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Abstract: The geometrical properties of the icosahedral ordered structure formed in liquid 

and glassy phases of metallic glasses are investigated by using molecular dynamics 

simulations. We investigate the Zr-Cu alloy system as well as a simple model for binary 

alloys, in which we can change the atomic size ratio between alloying components. In both 

cases, we found the same nature of icosahedral order in liquid and glassy phases. The 

icosahedral clusters are observed in liquid phases as well as in glassy phases. As the 

temperature approaches to the glass transition point Tg, the density of the clusters rapidly 

grows and the icosahedral clusters begin to connect to each other and form a medium-range 

network structure. By investigating the geometry of connection between clusters in the 

icosahedral network, we found that the dominant connecting pattern is the one sharing seven 

atoms which forms a pentagonal bicap with five-fold symmetry. From a geometrical point 

of view, we can understand the mechanism of the formation and growth of the icosahedral 

order by using the Regge calculus, which is originally employed to formulate a theory of 

gravity. The Regge calculus tells us that the distortion energy of the pentagonal bicap could 

be decreased by introducing an atomic size difference between alloying elements and that 

the icosahedral network would be stabilized by a considerably large atomic size difference. 

Keywords: metallic glasses; icosahedral order; medium-range order; molecular dynamics 

simulation; glass-forming ability; Regge calculus 
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1. Introduction 

Icosahedral symmetry is considered to play an important role in the atomic scale structure of glassy 

phases in spherically interacting systems. The Dense Random Packing (DRP) model was proposed by 

Bernal for liquid phases in his pioneering work [1], and was later applied to a structure of amorphous 

metals [2]. In this model, the icosahedral cluster formed by 13 atoms located at the center and the 12 vertices 

of an icosahedron is a key building block and is basis of the icosahedral short-range order in liquid and 

glassy phases. The early works of computer simulation have shown that the icosahedral order would 

exist in both liquid and glassy phases [3,4]. After the discovery of good metallic glass-formers [5,6], 

experimental observations [7–12] has reported that the icosahedral short-range order does exist in 

metallic glasses and that some medium-range order may also exist beyond the icosahedral short-range 

order. However, it was little known how the icosahedral short-range order is arranged and extended to 

form a medium-range order in glassy phases. In other words, the interrelation between the icosahedral 

clusters was not clear. In recent years, two milestone models for icosahedral medium-range structure 

have been proposed: One is the fcc packing of icosahedral clusters proposed by Miracle [13] and the 

other is the icosahedral packing of icosahedral clusters and the strings of connected of icosahedra 

proposed by Sheng et al. [14]. Being enlightened to these models, a family of network-type models has 

been proposed with a special attention on the bonding topology between icosahedral clusters, such as 

the “bicap sharing” (or “interpenetrating” depending on authors) network [15–17], the string-like backbone 

network [18,19], and the superclusters [20,21]. Especially, Ding et al. have elegantly shown [22] that 

the icosahedral order can be generally understood as the polyhedral packing by the Frank-Kasper 

polyhedra [23], which are formulated based on the notion of DRP and include the icosahedron as a 

member. In addition, recent experimental observations [24] and simulation studies [25,26] have revealed 

that the icosahedral network formation is closely related to the “slowing down” of the relaxation 

dynamics in supercooled liquids near the glass transition. Despite the understanding of the nature of 

icosahedral order is gradually deepened in both structural and dynamical aspects, the physics behind the 

formation of the icosahedral medium-range order is not fully understood yet. In the present study,  

we investigate geometrical and dynamical properties of the icosahedral order formed in both liquid and 

glassy phases of metallic glasses by using molecular dynamics (MD) simulations. 

MD simulation is a method to calculate the moving trajectories of atoms by solving the Newtonian 

equations of motion numerically. It is a powerful tool to investigate the atomic scale structure because 

all information of atomic configurations can be drawn at any time in the course of calculations. Since 

the purpose of our study is to clarify the geometrical nature underlying the icosahedral medium-range 

ordered structure formed in glassy phases and supercooled liquid phases of metallic glasses, the MD 

technique is highly useful. This article is planned as follows. The methods of MD simulation are given 

in Section 2. Section 3 is devoted to the simulation results and discussion. The results for the Zr-Cu 

system are shown in Subsection 3.1, the results for a model alloy system are shown in Subsection 3.2, 

and the Regge calculus is introduced in Subsection 3.3 to discuss the geometrical properties of the 

icosahedral ordered structure found in the simulations. The conclusion is given in Section 4. 
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2. Methods 

2.1. Interatomic Potentials 

In the classical molecular dynamics simulations, interatomic potentials between constituent atoms 

play a decisive role in the calculation. In this study, we use two different types of potentials: One is a 

many-body potential [27] based on the electron density theory for the Zr-Cu system, and the other is a 

two-body potential [28] for a model alloy system. 

For the Zr-Cu system, we use a many-body Finnis-Sinclare type potential [27] developed by  

Rosato et al. [29], which has a functional form as 

    i iji

j

V  (1)

0
( ) exp (1 )/  ij ij ij iji ij ijr A p r r  (2)

2 0( ) exp 2 (1 )/    ij ij iji ij ij
j

r q r r  
(3)

where rij is the distance between atoms i and j and the parameters pij, qij, Aij, ξij and rij
0 are determined 

by us [30] to reproduce the mixing enthalpy of the Zr-Cu system and the lattice parameters, elastic 

moduli and the cohesive energies of hcp-Zr, fcc-Cu, and the B2-ZrCu phase. 

It is well known that the atomic size ratio between the constituent elements plays an important role 

in the formation of metallic glasses [31]. Therefore, for a simple model for binary alloys, we assume the 

interaction between atoms i and j to be described by the 8-4 type Lennard-Jones potential [28] Vij as 

    8 4

0 0 0( ) 2 ij ij ij ijV r e r r r r  (4)

The merit of using this potentials is that we can independently vary the atomic size and the chemical 

bond strength by changing the parameters r0
ij and e0

ij, respectively. In this study, to focus on the  

atomic size effect, we assume for a binary system composed of elements A and B as r0
AA = 1, r0

BB ≤ 1, 

r0
AB = (r0

AA + r0
BB)/2, and e0

AA = e0
BB = e0

AB = 1. Thus, we can vary the atomic size ratio r0
BB of the 

element B to A, and the concentration xB of the smaller element B. The atomic masses of both elements 

are also supposed to be the same unit mass. All physical quantities are expressed in the above units for 

the model system. 

2.2. Simulation Procedure 

The simulation system consists of 4000 to 16,000 atoms, and is confined in a cubic simulation cell 

with periodic boundary conditions imposed in all three directions. The temperature of the system is 

controlled by scaling the atomic momenta. The pressure of the system is kept zero by changing the size 

of the simulation cell according to the constant pressure formalism [32]. 

In the simulation the alloy system is started from a liquid phase above the melting point and quenched 

down to solidify, which brings us a glassy phase or a crystalline phase depending on the cooling rate. 

After a glassy phase is produced, the system is heated up again and kept at a constant temperature for 

isothermal annealing, if needed. By monitoring the volume, energy, radial distribution of atoms, and the 

atomic diffusion, we can detect the phase properties at any stage. 
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2.3. Icosahedral Symmetry 

We shall investigate the local atomic structure of liquid and glassy phases with paying a special 

attention to the icosahedral symmetry. For this purpose, we use the Voronoi tessellation analysis [1],  

in which the local symmetry around each atom is indexed by a set of integers (n3, n4, n5, n6), where ni is 

the number of i-edged faces of the Voronoi cell. By calculating this index for each atom, we define the 

icosahedral cluster by the atom that has the Voronoi index (0, 0, 12, 0) and its neighbors. 

3. Results and Discussion 

3.1. Icosahedral Order in Zr-Cu System 

3.1.1. Icosahedral Medium-range Order in Zr-Cu Metallic Glasses 

Firstly we examine the icosahedral order in glassy phases of the Zr-Cu alloys. Figure 1 shows all 

icosahedral clusters picked up by the Voronoi analysis found in an as-quenched N = 8000 Zr40Cu60  

glassy phase. To investigate the medium-range order or the interrelation between the icosahedral 

clusters, we also calculate the Voronoi indices between the icosahedral clusters. Unfortunately, we could 

not detect any signature of fcc order or icosahedral order of the clusters, but found an inhomogeneous 

and string-like [14,18] network structure as shown in Figure 1. To characterize the topological nature  

of this network, we check the connecting pattern between adjacent clusters. 

 

Figure 1. Snapshot of icosahedral clusters formed in an as-quenched Zr40Cu60 glassy phase. 

In the inset, the gray and brown spheres denote the Zr and Cu atoms. 

3.1.2. Geometrical Feature of Icosahedral Network 

When two icosahedral clusters are linked together, the linking patterns can be classified into the 

following four types [15] as illustrated in Figure 2: (1) Vertex sharing, where one atom is shared by two 

clusters; (2) edge sharing, where two atoms forming a link are shared; (3) face sharing, where three 
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atoms forming a triangle are shared; and (4) bicap sharing, where seven atoms forming a pentagonal 

bicap are shared or two icosahedra are interpenetrating each other. We have counted the population of 

these four linking patterns for an as-quenched N = 8000 Zr40Cu60 glassy phase. The results are shown in 

Figure 2, where the population of the isolated and the linked icosahedral clusters are also shown as well 

as the population of vertex sharing, the edge sharing, the face sharing, and the bicap sharing connection. 

We can see that the network mainly consists of bicap sharing connection and this type of connection 

should be a key to understand the medium-range order in metallic glasses. It is consistent with the recent 

experimental observation [12] by the scanning electron nanodiffraction that suggests a face sharing or 

bicap sharing model of the icosahedral medium-range order in a Zr36Cu64 glass. 

 

Figure 2. Linking patterns between the icosahedral clusters and their population found in  

an N = 8000 Zr40Cu60 glassy phase. 

3.1.3. Icosahedral Order in Supercooled Liquids 

The icosahedral clusters are also found in liquid phases. Figure 3 shows the temperature dependence 

of the atomic volume in a quenching process of the N = 4000 Zr40Cu60 system together with snapshots 

of icosahedral clusters found in supercooled liquid phases at T = 1044, 928, and 814 K, where only the 

central atoms of the clusters are depicted by white spheres. In higher temperature liquid phases, most of 

the icosahedral clusters are isolated. As the temperature decreasing, a sign of networking can be found 

in supercooled liquid phases at near Tg. 
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Figure 3. Volume change in a quenching process of the N = 4000 Zr40Cu60 alloy system and 

snapshots of icosahedral clusters formed in supercooled liquid phases, where the central 

atoms of the clusters are depicted by white spheres. 

3.1.4. Lifetime of Icosahedral Clusters 

The growth of the icosahedral order in supercooled liquid phases is closely related with the stability 

of the icosahedral clusters. To estimate it, we calculate the lifetime of the icosahedral clusters in 

supercooled liquids. The lifetime of the icosahedral cluster is defined as follows. Once an icosahedral 

cluster forms, the cluster is “living” when it keeps both the Voronoi index and the neighboring atoms. 

Let us show some illustrative examples. In Figure 4, the case (a) and the case (b) are considered to be 

“decaying” due to the change of symmetry or neighbors, but the case (c) is considered to be still “living” 

although the arrangement order of the neighbors are changed. 

 

Figure 4. Changing patterns of atomic configuration of the cluster and definition of cluster decaying. 
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Under this definition, we have calculated the distribution of lifetime of the icosahedral clusters in 

supercooled liquid phases. Figure 5a shows the histogram of the lifetime of the clusters for 458 decaying 

events found in an N = 4000 Zr40Cu60 supercooled liquid phase at T = 812 K. More than 65% of the 

clusters has decayed within the first 2 ps after their formation, but the distribution of the lifetime has  

a long tail. Figure 5b shows the temperature dependence of the average lifetime in supercooled liquids 

of the Zr40Cu60 alloy system, where the average was taken from 458, 276, and 171 decaying events for 

the T = 812, 928, and 1044 K cases, respectively. The average lifetime goes longer at lower temperature 

and its temperature dependence indicates some activation process in the cluster decay. However, when 

we try to fit the lifetime distribution shown in Figure 5a to a single exponential function, we always 

failed at any temperature. Therefore, we try to fit the distributions by a stretched exponential function as  

N(t) = N0 exp{−(t/τ)β}. The results of the fitted values are β = 0.74 and τ = 0.72 ps for T = 812 K. The 

fact that the exponent β is not unity indicates that the icosahedral cluster decaying cannot be described 

by a single process, and that there are two or more different processes with different time scales. Thus, 

we should investigate the time evolution of the decaying process of the icosahedral clusters more closely. 

 

Figure 5. (a) Distribution of lifetime of the icosahedral clusters in an N = 4000 Zr40Cu60 

supercooled liquid phase at T = 812 K and (b) temperature dependence of the average 

lifetime of the icosahedral clusters in liquid phases of the Zr40Cu60 alloy system. 

3.1.5. Lifetime and Cluster Bonding 

Let us show some examples of the cluster decaying process by depicting a series of snapshots  

of atomic configurations. Figure 6a is a snapshot of a supercooled liquid phase of the N = 4000 Zr40Cu60 

system at just above Tg. More than 50 icosahedral clusters exist at this moment. Among them, we have 

picked up some clusters as shown in Figure 6b, where deep green atoms and deep red atoms denote 

isolated clusters, and light green ones and dark yellow ones denote connected clusters by bicap sharing. 

The colors of central atoms of the clusters are changed from those of their neighbors for eye guide,  

and the splitting of the dark yellow ones is due to the periodic boundary condition of the simulation cell. 

In the first frame at t = 0 (Figure 6b), all clusters keep the icosahedral symmetry. As the time goes on at  

t = 0.5, 1.0, 1.5, 2.0 ps (Figure 6c–f, respectively), the isolated clusters changed their neighbors and lost 
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their initial structure. On the other hand, the two-connected clusters (the light green atoms) and the  

three-connected clusters (the dark yellow atoms) keep their initial configurations even in the last frame 

at t = 2.0 ps (Figure 6f). 

 

Figure 6. Snapshots of change of atomic configuration of icosahedral clusters in a 

supercooled liquid phase of the Zr40Cu60 system at just above Tg. (a) All atoms at t =0;  

(b) two isolated clusters and two connected “superclusters” picked up at t = 0;  

(c) configuration change at t = 0.5 ps; (d) at t = 1.0 ps; (e) at t = 1.5 ps; and (f) at t = 2.0 ps. 

This behavior indicates that the cluster lifetime would be elongated by connecting to each other. Thus, 

we check the relation between lifetime and cluster networking. We calculated the average lifetime 

separately for isolated clusters, two-connected clusters, and multi-connected clusters with three or more 

connections in an N = 4000 Zr40Cu60 supercooled liquid phase at T = 812 K. The results are shown in 

Figure 7, where the average was taken from 30, 21, and 14 decaying events for the isolated,  

two-connected, and multi-connected clusters, respectively. We can see that the lifetime becomes longer 

if clusters are connected via bicap sharing, as already reported by Malins et al. [26] in a simulation study 

of a model binary glass former. Therefore, the icosahedral order in supercooled liquids is stabilized by 

the network formation of clusters connected via bicap sharing. 
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Figure 7. Relation between the average lifetime of the icosahedral clusters and the number 

of the bicap sharing bonds belonging to the clusters. 

3.2. Icosahedral Order in Model System 

3.2.1. Atomic Size Effect on Glass-forming Ranges of Model Binary System 

To focus on a geometrical aspects of icosahedral order in metallic glasses, we proceed to analysis for 

a model alloy system interacting with the Lennard-Jones type potential, where we can freely change the 

atomic size ratio between constituent elements. Here we consider a model A-B binary alloy systems, 

where the element A has a unit size and the size of element B changes from 0.8 to 1, and the composition xB 

of B is ranging from 0 to 1. The heat of mixing between the elements A and B is fixed to be zero to focus 

on a geometrical effect. 

The glass-forming range by rapid quenching from liquid phases in this model system has been 

investigated in the previous studies [33–35] and the results are shown in Figure 8. The color of the  

glass-forming region indicates the cooling rate, where a darker region corresponds to a lower cooling 

rate. We can find that the glass-forming ability goes up as the atomic size difference increases. 
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Figure 8. Dependence of glass-formation range on the cooling rate mapped on the atomic 

size ratio vs. composition plane. Darker region corresponds to lower cooling rate. 

3.2.2. Geometrical Feature of Icosahedral Network 

As found in the Zr-Cu system, we have found the network structure formed by icosahedral clusters 

mainly connected by bicap sharing in the glassy phases also in the model system. Figure 9 shows the 

properties of the cluster networks found in as-quenched glassy phases in the N = 4000 A80B20 and the  

N = 4000 A40B60 systems with the atomic size ratio 1:0.8, which approximately agrees with that between 

Zr and Cu atoms. The dominant connecting pattern is bicap sharing in both cases as found in the Zr-Cu 

system and the network is more extended in the A40B60 case than in the A80B20 case. If we pick up the 

cap sharing bonds and draw them as sticks, we can see that the network extends all over the system as 

shown in Figure 9b for the A40B60 case. 

 

Figure 9. (a) Population of isolated/linked icosahedral clusters and those of linking patterns 

between clusters found in glassy phases of the N = 4000 A80B20 system and the N = 4000 

A40B60 system; (b) Network structure formed by the bicap sharing bonds between the 

icosahedral clusters found in a glassy phase of the A40B60 system, where spheres and sticks 

denote the central atoms of the icosahedral clusters and the bicap sharing bonds, respectively. 
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3.2.3. Atomic Size Ratio Dependence of Icosahedral Order 

The relation between the icosahedral order formation and the atomic size ratio is confirmed by 

investigating the icosahedral order in supercooled liquid phases. For a fixed composition xB = 0.5,  

the dependence of the density of the icosahedral clusters on the atomic size ratio of the supercooled 

phases was calculated, and the results are shown in Figure 10. The number of icosahedral clusters in  

the supercooled liquids increases as the size difference increases to the atomic size ratio 1:0.8.  

On the other hand, it begins to decrease beyond the atomic size difference 0.2 because the relative 

stability of the icosahedral clusters to other types of clusters (e.g., the trigonal prisms [36]) decreases 

due to the large atomic size difference. It means that the proper size difference between constituent 

elements brings higher icosahedral order and higher stability of the supercooled liquid phases. 

 

Figure 10. Dependence of the population of the icosahedral clusters in the supercooled liquid 

phases of the N = 4000 A50B50 system at T = 1.4Tg and T = 1.2Tg on the atomic size ratio. 

3.2.4. Cluster Lifetime and Atomic Size difference 

To estimate the stability of the icosahedral order in supercooled liquids in the model system, we have 

also calculated [35] the dependence of the average lifetime of the icosahedral clusters on the atomic  

size ratio. The results for supercooled liquids of the N = 4000 A50B50 system at T = 1.2Tg are shown  

in Figure 11, where the average was taken from 45, 54, and 50 decaying events for the A50B50 system 

with the atomic size ratio 1:0.9, 1:0.85, and 1:0.8, respectively. The average lifetime of the clusters 

increases as the size difference increases in this range. The enhanced stability of the icosahedral clusters 

due to the atomic size difference would be mainly originated from two factors: One is enhancement of 

stability of single cluster due to atomic size difference and the other is enhancement of connectivity 

between the clusters due to the increase of cluster density. Since the stability of a sole cluster has been 

discussed in the previous study [35], we shall investigate the enhancement of the stability of the 

icosahedral order due to cluster connection by focusing on the geometry of cluster networking. 
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Figure 11. Dependence of the average lifetime of the icosahedral clusters in a supercooled 

liquid phase of the N = 4000 A50B50 system at T = 1.2Tg on the atomic size ratio. The time 

unit normalized by the model parameters described in the Section 2.1 is used. 

3.2.5. Icosahedral Network in Supercooled Liquids 

The network structure of connected icosahedral clusters via bicap sharing is also observed  

in supercooled liquid phases. Figure 12 shows snapshots of the cluster networks found in supercooled 

liquid phases of the N = 4000 A50B50 system with the atomic size ratio 1:0.9 and 1:0.8, and the 

dependence of the number of cluster connection via bicap sharing in a supercooled liquid phase at  

T = 1.2Tg on the atomic size ratio of the N = 4000 A50B50 system. Comparing with the cluster density 

shown in Figure 10, the number of bicap sharing bonds has larger dependence on the atomic size ratio. 

That is another reason why the stability of icosahedral structure in supercooled liquids is strongly 

enhanced by a large atomic size difference between alloying elements. 

 

Figure 12. (a) Network structure formed by the bicap sharing bonds between the icosahedral 

clusters found in supercooled liquid phases of the N = 4000 A50B50 system with the atomic 

size ratio 1:0.9 and (b) the atomic size ratio 1:0.8, where spheres and sticks denote the central 

atoms of the icosahedral clusters and the bicap sharing bonds between clusters, respectively. 

(c) Dependence of the number of cluster connection via bicap sharing in a supercooled liquid 

phase of the N = 4000 A50B50 system at T = 1.2Tg on the atomic size ratio. 
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3.2.6. Unit for 5-Fold Symmetry 

The property of the network formed by bicap sharing bonds should depend on the properties of the 

sharing part of the bonding, that is, the pentagonal bicap formed by seven atoms. Therefore we shall 

change our focus from the icosahedral cluster to the pentagonal bicap or the bond surrounded by a  

5-membered ring, which we call “5-ring bond”, as illustrated in Figure 13. Similarly we also call the 

bonds which are surrounded by 4 or 6 neighbors as 4-ring or 6-ring bonds, respectively. 

 

Figure 13. (a) Snapshot of two icosahedral clusters connected by bicap sharing; (b) Side 

view of a pentagonal bicap or a 5-ring bond formed by shared 7 atoms; and (c) perspective 

view of a 5-ring bond. 

Here we add a note on the definition of “atomic bonding” in this study. We define that two atoms are 

“bonding” if the two atoms are sharing a common Voronoi face. This definition has the shortcomings 

that unnatural bonds might be generated when a large atomic size difference exists between constituent 

elements [37], because the atomic size is not taken into account in the Voronoi tessellation procedure. 

Therefore, one should use a kind of weighted Voronoi tessellation technique [37] for more  

detailed analyses. 

3.2.7. Geometric Change in Solidification 

To investigate the icosahedral order formation in solidifying stage, we calculate the temperature 

dependence of the population of 4-, 5- and 6-ring bonds together with that of icosahedral clusters in a 

quenching process of the N = 4000 A50B50 system with an atomic size ratio 1:0.8. The results are shown 

in Figure 14. The number of 5-ring bonds rapidly grows just above Tg as well as that of icosahedral 

clusters, which indicates that the icosahedral network by the bicap sharing connection would grow in 

this temperature range. 

3.2.8. Geometric Change in Relaxation 

We have also calculated the change of population of the 4-ring, 5-ring, and 6-ring bonds in a 

relaxation process of a glassy phase of the A50B50 system with the atomic size ratio 1:0.8 annealed just 

below Tg. The results are shown in Figure 15. We find that the 5-ring bonds increase and 4-ring bonds 

decrease in the relaxation stage. It indicates that the relaxation goes on with the growth of the 5-ring 

network supplied by transformation from 4-rings into 5-rings. 
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Figure 14. (a) Temperature dependence of population of the icosahedral clusters in a 

quenching process of the N = 4000 A50B50 system with an atomic size ratio 1:0.8;  

(b) Temperature dependence of population of the 4-ring, 5-ring, and 6-ring bonds in the  

same process. 

 

Figure 15. Time dependence of population of the 4-ring, 5-ring, and 6-ring bonds in  

an annealing process at just below Tg of the N = 4000 A50B50 system with an atomic size  

ratio 1:0.8. 
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3.3. Icosahedral Order and Regge Calculus 

3.3.1. Geometric Consideration Based on DRP Model 

The idea of the Dense Random Packing (DRP) [1] has given rise to various studies on the atomic 

structure of liquids and glasses [38–40]. The role of the 5-ring bond can be also understood by a simple 

geometric consideration based on the DRP model. In the DRP model, the basic building block is 

mutually bonded tetrahedral cluster of 4-atoms. In other words, the DRP structure is a space-filling with 

the tetrahedra in three dimensions. The fact that the regular tetrahedron has a dihedral angle around 

70.5°, which cannot completely fit to 360° is the reason why the DRP structure cannot fill the whole 

three dimensional space as crystalline structures do. Therefore, the DRP structure is always accompanied 

with frustration. As illustrated in Figure 16, the 4-ring bond is too few, the 5-ring bond is a little few, 

and the 6-ring bond is too many. Among them, the 5-ring has the lowest frustration or distortion, which 

is why 5-rings dominate in DRP structure. 

 

Figure 16. Tetrahedral cluster and 4-, 5-, and 6-ring bonds and the deficit angles around each bonds. 

3.3.2. Regge Calculus 

To estimate this type of distortion energy, the Regge calculus [41,42] is an appropriate formalism, 

which was originally proposed as a model of theory of gravitation. In Einstein’s theory of gravity, the 

energy of continuum space-time is expressed by a scalar curvature. On the other hand, in the Regge 

calculus, the space-time is discretized into simplices (i.e., triangles in two dimensions and tetrahedra in 

three dimensions) and the energy is estimated by the deviation from 360° or the “deficit angle” located 

at “hinge”. As illustrated in Figure 17, the deficit angle is located at each vertex in two dimensions. 
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Figure 17. Illustrative view between the continuum theory and the discrete theory of 

curvature in two-dimensional manifold. 

In three dimensions, the space is divided by tetrahedra, and the deficit angle is located at each link  

or bond, as illustrated in Figure 18. Thus, the hinges are vertices in two dimensions and links in  

three dimensions. 

 

Figure 18. Illustrative view of definition of deficit angle around a bond in three dimensions. 

3.3.3. Variety of Tetrahedral Building Blocks: Binary Case 

For a monoatomic system, there is no variation of shape of tetrahedra but the regular tetrahedron,  

so the lowest energy bond for pure elements is the 5-ring bond. On the other hand, if we introduce the 

different sized elements, the shape variation of tetrahedra increases and the variation of dihedral angles 

also goes up, as illustrated in Figure 19 for a binary AB system with an atomic size ratio 1:0.8. 

 

Figure 19. Variety of dihedral angles of tetragonal clusters found in a binary system with 

the atomic size ratio 1:0.8. 
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In this binary system, we have 24 different configurations of 5-rings. Among them we can find six 

configurations which has a lower distortion or a smaller deficit angle than that of monoatomic 5-rings 

as shown in Figure 20. These configurations of 5-rings with lower distortion would be the key structure 

to construct an icosahedral ordered network with low frustration in the alloy system. 

 

Figure 20. Configurations of 5-ring bonds which has a smaller deficit angle found in a binary 

system with the atomic size ratio 1:0.8 than that of the 5-ring bond in monoatomic systems. 

3.3.4. Icosahedral Network and Low Distortion 5-Rings 

The frustration in the network formed by bicap sharing bonds would get lower and the connectivity 

of the network would be enhanced by the existence of these types of low distortion 5-rings. Therefore, 

we examined the distribution and population of these types of 5-rings in the icosahedral network via 

bicap sharing in glassy phases of the AB system. Figure 21 shows snapshots of the icosahedral networks 

formed by bicap sharing bonds and their portions consisting the top 6 types of low distortion 5-rings 

shown in Figure 20 found in an as-quenched glassy phase of the N = 4000 A50B50 system with the atomic 

size ratio 1:0.8. The top 6 configurations of 5-rings distribute over all icosahedral networks of bicap 

sharing and its fraction in the network is 50.9%, which is considerably greater than the expectation value 

45/128 = 35.2% of finding the above six configurations when we make 5-rings by randomly choosing  

seven atoms from A or B atoms with equal probability from the A50B50 composition. Figure 21c,d shows  

a bonding topology and the atomic configuration of a portion of the icosahedral network connecting 

solely the top six configurations of 5-rings. 
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Figure 21. (a) Snapshot of the icosahedral networks linked by bicap sharing and (b) their 

portions consisting of the top six configurations with low distortion as depicted in Figure 20 

found in an as-quenched glassy phase of the N = 4000 A50B50 system with the atomic size 

ratio 1:0.8. (c) Snapshot of bonding topology of a fragment of the network shown (b), and 

(d) atomic configuration of this portion formed by eight icosahedral clusters, where green 

and blue spheres denote the A and B atoms, respectively. 

3.3.5. Geometry Change in Relaxation 

The top six configurations with lower distortion of 5-ring bonds are already dominated in the  

as-quenched glassy phases as expected. It is likely that their fraction in the icosahedral network would 

grow in the course of structural relaxation. The results are shown in Figure 22 for an annealing process 

at just below Tg of a glassy phase of the N = 4000 A50B50 system with an atomic size ratio 1:0.8.  

The population of these top six configurations has grown in the annealing process, as well as the total 

number of bicap 5-ring bonds. However, the fraction of them little changed and simply fluctuated within 

50% ± 3% during the annealing process. It means that the relaxation goes mainly by 5-rings formation 

supplied by 4-rings decay into 5-rings as found in Figure 15, and that the contribution from the 

configuration change in 5-rings is small, due to low mobility in glassy phases. In other words, the average 

alloy composition is important to form a lower distortion network of the icosahedral clusters. 

3.3.6. Low Distortion 5-Rings and Alloy Compositions of Good Glass-Former 

From that viewpoint, we discuss the relation between the composition dependence of icosahedral 

order and the atomic configurations of 5-rings for the model binary system with the atomic size ratio 

1:0.8. As an index for the icosahedral order formation, we calculate the number of the bicap sharing 

bonds in the networks of icosahedral clusters formed in supercooled liquid phases at T = 1.2Tg of the  

N = 4000 AB system with the atomic size ratio 1:0.8. The results are shown in Figure 23. In this 

viewgraph, we have indicated the average composition of the 5-rings which have lower distortion as 

illustrated in Figure 20. Based on the composition dependence of icosahedral order, the predicted 

composition of the highest icosahedral order and the best glass-former is around xB = 0.60. On the other 

hand, the composition of the 5-ring of the lowest distortion and the average composition of top 6 

configurations are 0.86 and 0.57, respectively, the latter of which is not so bad prediction for highest 
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icosahedral order and good glass-former. It means that the alloy composition which has the biggest 

chance to form the low distortion 5-rings would be a good glass-former. 

 

Figure 22. (a) Time evolution of the number of the bicap sharing bonds between icosahedral 

clusters and that of the top 6 configurations of 5-rings in the bicap connections in an 

annealing process at just below Tg of a glassy phase of the N = 4000 A50B50 system with an 

atomic size ratio 1:0.8; (b) Snapshot of the icosahedral network via bicap sharing formed in 

a relaxed glassy phase (annealing time: 2.5 × 106); and (c) portion of the top six 

configurations in the icosahedral network. 

 

Figure 23. Comparison between the alloy composition of clusters with lower distortion and 

that of higher density of icosahedral order. (a) Atomic configuration of 5-ring bonds with 

lower distortion; (b) Composition dependence of the number of the bicap sharing bonds 

between the icosahedral clusters in supercooled liquid phases at T = 1.2Tg of the  

N = 4000 AB system with the atomic size ratio 1:0.8. The arrows indicate the composition 

of the clusters shown in Figure 23a. 
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3.3.7. Variety of Tetrahedral Building Blocks: Ternary Case 

For ternary system with size ratio 1:0.9:0.8, we have further variety of tetrahedron shape. 

Consequently, we can find many lower distortion configurations in the ternary system than those in 

binary systems, as shown in Figure 24. That is why the glass-forming ability goes up in ternary or more 

components metallic systems. 

 

Figure 24. Configurations of 5-ring bonds which have a smaller deficit angle than 0.5 degree 

found in a ternary system with the atomic size ratio 1:0.9:0.8. 

The well-known three empirical rules to acquire a high glass-forming ability in metallic systems 

proposed by Inoue [31] are the following: 

(1) Multicomponent alloy systems consisting of more than three components, 

(2) Significantly different atomic size ratios among the main constituent elements, 

(3) Large negative heats of mixing among their elements. 

The first one (multi-component) and the second one (large atomic size difference) would realize  

the 5-ring configurations with very low distortion just as shown in Figure 24. Moreover, the third one 

(negative heat of mixing) makes the probability of forming such low distortion 5-rings greater, because 

such configurations can be achieved only by mixing different components as shown in Figure 24.  

In this sense, we can understand the above rules as criteria for lower distortion network formation  

of icosahedral order. 

From a similar point of view, we can understand the geometrical origin of medium-range order 

structure in metallic glasses by constructing a structural model of icosahedral order by connecting lower 

strain 5-rings step by step. In the course of construction, we should take not only the icosahedral clusters 

but also the distorted icosahedra, which are not indexed (0, 0, 12, 0), into account. This type of 

construction would offer a geometrical basis of the “low frustrated disclination line” [42] or the 

“icosahedral backbone” [18,19]. This task is complicated and will be the subject of further studies. 
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3.3.8. Relation between Icosahedral Clusters and Other Types of Clusters 

As a structural unit, not only the icosahedral clusters indexed as (0 0 12 0) but other types of clusters 

also play an important role in liquid and glassy phases of metallic glasses. Lee et al. has shown [19] in 

their simulation study that the interconnection between the icosahedral network and distorted icosahedra 

(for example, indexed as (0 2 8 2)) form a medium-range structure in the Cu-Zr glassy phases.  

Ding et al. has shown [22] that icosahedral clusters are only dominated in the Cu-centered clusters, but 

another type of Frank-Kasper polyhedra indexed as (0 0 12 4) called “Z16 cluster” are dominated in the 

Zr-centered clusters and both types of clusters contribute to the icosahedral order formation in the  

Cu-Zr supercooled liquids. It means that the icosahedral cluster are only important around “smaller” 

atoms, but other type of clusters is important around “larger” atoms. Here we should note that the central 

atom of the Z16 cluster has twelve 5-ring bonds and four 6-ring bonds, so an increase of the Z16 clusters 

may also contribute to the formation of icosahedral order or 5-ring networks as in the case of the 

icosahedral clusters. In addition, recent experimental observations [24] and simulation studies [26] have 

shown that the crystal-like clusters also play an important role in the dynamics at the glass transition, 

where the time scale of structural relaxation blows up. Therefore, we discuss the interrelation between 

the icosahedral clusters and other types of clusters for the model binary system shortly. 

For the N = 4000 A50B50 system with an atomic size ratio 1:0.8, the fraction of Voronoi polyhedra 

with various indices was calculated for an as quenched glassy phase and an relaxed glassy phase 

annealed at just below Tg for Δt = 2.5 × 106. The results are shown in Figure 25a, where some of the 

most abundant polyhedra are shown in each symmetry, that is, the icosahedron-like, the Z16 cluster-like, 

and crystal-like symmetry. In both cases, the most populous polyhedron is the icosahedron and the next 

one is the distorted icosahedron indexed by (0 1 10 2). In the relaxed glassy phase, the fraction of the 

icosahedron-like atoms and Z16 cluster-like atoms have increased due to the structural relaxation. 

Among them, the fraction of the Z16 cluster showed a remarkable growth (2.75 times higher) [22].  

On the other hand, the fraction of crystal-like atoms has a little decreased and it indicates that the  

crystal-like clusters would transform into the icosahedral ones by annealing, which is consistent with a 

recent experimental observation in Zr50Cu45Al5 bulk metallic glasses [11]. In the same relaxed phase, 

96.7% of the icosahedron-like clusters are the (smaller) B atom-centered, while 99.7% of the Z16  

cluster-like clusters are the (larger) A atom-centered. 

To get a hint of the structural roles of various types of clusters, we have shown a snapshot of spatial 

distribution of them in Figure 25b, where a 25% portion of the N = 4000 relaxed glassy A50B50 alloys is 

sliced out and only the atoms centered at the icosahedral clusters, the distorted icosahedra, the Z16 

cluster, the Z16 cluster-like ones, and the crystal-like ones are depicted by the white, yellow, dark green, 

light green, and blue spheres. From the figure, the distorted icosahedral atoms and the Z16 cluster-like 

atoms seem to interconnect to the icosahedral network and form a larger network structure, while the 

crystal-like atoms seem to occupy a little separated region from the icosahedral network. Clarifying the 

individual roles of the icosahedral, the distorted icosahedral, and Z16 cluster-like atoms in forming  

the icosahedral medium-range order is an important issue to be investigated but will be another subject 

of our future studies. 
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Figure 25. (a) Fractions of various Voronoi polyhedra found in an as quenched glassy phase 

(green) and a relaxed glassy phase (blue) of the N = 4000 A50B50 system with an atomic size 

ratio 1:0.8; (b) Snapshot of atomic configuration of a 25% portion of an N = 4000 relaxed 

glassy A50B50 phase. Only the atoms centered at the icosahedral clusters, the distorted 

icosahedra, the Z16 clusters, the Z16 cluster-like ones, and the crystal-like ones are depicted 

by the white, yellow, dark green, light green, and blue spheres. 

4. Conclusions 

Icosahedral ordered structures formed in liquid and glassy phases of metallic glasses are investigated 

by using molecular dynamics simulations. In both the Zr-Cu alloy system and a model binary alloy 

systems, the same feature of the icosahedral order is observed. Formation and decay processes of the 

icosahedral clusters are found in liquid phases. As the temperature decreases, the lifetime of the cluster 

becomes longer and the density of the cluster grows in supercooled liquid phases. Near Tg, the clusters 

begin to connect to each other and the network structure of clusters connected via bicap sharing forms, 

which is the origin of the icosahedral medium-range order. Network formation of icosahedral clusters 

via cap-sharing in supercooled liquids enhances stability of clusters. In glassy phases, the icosahedral 

network grows and extends over the whole system in structural relaxation by annealing. The frustration 

or distortion in the icosahedral network formed by bicap or 5-ring sharing connections can be estimated 

by using the Regge calculus. The analysis of the distortion in the connected part or the 5-ring bond shows 

that atomic size difference gives a variety in shape of tetrahedral clusters and generates lower frustrated 

configurations of 5-ring bonds and icosahedral clusters. The empirical rules between alloying elements 

for achieving high glass-forming ability in metallic systems can be understood by the analysis of the 

frustration of the 5-rings. 

Author Contributions 

The authors contributed equally to this work. 
  



Metals 2015, 5 1185 

 

 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Bernal, J.D. A Geometrical Approach to the Structure of Liquids. Nature 1959, 183, 141–147. 

2. Cargill, G.S., III. Dense random packing of hard spheres as a structural model for noncrystalline 

metallic solids. J. Appl. Phys. 1970, 41, 2248–2250. 

3. Finney, J.L. Modelling the structures of amorphous metals and alloys. Nature 1977, 266, 309–314. 

4. Yamamoto, R.; Doyama, M. The polyhedron and cavity analyses of a structural model of 

amorphous iron. J. Phys. F Metal Phys. 1979, 9, 617–627. 

5. Inoue, A.; Zhang, T.; Masumoto, T. Zr-Al-Ni amorphous alloys with high glass transition 

temperature and significant supercooled liquid region. Mater. Trans. JIM 1990, 31, 177–183. 

6. Parker, A.; Johnson, W.L. A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10Be22.5.  

Appl. Phys. Lett. 1993, 63, 2342–2344. 

7. Saida, J.; Sanada, T.; Sato, S.; Imafuku, M.; Matsubara, E.; Inoue, A. Local structure study in  

Zr-based metallic glasses. Mater. Trans. 2007, 48, 1703–1707. 

8. Hui, X.; Gao, R.; Chen, G.L.; Shang, S.L.; Wang, Y.; Liu, Z.K. Short-to-medium-range order in 

Mg65Cu25Y10 metallic glass. Phys. Lett. A 2008, 372, 3078–3084. 

9. Shen, Y.T.; Kim T.H.; Gangopadhy, A.K.; Kelton, K.F. Icosahedral order, frustration, and the  

glass transition: Evidence from time-dependent nucleation and supercooled liquid structure studies. 

Phys. Rev. Lett. 2009, 102, 057801. 

10. Hirata, A.; Guan, P.-F.; Fujita, T.; Hirotsu, Y.; Inoue, A.; Yavari, A.R.; Sakurai, T.; Chen, M.-W. 

Direct observation of local atomic order in a metallic glass. Nat. Mater. 2011, 10, 28–32. 

11. Hwang, J.; Melgarejo, Z.H.; Kalay, Y.E.; Kalay, I.; Kramer, M.J.; Stone, D.S.; Voyles, P.M. 

Nanoscale Structure and Structural Relaxation in Zr50Cu45Al5 Bulk Metallic Glass. Phys. Rev. Lett. 

2012, 108, 195505. 

12. Liu, A.C.Y.; Neish, M.J.; Stokol, G.; Buckley, G.A.; Smillie, L.A.; de Jonge, M.D.; Ott, R.T.; 

Kramer, M.J.; Bourgeois, L.J. Systematic Mapping of Icosahedral Short-Range Order in a Melt-Spun 

Zr36Cu64 Metallic Glass. Phys. Rev. Lett. 2013, 110, 205505. 

13. Miracle, D.B. A structural model for metallic glasses. Nat. Mater. 2004, 3, 697–702. 

14. Sheng, H.W.; Luo, W.K.; Alamgir, F.M.; Bai, J.M.; Ma, E. Atomic packing and  

short-to-medium-range order in metallic glasses. Nature 2006, 439, 419–425. 

15. Shimono, M.; Onodera, H. Icosahedral order in supercooled liquids and glassy alloys. Mat. Sci. Forum 

2007, 539–543, 2031–2035. 

16. Wakeda, M.; Shibutani, Y. Icosahedral clustering with medium-range order and local elastic 

properties of amorphous metals. Acta Mater. 2010, 58, 3963–3969. 

17. Xie, Z.-C.; Gao, T.-H.; Guo, X.-T.; Qin, X.-M.; Xie, Q. Growth of icosahedral mediumrange order 

in liquid TiAl alloy during rapid solidification. J. Non-Cryst. Solids 2014, 394, 16–21. 

18. Li, M.Z.; Wang, C.Z.; Hao, S.G.; Kramer, M.J.; Ho, K.M. Structural heterogeneity and medium-range 

order in ZrxCu100−x metallic glasses. Phys. Rev. B 2009, 80, 184201. 



Metals 2015, 5 1186 

 

 

19. Lee, M.; Kim, H.-K.; Lee, J.-C. Icosahedral medium-range orders and backbone formation in an 

amorphous alloy. Met. Mater. Int. 2010, 16, 877–881. 

20. Cheng, Y.Q.; Ma, E.; Sheng, H.W. Atomic level structure in multicomponent bulk metallic glass. 

Phys. Rev. Lett. 2009, 102, 245501. 

21. Lekka, Ch.E.; Evangelakis, G.A. Bonding characteristics and strengthening of CuZr fundamental 

clusters upon small Al additions from density functional theory calculations. Scr. Mater. 2009, 61, 

974–977. 

22. Ding, J.; Cheng, Y.-Q.; Ma, E. Full icosahedra dominate local order in Cu64Zr34 metallic glass and 

supercooled liquid. Acta Mater. 2014, 69, 343–354. 

23. Frank, F.C.; Kasper, J.S. Complex alloy structures regarded as sphere packings. I. Definitions and 

basic principles. Acta Cryst. 1958, 11, 184–190. 

24. Leocmach, M.; Tanaka, H. Roles of icosahedral and crystal-like order in the hard spheres glass 

transition. Nat. Commun. 2012, 3, 974. 

25. Pedersen, U.R.; Schrøder, T.B.; Dyre, J.C.; Harrowell, P. Geometry of Slow Structural Fluctuations 

in a Supercooled Binary Alloy. Phys. Rev. Lett. 2010, 104, 105701. 

26. Malins, A.; Eggers, J.; Royall, C.P.; Williams, S.R.; Tanaka, H. Identification of long-lived clusters 

and their link to slow dynamics in a model glass former. J. Chem. Phys. 2013, 138, 12A535. 

27. Finnis, M.W.; Sinclair, J.E. A Simple Empirical N-Body Potential for Transition Metals.  

Pilos. Mag. A 1984, 50, 45–55. 

28. Sanchez, J.M.; Barefoot, J.R.; Jarrett, R.N.; Tien, J.K. Modeling of γ/γ′ phase equilibrium in the 

Nickel-Aluminum system. Acta Metall. 1984, 32, 1519–1525. 

29. Rosato, V.; Guillope, M.; Legrand, B. Thermodynamical and structural properties of f.c.c. transition 

metals using a simple tight-binding model. Philos. Mag. A 1989, 59, 321–336. 

30. Shimono, M.; Onodera, H. Molecular dynamics study on structural relaxation of metallic glasses. 

Mat. Sci. Forum 2010, 638–642, 1648–1652. 

31. Inoue, A. High strength bulk amorphous alloys with low critical cooling rates. Mater. Trans. JIM 

1995, 36, 866–875. 

32. Andersen, H.C. Molecular dynamics simulations at constant pressure and/or temperature.  

J. Chem. Phys. 1980, 72, 2384–2393. 

33. Shimono, M.; Onodera, H. Geometrical and chemical factors in the glass-forming ability.  

Scripta Mater. 2001, 44, 1595–1598. 

34. Shimono, M.; Onodera, H. Structural Relaxation in Supercooled Liquids. Mater. Trans. 2005, 46, 

2830–2837. 

35. Shimono, M.; Onodera, H. Icosahedral symmetry, fragility and stability of supercooled liquid state 

of metallic glasses. Rev. Métallurgie 2012, 109, 41–46. 

36. Ohkubo, T.; Kai, H.; Hirotsu, Y. Structural modeling of Pd–Si and Fe–Zr–B amorphous alloys 

based on the microphase separation model. Mater. Sci. Eng. A 2001, 304–306, 300–304. 

37. Park, J.; Shibutani, Y. Weighted Voronoi tessellation technique for internal structure of metallic 

glasses. Intermetallics 2007, 15, 187–192. 

38. Hansen, J.P.; McDonald, I.R. Theory of Simple Liquids, 3rd ed.; Academic Press: New York, NY, 

USA, 2006. 



Metals 2015, 5 1187 

 

 

39. Miracle, D.B. The efficient cluster packing model—An atomic structural model for metallic glasses. 

Acta Mater. 2006, 54, 4317–4336. 

40. Hopkins, A.B.; Stillinger, F.H.; Torquato, S. Densest local sphere-packing diversity. II. Application 

to three dimensions. Phys. Rev. E 2011, 83, 011304. 

41. Regge, T. General relativity without coordinates. Nuovo Cimento 1961, 19, 558–571. 

42. Nelson, D.R. Order, frustration, and defects in liquids and glasses. Phys. Rev. B 1983, 28, 5515–5535. 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


