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Abstract: Fe68.45Pd28.21Co1.66Ni1.66 alloy in ribbon geometry was produced by melt spinning. 

The microstructure of the samples was examined using scanning electron microscopy.  

The structural identification of the as-spun ribbon sample and the annealed ones was 

performed by means of X-ray diffraction. All the Bragg peaks were indexed based on an fcc 

type structure of (γ-Fe, Pd) phase with a lattice parameter a = 3.742 (3) Å. This result was 

proved by Mössbauer technique. The annealed ribbon at 600 °C shows an L10 ordered fct 

structure. An endothermic reaction at T = 358 °C followed by an exothermic one at 390 °C were 

observed on heating. These reactions were attributed to the Curie temperature of nickel and 

to the annihilation of an excess of quenched-in vacancies, respectively. 
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1. Introduction 

Fe-Pd-based alloys have attracted much interest since the beginning of the 1980, initially due to their 

invar properties [1], giant magnetostrictive strain [2], and magnetic anisotropy with the potential of 

perpendicular magnetic recording [3]. Most recently, they have been the subject of many research studies 

as a promising ferromagnetic shape memory (FSM) material [4]. In addition, these alloys show higher 

Curie temperature Tc and have excellent mechanical properties [5]. The structural and magnetic 

properties of Fe-Pd alloys have been widely studied, and the most initial characterization work was given 

by the group of Oshima [6–9]. It has been reported that the alloys with the compositional range  

29–32 at. % Pd undergo a thermoelastic martensitic transformation (MT) from a face-centered cubic 

(fcc) austenitic phase to a face-centered tetragonal (fct) low temperature martensitic phase. The fct 

martensite transforms into a body-centered tetragonal (bct) structure after further cooling [7]. This 

transformation is non-thermoelastic, such that the formed bct martensite persists on the alloy. Besides, 

it has been shown that the fcc–fct and fct–bct transformations temperatures strongly depend on 

composition [3]. 

On the other hand, the addition of other elements can affect the martensitic transformation 

temperatures of FePd alloys. This hypothesis has been confirmed in the Ni-Mn-Ga-Co [10] and  

Fe-Pd-Mn systems [11]. However, the addition of a new alloying element may favor the stabilization of 

the fct martensite as suggested for Fe70Pd30 and Fe-Pd-Pt alloys [12]. In fact, to the best of our 

knowledge, there is a few works that have addressed this problem [13,14]. It is quite important to answer 

the question pertaining to the influence of ternary and quaternary additions on this phase transition, 

especially for the Ni and Co elements. The present work presents the experimental evidence for the 

understanding of this addition effects. 

2. Experimental Section 

Ingots of about 2 g with nominal composition Fe68.45Pd28.21Co1.66Ni1.66 were prepared by arc-melting 

in argon atmosphere. As-spun ribbons about 1.5–2.0 mm in width, several cm in length and around  

10 μm in thickness were produced by single roller melt spinning at 4380 rpm in argon atmosphere.  

The as-received ribbons were encapsulated in vacuum quartz capsules in order to prevent oxidation of 

the ribbons at high temperatures. These ribbons were then annealed at 600 °C for 1 h. The microstructure 

of the samples was examined by using scanning electron microscopy (DSM960A; Zeiss, Norman, OK, USA; 

SEM) equipped with energy-dispersive X-ray spectrometry. X-ray diffraction (Bruker D8 Advance 

diffractometer in a 2θ-geometry; Manning Park Billerica, MA, USA; XRD) analyses were performed 

using Cu-Kα radiation. The transmission Mössbauer spectrum was obtained at room temperature and 

room pressure using a conventional constant acceleration spectrometer (Wissenschaftliche Elektronik 

GmbH, Starnberg, Germany) with a 25 mCi source of 57Co in Rh matrix. The experimental spectrum 

was fitted with Brand’s NORMOS program [15], using a histogram magnetic hyperfine field distribution 

with linear correlation between the isomer shift, δ, and the magnetic field, Bhf. The isomer shift values 

are given relative to room temperature α-Fe. The thermal analyses were performed by means of 

differential scanning calorimetry (DSC822 apparatus of Mettler Toledo; Columbus, OH, USA; DSC) 

instrument with a heating/cooling rate of 10 K/min up to 600 °C under constant argon flow. 
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3. Results and Discussion 

Figure 1a–c represents the SEM images of the typical fracture cross section at different 

magnifications and free surface microstructures exhibited by as-spun Fe68.45Pd28.21Co1.66Ni1.66 ribbons 

(Figure 1a,b). Ribbon thickness fluctuated between 6 and 12 μm. Although the samples were obtained 

at high quenching rate, they were fully crystalline and showed a granular columnar type microstructure 

(Figure 1c). Furthermore, while the microstructure shows fracture surfaces of a cleavage type, EDX 

microanalysis demonstrates a nearly homogeneous chemical element distribution for as-spun ribbons 

(Figure 1d). Moreover, the composition analysis of the individual ribbons was found to be in good 

agreement with the nominal composition of the as-spun ribbons (68.01 at% Fe-27.95 at% Pd-1.59 at% 

Co-1.65 at% Ni). 

 

Figure 1. SEM micrographs of microstructure exhibited by as-spun and annealed 

Fe68.45Pd28.21Co1.66Ni1.66 ribbons at 600 °C for 1 h: (a) typical cross section; (b) higher 

magnification of cross section; (c) free surface for as-spun ribbons; (d) EDX corresponding 

to the as-spun ribbons; (e) free surface for annealed ribbons; (f) View of microwires growth; 

(g) wheel surface for annealed ribbons and (h) EDX corresponding to the annealed ribbons. 

Figure 1e,g show the SEM micrographs of the free surface and the wheel surface sides of the annealed 

ribbons at 600 °C for 1 h, respectively. At the free surface, the samples are provided with a microstructure 

consisting of granular, columnar grains growing through the ribbon thickness with their longer axis 

aligned perpendicular to the ribbon plane. Grain sizes fluctuated between 1 and 2 µm. Moreover,  

Figure 1f shows rather columnar structure as the microwires. From the wheel surface image, a cellular 

microstructure type can be noted. As can be seen in Figure 1g, the wetting of the melt by the copper 

wheel might not be fully complete since the surface of the ribbons was slightly wavy on the contact side. 

A certain microporosity of the annealed specimen is present. A nearly homogeneous distribution of the 

chemical elements was found (Figure 1h). 
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Figure 2. XRD patterns of as-spun and annealed Fe68.45Pd28.21Co1.66Ni1.66 ribbons. 

Figure 2 shows the XRD patterns of as-spun and annealed ribbons. All the Bragg peaks are sharp and 

indexed, building on a disordered fcc type structure of (γ-Fe, Pd) phase with space group Fm-3m and a 

lattice parameter a = 3.742(3) Å. This reveals that ribbons are fully-single phase with a cubic austenite 

parent phase. The direction [200] was found to be preferential for austenite phase, indicating that ribbons 

exhibit crystallographic texture in agreement with their grain-oriented columnar microstructure. The XRD 

pattern of the annealed ribbons shows that both the (200) and (220) reflection peaks of the disordered  

γ-(Fe,Pd) phase split into two peaks ((200), (002)) and ((220), (202)) reflections of the ordered FePd L10. 

This is as a result of ordering and transformation from cubic phase to tetragonal one. Furthermore, after 

annealing, both the (110) α-Fe and (200) α-Fe peaks appear anew as a result of decomposition. The 

Rietveld refinement analysis was done by means of the bcc-Fe, fct-FePd, and cubic Fe3O4 phases. The 

pattern of the as-spun sample is composed of reflections corresponding to disordered fcc γ-Fe(Pd) phase 

of the space group Fm-3m and the lattice parameter a = 0.3742(3) nm. This signifies that the as-spun 

ribbon sample is only single-phase—cubic austenite parent phase. The direction [200] is seen to be 

preferential for this austenite phase indicating that ribbon exhibits a crystallographic texture in agreement 

with the grain oriented columnar microstructure detected by SEM. The XRD pattern of the annealed 

ribbon shows that both (200) and (220) reflection peaks of the disordered γ-Fe(Pd) phase are split into 

two peaks; ((200), (002)) and into ((220), (202)) reflections of the ordered FePd L10 phase. This is a 

result of ordering and transformation from the cubic into tetragonal phase. Furthermore, the very small 

reflections (110) and (200) corresponding to the bcc α-Fe phase appear as a result of a partial 

decomposition. In the Ref. [16], it has been reported that the tetragonal phase is usually identified by an 

occurrence of the superlattice reflections (001) and (110) of the fct-lattice representing unambiguously 

the L10 phase. These two superlattice peaks occur in Figure 2 at 2θ about 24° and 33°, respectively. 
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Based on an equation [17,18]: 

S² =
Is × [(Ff)²(L)f × exp(−2M)f × mf]

If × [(Fs)²(L)s × exp (−2M)s × ms]
 (1) 

and using the parameters Ff = (fFe + fPd), Fs = (fPd-fFe), L = (1 + cos22θ)/(sin2 × cosθ),  

M = B(sin2θ/λ2), B = 0.00835 nm2 for superlattice (s) and fundamental (f) reflections, the LRO parameter 

close to 0.9 was determined for the annealed sample. 

Figure 3 shows the one thermal cycle between room temperature and 600 °C. An endothermic reaction 

at 358 °C followed by an exothermic one at 390 °C can be observed on heating. When cooling to room 

temperature, no peak appeared. The endothermic reaction can be attributed to the Tc of Ni. It can be 

detected by the change in heat and by the small amount of energy associated with this transition. The 

exothermic peak might be related to the annihilation of an excess of quenched-in vacancies. In general, 

rapidly solidified ribbons contain an excess of quenched-in vacancies. In fact, at high temperatures, the 

vacancies can be annihilated, as considered for Ni-Mn-Ga shape memory melt-spun ribbons [19] as well 

as for FePd3 alloy [20]. 

 

Figure 3. DSC scans for as-spun ribbons upon heating and cooling at a rate of 10 K/min. 

The Mössbauer spectrum of the as-spun ribbons has been used to complement the XRD patterns in 

order to confirm the phase present in the sample and in order to try to assess the role of the Ni and Co 

additions. Figure 4 shows the experimental spectrum with the best fit (left) together with the hyperfine 

field distribution (right). The hyperfine Mössbauer parameters obtained after the fitting procedure were 

δavg = 0.13 (1) mm/s, Bhf,avg = 34.10 (9) T, σ = 5.2 (1) T, ε = −0.04 (1) mm/s, I2−3 = 2.17 (2), where the given 

values and the avg sub-index correspond to the average of the field distribution, σ is the FWHM of the 

hyperfine field distribution, ε is the quadrupole shift and I2−1 is the ratio between the intensities of lines 

1 and 2 of the sextet. The values in brackets correspond to the standard deviation of the data. From  

Figure 4, a broadening of the external lines of the spectrum is observed. Moreover, an increase in the 

intensity of the second and fifth peaks of the spectrum with respect the first and sixth peaks, respectively, 

has been also detected. The same effects have been previously found in other Fe-Pd alloys [21,22], 

although their origin is debated. In ref. [21] the broadening of the external lines is attributed to a 

superposition of a large number of sextets corresponding to the random arrangements of Fe and Pd 
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neighbors in the first coordination sphere of Fe atoms. However, in ref. [22] the authors state that this 

explanation is not correct for high concentrations of Fe in Pd or in the case of ordered Fe-Pd solutions. 

In fact they fit the broad lines with a small number (up to ten) of discrete hyperfine fields assigned to the 

presence of a strong magnetic field induced by the Pd atoms. This conclusion is supported by the fact 

that in Fe-Pd nanoparticles the thermal fluctuations are important enough to decrease the splitting caused 

by the Pd field, thus reducing the broadening of the lines as it is observed in Mössbauer spectra of  

Fe-Pd nanoparticles. However, in the present study, XRD patterns are ascribed to a disordered fcc type 

structure, therefore it can be concluded that the broadening of the external lines is due to the disordered 

nature of the as-spun ribbons. The increase in intensity of the second and fifth peaks, revealed by the I2−3 

value, is an indication that the spins of the Fe atoms tend to be oriented in the ribbon plane. 

 

Figure 4. Collected Mössbauer spectra (left) with the experimental data (symbols) and the 

best fit (red line) and hyperfine magnetic fields distribution (right). 

The obtained values of the hyperfine parameters allow us to identify the phases present in the  

as-spun ribbons. In fact, the resolution of Mössbauer spectroscopy is able to detect phases with a low 

content in Fe (with a minimum content around 5 at% Fe) that cannot be observed with XRD. Comparing 

the hyperfine parameters of this alloy with those recorded in the literature in alloys with similar 

composition [23], it can be concluded that only one phase is present in the specimen, a disordered  

Fe-Pd fcc phase. 

The existence of a tetragonal fct phase should be discarded due to the low value of the quadrupole 

shift and the high value of the average hyperfine magnetic field. As a reference, in an fct Fe-Pd phase,  

ε = 0.38 mm/s and B = 28.1 T [24], values far from the measured ones. However, a fitting procedure to 

include an fct phase was implemented. The addition of a new sextet with fixed parameters 

(corresponding to the fct phase) to the hyperfine field distribution yield a worst overall fitting and with 

non-physical hyperfine parameters for the disordered fcc phase. 

The effect of the minor addition of Ni and Co is more difficult to discern. There is not so much work 

on the Fe-Pd systems including Ni and Co, although the effect of these atoms in Fe or Fe-Pd thin films 

has been studied [25–28]. The general trend is that these elements at low concentrations tend to increase 

the hyperfine magnetic field and the isomer shift. However, the samples studied in the present work are 

not thin films and, moreover, the structure of the ribbons is disordered, thus the only way to assess the 

influence of Ni and Co is to produce Ni- and Co-free Fe-Pd ribbons and compare the resulting hyperfine 

parameters. In this way, the possible small changes related to these minor additions could be detected. 



Metals 2015, 5 1026 

 

 

However, from the XRD analysis and from the Mössbauer hyperfine parameters some conclusions can 

be drawn. From the presented results it is clear that the actual phase is an fcc phase but according to [24] 

(where Fe-Pd alloys with different Pd content ranging from 2.2 to 100 at% were analyzed) in bulk alloys 

with less than 35 at% of Pd the present phase should be a bcc phase. That is, in bulk Fe-Pd alloys there 

is a transition from a bcc to a fcc phase increasing the Pd content. Therefore, in our case with 28.21 at% 

of Pd we should obtain a bcc structure that has not been found either by XRD or Mössbauer spectroscopy. 

As the only difference in our samples is the presence of Ni and Co, we conclude that the addition of 

these elements favors the formation of the fcc phase rather than the bcc phase expected by the Fe/Pd 

ratio. This conclusion should be confirmed and further work is being done, including the study of the 

annealed sample by Mössbauer spectroscopy that will be published elsewhere. 

4. Conclusions 

The prepared Fe68.45Pd28.21Co1.66Ni1.66 alloy ribbons by melt spinning were studied by means of SEM, 

XRD, DSC and Mössbauer techniques. The results have shown the formation of a single fcc type 

structure of γ-(Fe,Pd,Co,Ni) phase. The Mössbauer analysis has confirmed that Ni and Co addition favor 

the formation of the disordered fcc phase rather than the bcc phase expected by the Fe/Pd ratio. After 

annealing at 600 °C for 1 h, an fct L10-ordered phase is usually identified. The identified endothermic 

and exothermic reactions may be attributed to the Curie temperature of nickel and to the annihilation of 

an excess of quenched-in vacancies, respectively. 
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