] or any other relevant functional form. A theoretical
NR curve, R (Q;), may be calculated from a trial SLD distribution,  (z), using the Parratt recursion
formula [39,40], which relates the amplitudes of the reflected and transmitted waves at each interface.
A number of approaches have been developed for adjusting B (z) to minimize the difference between
R(Q:) and R(Q;). One example is the Levenburg-Marquardt nonlinear least-squares method used
in open-source reflectivity package, MOTOFIT, which runs in the IGOR Pro environment [41].
This method seeks the least-squares fit of reflectivities, corresponding to a minimum x? value. SLD
models with the least number of boxes are usually preferred as they involve the smallest number of
fitting parameters.

Once a best-fit set of model parameters is achieved, the uncertainties of these parameters may
also be quantified by measuring the increase in x? that comes about from perturbing each individual
fitting parameter. For example, Reference [42] defines X* as the deviation of the reflectivity calculated
using the perturbed parameter values from the best-fit reflectivity:

N ?f_yrj
%2_Z<Zy?fl> (5)

i=1
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Here, y?f

is the best-fit to the measured reflectivity, yf is the reflectivity value obtained by
perturbing one parameter of the structural model, and N is the number of data points. The uncertainties
on the fitting parameters are then defined as bounds within which X is 5% or less.

Equation (4) shows that, at any given z, 3(z) depends on the number and types of isotopes in the
sample as well as their volume density. Thus, 3(z) provides information concerning the composition
and density at a depth z. Inferring these quantities from ((z) typically requires prior knowledge of some
of the variables (e.g., nominal compositions or densities) or further input from other characterization
methods. It should be re-emphasized that the SLD density profiles obtained from the fitting procedures
described above are not unique. Due to the fact that only the intensities of scattered neutrons are
measured in the NR experiment, but not their amplitudes and phases, there is no unique mathematical
transformation leading from R(Q;) to SLD profile. Therefore, to resolve this problem, other data
(e.g., from complementary characterization techniques) are often needed. In some cases, the phase
of scattered neutrons may be resolved, as described by the work of Majkrzak and Berk [43—45] and
others [46—49], enabling better inferences of SLD profiles.

4. Advantages of NR

Neutron reflectometry offers unique advantages for characterizing solid-state interfaces in metals,
including in extreme environments. Some of these advantages are easily deduced by considering
the dependence of coherent scattering length, b;, on atomic number, Z. Figure 3 shows that b; is
rather weakly dependent on Z. Indeed, the scattering lengths of almost all elements (in their natural
isotopic abundance) are of the same order of magnitude. Therefore, in general, no one element
can dominate the scattering of a multi-component sample, drowning out the contributions of other
elements. In particular, light elements—such as H/D or He—may be detected, even when embedded
in a matrix of heavy elements, e.g., of actinides. Moreover, NR is often able to distinguish elements
with small differences in atomic number.

60
E 40+
=
2 20
o
o
£ 0
Q
©
2 -0} ——X-ray o
® natural abundance
> isotopes
-40 :

0 20 40 60 80 100
atomic number, Z

Figure 3. Neutron coherent scattering length, b;, as a function of atomic number, Z. The X-ray scattering
length is computed using Equation (6).

Figure 3 also shows that there are marked differences in b; between different isotopes of certain
elements. Thus, NR is well suited to investigations that require tracking of isotopes, such as
tracer diffusion studies. Isotopic substitution may also aid in the interpretation of 3(z) profiles.
For example, Ni has five different isotopes. The b; for Ni (abundance 68.3%) is 14.4 x 1075 A,
whereas for ®’Ni (abundance 3.6%) b; is negative and equals —8.7 x 107> A. Substitution of 5Ni
(bulk SLD =13.3 x 107¢ A=2) for ©2Nji (SLD = —7.5 x 1076 A~2) significantly changes NR curves, as
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illustrated in Figure 2. Moreover, because neutron beams may be spin polarized, NR is especially well
suited to investigations of magnetic properties of materials [50,51].

To appreciate the above-mentioned qualities, it is useful to compare NR with X-ray reflectometry
(XRR) [52-54]. Although the mathematical description of XRR is similar to NR, the underlying physics
of scattering is different: X-rays scatter from atoms’ electrons while neutrons scatter off of atoms’
nuclei. To interpret XRR experiments, we can replace the neutron coherent scattering lengths, b;, in
Equation (4) with the X-ray scattering lengths:

by = 7. (2.81fm) (6)

where Z is the atomic number and 2.81 fm is the classical radius of the electron. Because X-rays scatter
primarily from electrons, bé_ray is directly proportional to the number of electrons per atom, i.e., to the
atomic number, Z, in charge-neutral materials. Consequently, XRR cannot detect differences between
isotopes. Moreover, because it is a linearly increasing function of Z, b)z('ray provides very little contrast
between elements with small Z differences. Finally, light elements—especially when embedded in
high-Z matrices—are essentially undetectable with XRR, as the X-ray scattering length of the latter
dominates reflectivity curves. However, it is often advantageous to use XRR and NR in tandem, as
they may provide complementary information.

Equation (4) shows that scattering length density, 3, is not only a function of b;, but also of N;:
the number density of isotope i. Thus, depth profiles obtained by NR (and XRR) are sensitive not
only to composition, but also to density. By contrast, depth profiles obtained through Rutherford
backscattering are not sensitive to density [55]. NR is therefore capable of characterizing the evolution
of porosity and of detecting displacive phase transformations that involve changes in density.

NR is also remarkable for its depth resolution, which is much greater than for XRR, especially
for high-Z materials. Usually, NR techniques enable investigations of structures with total thickness
up to ~3000 A. For such thickness, the spacing between the scattering fringes (Figure 2) is very small,
requiring very high AQ,/Q; resolution in the neutron detection. Typical AQ,/Q; values for existing
neutron reflectometers are in the range from 2% to 5%. An instrumental resolution of AQ,/Q; =2%
will result in the ability to distinguish between two thickness values which differ by 2%. Therefore
differences of the film thickness on the order of A can be readily detected. Smaller AQ,/Q, values
may be achieved using detectors with higher spatial resolutions, better beam collimation, or better
discrimination of the neutron wavelengths. However, increasing the resolution may result in smaller
incident beam intensities, which can lead to longer measurements times and therefore higher scattering
background. Thus, a proper balance between the two must be found. In general, it is advisable to
adjust the resolution to match the expected thickness of the investigated films. Thick films, which give
rise to dense oscillations of the interference fringes in R(Q;), require higher resolutions. By contrast,
thin ones with broad interference oscillations in R(Q,) can be measured with lower resolution and
therefore higher intensities, which can result in shorter measurement times and higher Q,™%*

Another advantage of NR is due to the ability of neutrons to penetrate deeply into solid matter.
Several mm thick aluminum, quartz, silicon, or stainless steel windows absorb only a small fraction

values.

of incident neutrons with wavelengths in the A range. Thus, NR measurements may be carried out
to investigate the structure of buried interfaces as well as samples immersed in liquids or shielded
from their environments by neutron-transparent containers. This quality is especially useful for
investigating materials exposed to volatile media or under high pressure. Finally, NR frequently
requires straightforward sample preparation and is not destructive. Therefore, samples investigated
with NR may be subsequently further analyzed using other characterization methods. However, certain
materials may be activated through interactions with the neutron beam, requiring some time for the
radioactivity to decay before further characterization may be performed. It is also important to
note that, since NR data are normalized to the incident neutron intensity, the measured SLD values
are absolute.
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5. Practical Considerations

Because neutron sources are inherently week (fluxes of ~10°~7 n/s/cm?), the samples used for

NR must be large. Samples with an area as small as 1 cm? may be measured, but at the expense of
longer time of data acquisition and increased background noise. Neutron spallation sources usually
provide some advantages enabling faster NR measurements. This is due to the polychromatic nature
of the pulsed neutron beams they generate and the time of flight method used to discriminate between
different neutron wavelengths, A. NR spectra within a limited Q,™* range (<0.1 A=) can be obtained
in 5-10 min. However, to obtain a full-spectrum NR data set (usually with Q,™ ~ 0.3 A~! and
R ~ 107°) requires from one to several hours of measurement time, regardless which neutron source
is used.

Existing NR beamlines usually provide point-, line-, or 2-D neutron scattering detectors. Line-
and 2-D detectors enable recording of scattering signals beyond the specular reflection: the so-called
“off-specular” reflections. The “off-specular” data provides the neutron intensity distribution as
function of the components of the neutron momentum transfer vector parallel to the sample’s surface.
This information can provide additional insight to extend the interpretation of the specular reflectivity
measurements regarding in-plane correlations of the samples studied [56]. For example, these data
allow correlations between the roughness of different interfaces or the growth of in-plane islands
to be addressed. Reflectivities at high Q, values are of great interest as they allow access to shorter
length scales, which are important for characterizing the detailed structure of the investigated films.
However, as already mentioned, the reflectivity R rapidly decays as Q,*, making it difficult to acquire
data at high Q.. This challenge may be mitigated to some extent through the preparation of high
quality samples: by minimizing the roughness of the sample surface as well as the roughness of its
internal interfaces, high quality NR data at high Q, and low R values may be collected. RMS roughness
parameters up to 20 A are usually tolerable, but detailed NR investigations typically require RMS
roughness below 5 A. Samples with such low roughness are most conveniently prepared using vapor
deposition techniques. For such samples, R ~ 1076 and Q,™ ~ 0.2-0.3 A~! can be routinely achieved
for sample areas of several cm?.

At the time of writing, there are several world-class NR instruments available worldwide, e.g.,
at the Spallation Neutron Source at Oak Ridge National Laboratory, the Lujan Center at Los Alamos
National Laboratory, NCNR at NIST, the Institute Laue-Langevin in France, J-PARC in Japan, ANSTO
in Australia, FRM-II in Germany, and several others. Several neutron sources are currently under
construction or discussion. For example, the European Spallation Source in Sweden and the Second
Target Station at SNS/ORNL will provide excellent capabilities for NR.

6. Example Applications of NR to Metals

This section provides examples of NR measurements conducted on metals. The examples are
chosen to illustrate the unique advantages of the NR, namely its ability to detect density changes
(Section 6.1), its sensitivity to magnetic moments and complementarity to X-ray reflectometry (XRR,
Section 6.2), its sensitivity to light elements (Section 6.3), and its ability to penetrate through container
walls (Section 6.4).

6.1. He in fcc/bec Composites: Detecting Density Changes

Some nuclear transmutation reactions give rise to alpha particles, ie., nuclei of *He.
When implanted into solids, these particles rapidly come to rest, pick up two electrons, and become
regular He atoms. Since He is a noble gas and does not bond with surrounding atoms, it usually
has negligible solubility within solids [57]. Thus, it precipitates out of solution into nanometer-scale
bubbles [58]. These precipitates are usually deleterious to the properties of the solid, e.g., they lead to
embrittlement in Ni-base alloys [59] and surface damage in plasma-facing materials [60]. Much effort
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has been invested into mitigating damage induced by implanted He, especially in materials for nuclear
energy [61-64].

One way of controlling implanted He is to trap it at specially designed internal interfaces
in composite materials [61]. However, investigations of this effect are limited by the difficulty of
characterizing He precipitates at internal interfaces. NR (and XRR) provides a distinct advantage
within this context: its sensitivity to local density changes enables detection of the onset of He
precipitate formation [42,65,66].

Kashinath et al. investigated He precipitation at interfaces between copper (Cu) and one of
three body-centered cubic (bcc) metals: niobium (Nb), vanadium (V), and molybdenum (Mo) [42].
They found that each of these interfaces has a distinct critical He dose at which precipitates begin
to form. Figure 4 illustrates the findings of this study. Upper and lower bounds on best-fit SLD
profiles were estimated by superimposing the upper and lower error bounds for each individual fitting
parameter, as defined in Section 3. All SLD profiles with %* less than or equal to 5% are contained
within these bounds, but the converse is not true: not all SLD profiles within these bounds have X less
than or equal to 5%. Therefore, these uncertainty estimates for best-fit SLD profiles are conservative.

The target is a Cu/Nb bilayer deposited on a Si substrate. Both the Cu and the Nb layer are
approximately 20 nm thick. After implantation of 20 keV *He™ ions to a dose of 3 x 10'®/cm?, the
reflectivity of the sample is consistent with an unaltered Cu/Nb bilayer structure, as shown in Figure 4a.
However, upon implantation to a slightly higher He dose of 4 x 10'®/cm?, there is a clear change in
the reflectivity, indicated by arrows in Figure 4a,b. This change may be explained by the formation of
a layer of reduced density on the Cu side of the Cu-Nb interface, as illustrated in Figure 4b.
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Figure 4. Reflectivity curves (left column) and SLD profiles (right column) for (a) 3 x 1016 /cm? and
(b) 3 x 10'®/cm? He ions implanted in a Cu/Nb bilayer on a Si substrate. Reprinted with permission
from Reference [42]. Copyright (2013), AIP publishing LLC.

At the He doses used in this study, nearly all the implanted He is believed to either escape through
the Cu free surface or become trapped at the Cu-Nb or Nb-Si interfaces [42]. Precipitation within the
Cu or Nb layers themselves is thought to be minimal. Thus, the low-density layer adjacent to the Cu-Nb
interface in Figure 4b is thought to arise from the formation of He precipitates there. The critical He dose
of 4 x 100 /cm? is consistent with preceding transmission electron microscopy (TEM) studies [61,67]
as well as atomistic simulations [68]. However, whereas those previous investigations merely inferred
interfacial precipitation, NR is able to observe it directly.
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6.2. Fe/Y,03 Interface: Sensitivity to Magnetization and Complementary to XRR

The structure of interfaces between low solubility metals—such as those discussed in the previous
section—is easy to describe, as these interfaces are usually atomically sharp [12]. By contrast, the
structure of oxide/oxide or metal/oxide interfaces is much more difficult to assess. Such interfaces are
often several nanometers wide [69], exhibit transitions in structure reminiscent of phase changes [8],
and contain intrinsic defects with distinct local compositions [70]. NR provides several advantages for
investigating such interfaces, including high depth resolution and sensitivity to composition.

Watkins et al. used NR to study the structure of an interface between «-Fe and Y,0O3 [71].
They found that this interface is a ~64 A-thick transitional zone containing mixtures or compounds of
Fe, Y, and O. By comparing their NR data to XRR and X-ray diffraction (XRD) measurements, they
further determined that the interface was likely compositionally sharp upon synthesis and only later
broadened as the neighboring crystals reacted. Finally, since a-Fe is ferromagnetic while Y,0Oj3 is not,
Watkins et al. were able to track changes in magnetization across this interface. Figure 5 shows that to
model the reflectivity of this interface, contributions of spin-up and spin-down states of the neutron
beam must be averaged. By using comparing the SLD profiles of these two states, the exact depth
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at which the ferromagnetic ordering is lost may be found (marked with an “x” in the right panel in

Figure 5).
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Figure 5. The neutron reflectivity (left) of the x-Fe and Y,O3 interface investigated by Watkins et al.
is the average of SLD contributions from spin-up and spin-down states of the neutron beam (right).
The depth at which ferromagnetic ordering is lost is marked with an “x” in the right panel. Also in the
right panel, (Y,03)a refers to a distinctive Y-O layer forming at this metal/oxide interface. Reprinted
with permission from Reference [71]. Copyright (2014), AIP publishing LLC.

6.3. Actinides: Sensitivity to Light Elements

Actinides and their oxides exhibit some of the most intriguing and challenging chemistry
known [72]. Frequently, the composition of these materials is not stoichiometrically precise.
Moreover, their oxide structures can change dramatically under different environmental conditions.
Neutrons provide a distinct advantage over X-rays in structural characterization of hydrides and
oxides of heavy metals because they are better able to detect the lighter elements, such as H/D and
O, within their actinide matrices. Figure 6 illustrates neutron scattering length densities for different
uranium oxide phases, showing that NR is able to distinguish between them.
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Figure 6. The calculated values of the nuclear scattering length density (SLD) for some common phases
in uranium-oxide system. The calculations are based on specific densities published in literature [73,74].

The work of He et al. illustrates the utility of NR for investigating imperfect uranium oxide
films [75]. They deposited uranium oxide on silicon substrates (with a thin native layer of oxide) using
a combination of DC magnetron and reactive sputtering. In this technique, U atoms generated from
a solid target by sputtering are readily oxidized by residual O, present in the Ar/O, mixture under
moderate vacuum (approximately 1-3 x 10~# torr) and then deposited on the substrate above the
target. Several steps were taken to ensure high film quality: a multi-step sequential reactive deposition
was used to minimize preferential film growth, the substrate was rotated to even out source distribution
anomalies, and the partial pressures of Ar and O, were adjusted to control the composition of the
uranium oxide. Nevertheless, the resulting film has a non-uniform, depth-dependent stoichiometry
and structure.

The NR data for these films along with the best-fit curve according to the real-space SLD profile
are shown in Figure 7a. According to these results, the total thickness of the UO film is about 630 A.
Figure 7b illustrates schematically the real-space structure represented by the best-fit SLD profile.
The simplest model that fits the NR data has a three-layer structure. There is no heteroepitaxial
growth of uranium oxide on the substrate/film interface due to the (~10 A) native amorphous Si
oxide layer on top of silicon wafer. The SLD of the layer at the film/air interface (~5.0 x 10~¢ A=2)
suggests the presence of hyper-stoichiometric phases. Meanwhile, the SLD of middle layer of the
film (~3.8 x 107 A~2) together with the fact that no sharp X-ray diffraction peaks were observable
(data not shown) indicates that this layer consists of amorphous o-UOj3. Overall, NR demonstrates
a remarkably rich variation in structure and stoichiometry in this nominally uniform sample.

Another example of the utility of NR for studies of heavy metal (lanthanide) oxides arises from
recent work on Dysprosium (Dy) oxidation [76]. They deposited Dy films on silicon substrates using
the same DC magnetron sputtering technique as discussed above and characterized their structures
using NR after exposure to air at two different temperatures: 25 °C (ambient temperature) and 150 °C.
Figure 8 shows that, under both conditions, the film may be described three-slab model. Under ambient
temperature, it consists of 20 A silicon oxide on top of the Si substrate, 418 A Dy, and 43 A Dy,0s;.
After exposure to air in 150 °C for ~0.5 h, the thickness of the Dy,0j3 increased to 114 A while
simultaneously the thickness of the Dy layer decreased to 363 A. The total thickness of Dy and Dy,0;
layers increased from 461 A to 477 A, indicating an overall swelling of the sample. The roughness
parameters of the air-Dy,O3 and Dy,0O3-Dy interfaces decreased, making the top surface facing the
air and the interface between the metallic Dy and its oxide smoother. For the two cases of uranium



Metals 2016, 6, 20 12 of 17

oxide and dysprosium studies described above, the approximate errors for the thickness, SLD, and
roughness parameters vales were +5 A, 0.1 A=2, and 2 A, respectively.
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Figure 7. (A) NR data obtained from a UOy deposited on a silicon substrate (open circles). Error bars
indicate one standard deviation. The solid line through the data points corresponds to the best-fit SLD
profile shown in (B).
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Figure 8. (Left) NR data (open circles) from a film of Dy covered with capping layer of Dy,03 at ambient
temperature (25 °C) and after expose to air at 150 °C for ~0.5 h. Error bars in the NR measurements
correspond to one standard deviation. The solid line through the data points corresponds to the best-fit
SLD profile shown on the (right).

6.4. Surfaces in Pressurized Liquids: Penetration of Neutrons through Containers

Neutrons penetrate through thick sections of solid matter with low attenuation. Thus, they
are able to “see through” the walls of a high-pressure cell, enabling examination of metal surfaces
in pressurized media [77]. Junghans et al. used this capability to study the corrosion of oxidized
aluminum (Al) surfaces in pressurized seawater [27]. The corrosion of structural materials in the deep
sea depends on numerous chemical and physical factors, including pH, dissolved oxygen, chloride
ion activity, salinity, ocean currents, temperature, and hydrostatic pressure [78-82]. Al and its alloys
find widespread use in marine environments, including in civil and defense vessels, offshore rigs, drill
pipes for deep wells, and diving suits. There are several reports on corrosion of Al and its alloys at
shallow depths, but investigations at high pressures are limited [78-80,82-84].

When in contact with air, Al develops a thin passivation layer of Al,Os. The surface oxide has
a higher SLD than pure Al, providing neutron scattering contrast between the two materials (Al:
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2.08 x 1070 A~2; crystalline Al,O3: 5.74 x 1070 A~2). Junghans et al. deposited uniform, ~900 A-thick
Al films on monocrystalline quartz wafers using DC magnetron sputtering and collected a total of
14 NR spectra over the course of 50 h (~3 h per spectrum). The film was in contact with 3.5 wt. %
NaCl solution at pressures ranging from 1 to 600 atm in a specially developed solid/liquid, high
pressure/temperature cell [77]. This cell provides the capabilities of solid /fluid interface investigations
up to 2000 atm (~30,000 psi) and 200 °C. The cell’s simple aluminum construction makes it easy to
operate at high pressures and elevated temperatures, while the 13 mm thick neutron windows allow
up to 74% neutron transmission. Figure 9 shows five representative NR measurements from this
study [27].
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Figure 9. (Top panel) Five NR measurements of Al film deposited on quartz substrate and investigated
at 25 °C in contact with HyO + 3.5 wt. % of NaCl at different pressures. Solid curves are fits
corresponding to the SLD profiles shown in the middle and right panels. Both the NR data and fits are
offset by a decade along y-axis for clarity; (Bottom left panel) SLD distribution of the Al/Al,O3/liquid
system and (Bottom right panel) magnified SLD distribution in the contact region. In both of the
bottom panels, z = 0 at the quartz substrate/ Al interface.

The NR results show virtually no corrosion of the Al layers. The observed decrease in the SLD of
the starting Al,O3 passivation layer cannot be explained by the formation of new chemical compounds
by the highly scattering Na, Cl, and O ions. However, this decrease is consistent with formation of
stable Al-Cl-H;O (or Al-O-Cl-H;O) complexes or hydration of Al,O3 to AI(OH)3;. These results
suggest that for the time scale of 50 h the influence of hydrostatic pressure only slightly influences
interactions of the Al oxide film with CI~ ions and H,O. The corrosion rate is lower than reported by
Beccaria et al. [78-80], suggesting slower kinetics for the reactions involved.
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7. Conclusions

Neutron reflectometry (NR) is a mature experimental technique that has been used extensively
in condensed-matter physics. However, its potential for investigating interfaces in metals has not
yet been utilized widely. The present overview is intended to raise awareness of NR in the metals
community with the hope of motivating wider use of this technique. NR provides several unique
advantages for investigating interfaces in metals:

e Itis non-destructive. Thus, NR results may be combined with other, follow-on investigations,
e.g., using XRR, TEM, or APT.

e A-level depth resolution enables detailed investigation of interface structure: thickness, SLD,
and roughness of the layers.

e Sensitivity to composition, isotopic distribution, density, and magnetic moment allow
multiple physical characteristics to be measured simultaneously.

e  Ability to detect low-Z elements, such as H/D, He, and other light isotopes.

e  Suitability for in situ studies due to the high penetrability of neutrons through container walls
and surrounding media. This capability enables investigations of a variety of buried interfaces,
including solid-liquid ones, which are otherwise very difficult to access with X-rays.

e The measured SLD values are absolute due to the fact that the reflected beam is normalized by
the incident intensity of the neutron beam.

e  Ready access thanks to the availability of several suitable neutron sources (reactors and spallation
facilities) worldwide.

Several example applications of NR to metal surfaces and buried interfaces have been discussed
above. As the metals community continues to explore the structure and properties of interfaces in
ever-greater detail [7-9], NR stands poised to contribute valuable new additions to this ever-growing
list of examples.
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