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Abstract: The advent of high-entropy alloys (HEAs) provides new possibilities for the metallurgical
community. CoCrFeNi-based alloys have been widely recognized to demonstrate superior mechanical
properties, amongst the high-entropy alloy systems; in particular, they possess an outstanding tensile
ductility and work-hardening capacity. Additive manufacturing (AM) uses a layer-by-layer material
deposition approach to build parts directly from computer-aided design models, which are capable
of producing near-net-shape HEAs with superior mechanical properties, surpassing traditional
manufacturing methods that require a time-consuming post-treatment process, such as cutting,
milling, and molding. Moreover, the rapid solidification inherent in AM processes induces the
formation of high-density dislocations, which are capable of enhancing the mechanical properties
of HEAs. This review comprehensively investigates and summarizes the diverse strengthening
mechanisms within CoCrFeNi-based alloys produced using AM technologies, with a specific focus
on their influence on tensile properties. A correlation is established between the AM processing
parameters and the resultant phases and microstructures, as well as the mechanical properties of
CoCrFeNi-based HEAs, which provide guidelines to achieve a superior strength–ductility synergy.

Keywords: high-entropy alloy; additive manufacturing; strengthening mechanisms; CoCrFeNi-based
alloys; tensile properties

1. Introduction

Metallic materials have been indispensable throughout human history. For example,
the discovery and use of bronze, an alloy made of copper and tin, helped humankind enter
the Bronze Age from the primitive Stone Age. Due to significant advancements in science
and engineering, the limitations of metallic materials’ properties have been consistently
worked upon and broken down. Therefore, humans persistently endeavor to investigate
uncharted territories inside the phase map to discover high-performance alloys. As reported
by Yeh [1] and Cantor [2] in 2004, a new alloy design strategy was raised to explore the
alloying space in the center of the phase diagram. These sorts of new metallic materials are
known as high-entropy alloys (HEAs). In contrast with traditional alloys, HEAs are usually
composed of several principal components in equal or approximately equal proportions,
without a dominant component. The four core effects of HEAs, including the high-entropy
effect, sluggish diffusion effect, lattice distortion effect, and cocktail effect, contribute to the
alloy’s high strength, high hardness, and remarkable irradiation stability [3–12].

Among a vast number of HEA materials, CoCrFeNi-based alloys have attracted
significant research attention and have been extensively investigated due to their excellent
mechanical properties, especially their unique strength–ductility synergy at cryogenic
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temperatures. Because the enthalpy of mixing between the transition elements of Co,
Cr, Fe, and Ni is small and their atomic sizes are comparable, CoCrFeNi-based alloys
are more likely to form a solid solution phase. One of the earliest known HEAs was
the quinary CrMnFeCoNi alloy, also referred to as the cantor alloy [2]. The literature
demonstrates that the cantor alloy has outstanding cryogenic strength [13], hardness [14],
and ductility [15]. The dislocation structure and the evolution of the microstructure under
various strains have the most significant effects on the mechanical characteristics. As strain
and temperature decrease, the deformation mode shifts from dislocation slip, caused by the
planar glide of <110> dislocations on {111} planes, to twinning [13,16]. The deformation
twin, surrounded by the stacking faults, can be observed and increased with the strain
due to the low stacking fault energy (SFE) of the cantor alloy [17]. The essential strain for
twinning drops from 24.5% at ambient temperature to 11% at cryogenic temperature, along
with an elevated work hardening rate [18]. Twin boundaries have the ability to effectively
impede dislocation motion and enhance the cantor alloy’s strength and ductility. Another
representative CoCrFeNi-based alloy is the CoCrFeNiAlx alloy. When the content of Al
rises, the phase transitions from face-centered cubic (FCC) to body-centered cubic (BCC). By
adjusting the amount of the phase fraction, the AlCoCrFeNi HEA’s strength and plasticity
can be tailored. The plasticity and toughness can be attributed to the presence of the FCC
phase, while the strength can be enhanced by the spinodal decomposition structure, which
is composed of the B2 and BCC phases. Through the blocking of dislocation movement
and the storage of dislocations, the eutectic structure that combines the FCC and BCC/B2
phases can simultaneously enhance the strength and ductility [19].

Stacking-fault energy (SFE) is an important parameter controlling the mechanical
properties and underlying deformation mechanisms, particularly among FCC-structured
alloys. The introduction of stacking faults in FCC alloys modifies the atomic stacking
sequence in the direction of the specified plane, which can be characterized as the intrin-
sic and extrinsic fault, hexagonal close-packed (HCP) structure, and twinning [20]. The
deformation mechanism shifts from dislocation slip to twinning-induced plasticity and
transformation-induced plasticity, as the SFE decreases [21–24]. Various deformation sub-
structures can be identified as a result of the complex stacking fault–dislocation–twinning
interactions [25]. Such dislocation-related interactions promote dislocation proliferations
and contribute to an enhanced strain-hardening capability. Apart from tailoring SFE values
and associated deformation mechanisms, there are another two approaches for achieving
property enhancement [26–31]. The first one is to dope other elements to the CoCrFeNi
matrix to establish a solid solution strengthening and/or an interstitial strengthening mech-
anism. The second method involves introducing nanoparticles to the CoCrFeNi-based
matrix to form a precipitation-strengthening structure.

Recently, with the emergence and development of additive manufacturing (AM)
processes, there has been a breakthrough in the selection of the alloying element of HEAs.
Additive manufacturing, or 3D printing, is a sophisticated manufacturing technique that
constructs components layer-by-layer, using liquid, sheet material, or powder raw materials.
There are several advantages associated with AM technology over traditional subtractive
manufacturing methods [32–34]. Firstly, AM allows the design and production of parts
without shape constraints. Secondly, AM is a rapidly evolving manufacturing process,
offering a greatly reduced time-to-market. Thirdly, AM exhibits little wastage and has
a high material utilization rate. Lastly, AM demonstrates a good process repeatability,
ensuring consistent and reliable production outcomes. All these advantages make AM a
competitive manufacturing method for a wide range of applications.

Powder bed fusion (PBF) is one of the most popular manufacturing methods for
HEAs among all the AM processes and it can be divided into two processes, according
to the input energy sources—laser powder bed fusion (LPBF) and electron beam melting
(EBM). Directed energy deposition (DED) is another effective AM process to process HEA
materials. The main difference between the PBF and DED is the way in which the powder is
deposited and processed; the powder is sprayed concurrently with the input energy source
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through a coaxial nozzle during the DED process instead of being pre-deposited on the
substrate, as in the PBF process. The two most utilized techniques in DED for HEAs, with
different energy sources, are laser-directed energy deposition (LDED) and powder plasma
arc additive manufacturing (PPA-AM). The parts manufactured by either PBF or DED
processes are subjected to a rapid cooling rate within a small melt pool, resulting in grain
refinement and large residual stress. High strength or even an extraordinary combination
of strength–ductility can generally be achieved by comparing it with the counterparts
fabricated using conventional processes.

Therefore, the extra strengthening contribution for CoCrFeNi-based alloys is inherent
in the design concept of HEAs and the rapid prototyping process. There are already
some literature reviews regarding the conception of HEAs [35], 3D-printed HEAs [36],
and the mechanical behavior of HEAs [37]. Here, we aim at providing an insightful
view towards the composition–processing–structure–properties relationships in HEAs
prepared using additive manufacturing. This review will present and discuss the typical
methods used to design AMed CoCrFeNi-based alloys. In the present review, various
research on improving the mechanical properties within CoCrFeNi-based alloy systems is
reviewed. The relationship of tensile properties to manufacturing processes, microstructure,
strengthening mechanisms, and deformation mechanisms are systematically discussed
and summarized to promote the understanding and guidance of the mechanical response
among multicomponent alloy systems.

2. Additive Manufacturing of CoCrFeNi-Based Alloys

More and more research is focusing on the use of AM techniques, mainly using PBF
and DED techniques, to fabricate CoCrFeNi-based alloys and an increased enhancement
of the strength of the CoCrFeNi-based alloys has been demonstrated by numerous stud-
ies [38–44]. This improvement can be attributed to the rapid heating and cooling rate
involved in the fabrication process, which effectively mitigates element segregation within
the samples and induces significant dislocations [45–47]. Figure 1 illustrates a flow chart
of additively manufactured (AMed) HEAs and the correlation between the mechanical
properties and processing parameters. The constitution of HEAs can be designed and tuned
using pre-alloyed powder or a mixture of different elements during production process.
The manipulation of processing parameters and subsequent post-treatment procedures
significantly influences not only the microstructural characteristics of the samples, but
also the mechanical properties and underlying strengthening mechanisms. This section
provides an overview of the various phases and crystal characteristics shown by the AMed
CoCrFeNi-based alloy.

2.1. Powder Bed Fusion
2.1.1. Laser Powder Bed Fusion

LPBF, also referred to as selective laser melting, is one of the most commonly used
AM techniques to fabricate metal alloy parts [48,49]. The powder is pre-fed on the platform
by a re-coater and the laser scans on the powder bed following a predetermined route
from a CAD model. With the movement of the focal point of the laser, the powder is
selectively melted and rapidly solidified. The platform drops with a specific distance once
the scanning of the current layer is finished. The part is built using a layer-by-layer method,
with selected processing parameters such as laser power (P), scanning speed (v), hatch
distance (h), and layer thickness (L). Prior to conducting any performance evaluations, it
is essential to prioritize the determination of the relative density of the AMed HEAs. In
order to attain the highest relative density, it is important to adjust the process parameters.
The presence of any defects, such as holes and cracks, significantly impacts the mechanical
strength of the sample. The processing parameters significantly affect the relative density
of the as-built specimen in the following ways: insufficient melting of the powder leads to
void formation and the balling effect due to the excessive energy input [50]. Moreover, the
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phase composition of prototypes can differ from the raw materials as a result of the rapid
heating–cooling cycle and element segregation [51,52].
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The volume energy density (VED, which can be expressed as P
vhL [44]) is commonly

used to evaluate the input energy. According to Chen et al. [38], it was observed that the
density of the bulk CoCrFeNi and CoCrFeNiMn materials exhibited an increase when
the input volume energy density was raised. However, after the volume energy density
was above a threshold value, the density decreased with further elevated energy density
(Figure 2a). Moreover, the high temperature brought about by the input high laser energy
leads to the rapid evaporation of the Mn element, due to the low heat of vaporization and
the low boiling temperature, which leads to a compositional difference between the as-built
component and the raw metal powder (Figure 2b). The distribution of elements is decided
by the shape of the melt pool and the remelting phenomenon caused by adjacent scan tracks
(Figure 2c,d). In LPBF-prepared (LPBFed) AlCoCrFeNi HEAs, both A2 and ordered B2
phases can be found in the matrix. However, the volume fraction of the two phases can be
slightly different when the VED is increased, because the higher cooling rate brought about
by the higher VED facilitated the generation of the B2 phase. As seen in Figure 3a–d, more
B2 phases can be found in the HEA’s A2 phase, as the VED increased [39]. Other examples
of the relative density and phase composition of CoCrFeNi-based HEAs manufactured
using LPBF are summarized in Table 1.
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Table 1. Summary of processing parameters, relative density, and corresponding phases changes for LPBFed CoCrFeNi-based HEAs.

HEA Apparatus Processing Parameter Optimal Relative Density
Phase

Ref.
Powder As-Built

Al0.1CoCrFeNi, Al0.5CoCrFeNi and Al1.0CoCrFeNi SLM 250 HL P = 150 W; v = 270 mm/s; h = 100 µm; L = 50 µm - - FCC + BCC (present within alloy 0.5Al
and 1.0Al) [53]

Al0.3CoCrFeNi PROX DMP 200 P = 150–170 W; v = 1100–1300 mm/s; h = 60–80 µm; L = 50 µm 99.9% - FCC [54]

Al0.5CoCrFeNi - P = 160–320 W; v = 400–2000 mm/s; h = 45 µm; L = 25–30 µm 99.92% - FCC + BCC [55]

AlCoCrFeNi Concept Laser Mlab P = 98 W; v = 2000 mm/s;
h = 52 µm - - B2 + BCC [56]

AlCoCrFeNi2.1 EOS M290 P = 350–370 W; v = 950–1000 mm/s; h = 80–100 µm; L = 40 µm >99.5% - FCC + BCC [40]

AlCoCrFeNi2.1 NCL–M2150T P = 240 W; v = 900 mm/s; h = 70 µm; L = 30 µm - FCC + BCC FCC + BCC [57]

Al0.5FeCoCrNi Farsoon FS271 M P = 400 W; v = 1600 mm/s; h = 90 µm; L = 40 µm - FCC + BCC FCC [58]

CoCrFeMnNi Concept Laser M2 P = 110–280 W; v = 800–2000 mm/s; h = 45–50 µm; L = 30 µm - FCC for CoCrFeNi
α -Mn for Mn FCC [38]

CoCrFeNiMn Prox 300 P = 240 W; v = 2000 mm/s; L = 40 µm 99.2% - - [43]

CoCrFeMnNi SLM125HL P = 150–300 W; v = 600–1000 mm/s; h = 60/100 µm - - - [59]

CoCrFeMnNi Farsoon FS271 M P = 400 W; v = 800–4000 mm/s; h = 90 µm; L = 30 µm 98.2% FCC FCC [60]

CoCrFeMnNi LPBF solutions 280 HL P = 160 W; v = 800 mm/s; h = 50 µm; L = 30 µm >99.2% - - [61]

Co1.5CrFeNi1.5Ti0.5Mo0.1 EOSINT M280 P = 160–270 W; v = 540–1350 mm/s; h = 80–120 µm; L = 40 µm >99.3% - FCC + SC [62]

FeCoCrNiMn/Fe-based metallic glasses HUSTBMG-I P = 185 W; v = 600 mm/s; h = 100 µm; L = 40 µm - - Two different FCC + amorphous
phases [63]

1.8 at% N/FeCoNiCr FS271M P = 400 W; v = 1200 mm/s; L = 30 µm - - FCC [64]

0.2 wt.% C/CoCrFeMnNi Concept Laser M. Lab P = 90 W; v = 200 mm/s; h = 80 µm; L = 25 µm - - FCC + Cr23C6 + MnO + MnS [65]

1 wt.% TiC/CoCrFeMnNi LPBF-100 P = 160 W; v = 400–1000 mm/s; h = 50 µm; L = 30 µm >99.4% - FCC [66]

2 wt.% TiC/CoCrFeMnNi LPBF solutions 280 HL P = 160 W; v = 800 mm/s; h = 50 µm; L = 30 µm >99.6% - matrix + TiC [61]

5 wt.% TiN/CoCrFeNiMn Beijing Yibo 3D Technology YBRP-150 P = 200 W; v = 200–1200 mm/s; h = 80–100 µm; L = 40 µm >99% - FCC + TiN [67]

12 wt.% TiN/CoCrFeNiMn - P = 250 W; v = 450 mm/s; h = 75 µm; L = 45 µm - - FCC + TiN [68]

(CoCrFeMnNi)99C1 Concept Laser Mlab P = 90 W; v = 200/600 mm/s;
h = 80 µm; L = 25 µm - - FCC [59]

CoCrFeNiC0.05 Farsoon FS271M P = 400 W; v = 800 mm/s - - FCC [41]

CoCrFeNiMn ProX 300 P = 160–290 W; v = 1500–2500 mm/s; h = 50 µm; L = 40 µm 99.2% - FCC [44]

CoCrFeNiTiMo - P = 100–400 W; v = 200–800 mm/s;
h = 120 µm; L = 50 µm 99.8% SC + FCC SC + FCC [69]

FeCoCrNiC0.05 Farsoon FS271 M P = 200–400 W; v = 800–2000 mm/s 99% FCC FCC [42]

FeCoCrNiC0.05 Farsoon FS271 M P = 400 W; v = 800 mm/s - - FCC [70]

SC: simple cubic.
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2.1.2. Electron Beam Melting

The operating principle of EBM is similar to that of LPBF, except for the electron
beam being used as the energy source to melt the metal powder. A vacuum atmosphere
is created with a working pressure of about 10−3 Pa, which can provide a contamination-
free environment during the manufacturing process [71]. The powder size used for EBM
(45–105 µm) is usually larger than that used for LPBF (15–53 µm). The layer thickness is
consequently larger, which leads to a higher efficiency but a low surface quality. Preheating
is another distinctive feature of the EBM process. It helps to remove the residual stress from
the part, which reduces the tendency for warping and delaminating in the manufacturing
process [72]. The smaller temperature gradient in EBM makes the part more ductile
with less strength than the LPBFed samples due to the coarser grain size in the same
alloy system [73,74]. The involved processing parameters contributing to the quality and
properties of the specimens are preheating temperature (T), beam current (I), scanning
speed (v), layer thickness (L), and line offset (d).

The research among the AMed HEAs via EBM is relatively limited compared with
LPBF. First, the EBM equipment requires a vacuum system, so the cost is higher than that
of LPBF. Second, the relative density of the EBMed HEAs is difficult to control. Pores
and cracks have frequently been found in EBMed CoCrFeNi-based samples [75–79]. In
addition to processing parameters, the quality of feedstock also dramatically impacts the
formation of defects in the EBMed sample. Wang et al. [80] found that although the lack
of fusion pores is the main reason for the sharp increase in the porosity of the as-built
CoCrFeNiMn, the entrapped gas pore existing in the powder also has an adverse effect
on the porosity of the sample. Upon gas atomization, the molten metal was impacted
by a high-speed atomization gas jet and the gas inside the molten metal might not be
able to escape and become trapped in the metal powder, since the solidification of the
metal was too fast, leading to the gas pore being inside the powder [80]. The pores
originating from the feedstock ranged from 0.42% to 1.19% and are smaller than the lack
of fusion pores, as shown in Figure 4. The relative density was in the range of 96.3%
to 98.2% and it can reach 99.4% with the optimization of processing parameters. The
EBMed parts’ microstructure also differs from those manufactured using conventional
processes. Fujieda’s [75] and Shiratori’s [76] studies found that in addition to B2/BCC
phases, FCC phases were generated in EBMed AlCoCrFeNi samples, which were not found
in as-cast samples or even in raw material powders. The reason for the formation of the
FCC phase is that the FCC phase is thermodynamically stable at the preheating temperature
of EBM (950 ◦C). Element fluctuations were analyzed on both a micro and nanoscale. The
segregation of Fe and Cr can be observed at the grain boundary in both casted and EBMed
samples, as shown in Figure 5b. Furthermore, Fe and Cr segregations can be found inside
the sub-grain boundaries in the EBM sample. At the nanoscale, a basket-weave morphology
is observed, as illustrated in Figure 5d, which consists of zone A (rich in Al and Ni) and
zone B (rich in Cr and Fe). Other examples of relative densities and phase compositions of
CoCrFeNi-based HEAs manufactured using EBM are summarized in Table 2.

2.2. Directed Energy Deposition

The feedstock of DED is usually powder, although, sometimes, wire can be used as
the raw material, depending on the machine. Possible energy sources include lasers and
plasma arcs. The DED is also referred to as powder plasma arc additive manufacturing
(PPA-AM), wire arc additive manufacturing (WAAM), direct laser fabrication (DLF), direct
laser deposition (DLD), laser-melted deposition (LMD), etc. The term DED is uniformly
used in this review for clarity. The raw materials are fed through the nozzle and the input
energy is activated simultaneously, usually surrounded by a shielding gas. The input
energy’s focal point and raw materials’ flow are aligned on the surface of the deposition.
The deposition head moves with the specific track to form the specimens and the quality
of the specimens is strongly affected by the input energy/current (P), scanning speed (v),
layer thickness (L), hatch space (h), and powder flow rate (u).
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Table 2. Summary of processing parameters, relative density, and corresponding phase changes for
EBMed CoCrFeNi-based HEAs.

HEA Apparatus Processing Parameter Optimal Relative
Density

Phase
Ref.

Powder As-Built

AlCoCrFeNi Arcam A2X L = 70 µm; T = 1173–1233 K - BCC BCC + FCC [75]

AlCoCrFeNi Arcam A2X I = 4.5–9 mA; v = 215 mm/s;
d = 260 µm; L = 70 µm; T = 1223 K - - FCC + BCC + B2 [76]

AlCoCrFeNi Arcam A2X L = 70 µm; T =1173–1223 K - - FCC + BCC + B2 [78]

AlCoCrFeNi Arcam A2X I = 4.5–9 mA; v = 215 mm/s;
d = 260 µm; L = 70 µm; T = 1223 K - - FCC + BCC + B2 [81]

Co1.5CrFeNi1.5Ti0.5Mo0.1 Arcam A2X L = 70 µm; T= 1173–1253 K - -
SC/FCC + Ni3Ti

(disappeared using
solution treatment)

[77]

CoCrFeNiMn -
I = 2–14 mA; v = 492–3446 mm/s;

d = 50–150 µm; L = 50–70 µm;
T = 1173–1253 K

99% FCC FCC [80]

Compared with LPBF and EBM, DED is capable of producing large-sized parts, but
its resolution is relatively low [82]. Generally, the relative density of DED samples is
highly affected by processing parameters and the quality of the raw material powder.
CoCrFeNiMn is one of the most popular alloys in DED prepared (DEDed) CoCrFeNi-based
HEAs research. The pores in the DEDed CoCrFeNiMn sample are approximately 30 µm
in diameter, as shown in Figure 6 [83]. This type of pore increased the porosity of the
DEDed sample to 1.2%. Pores with such a size are mainly created due to the internal pores
being filled with atomization gas in the raw material powder. Since elemental powder or
pre-alloyed powder is used as the raw material, the resulting phases in the samples can
differ due to the change in processing parameters. The FCC phase has been found in most
studies [84–87]. However, the BCC phase has also been occasionally identified at the grain
boundary of the FCC matrix for the DEDed CoCrFeNiMn sample, and the grain boundary
wetting phase transformations governing the secondary phase provide a brief explanation
for the grain boundary (GB) phase formation [88]. Table 3 summarizes the DED processing
parameters and formed phases for DEDed CoCrFeNi-based alloys.

Metals 2024, 14, x FOR PEER REVIEW 10 of 33 
 

 

 
Figure 6. Gas pore and oxides (small black dots) in DEDed CoCrFeMnNi sample, adapted with 
permission from Ref. [83]. Copyright of © 2024 Elsevier. 

Table 3. Summary of the processing parameters and constitute phases for DEDed CoCrFeNi-based 
HEAs. 

HEA Apparatus Energy  
Source 

Processing Parameters Phases Ref. 

AlCoCrFeNi - Laser 
P = 600–650 W; v = 5 

mm/s; 
L= 0.7–0.8 mm 

BCC [46] 

AlCoCrFeNi TRUMPF TruLaser Cell 7040 Laser 
P = 800 W; v = 800 

mm/min; 
L = 0.25 mm; 

FCC + BCC [89] 

AlCoCrFeNi LENS MR7 Laser 
v = 2.5–40 mm/s;L = 0.15 

mm; 
B2 [90] 

AlCoCrFeNi2.1 optomec MR7 Laser 
P = 900 W; v = 900 

mm/min;  
u = 30 g/min 

BCC + L12 [91] 

AlCoCrFeNi2.1 DML-V03AD Plasma arc v = 5 mm/s; P = 80 A FCC + B2 + sigma phase [92] 

Al0.3CoCrFeNi LENS-750 Laser 
P = 300 W; v = 170 mm/s; 
h = 0.381 mm; L= 0.254 

mm 
FCC + L12 [93] 

Al0.3Ti0.2Co0.7CrFeNi1.7 Optomec LENS-750 Laser 
P = 300 W; v = 12.7 mm/s; 

h = 0.381 mm; 
FCC + L12 [94] 

AlxCoCrFeNi (x = 0.3, 0.6 and 0.85) TRUMPF TruLaser Cell 7040 Laser 
P = 800 W; v = 800 

mm/min;  
L = 0.25 mm; h = 2.6 mm 

FCC (x = 0.3); 
FCC + BCC (x = 0.6); 

BCC + σ phase (x = 0.85 
[95] 

CoCrFeMnNi - Laser 
P = 370 W; v = 800 

mm/min;  
u = 2 g/min 

FCC [84] 

CoCrFeMnNi - Laser 
P = 300 W; v = 600 

mm/min 
FCC + BCC [96] 

CoCrFeNiMn - Laser 
P = 880 W; v = 10 mm/s;  

u = 8.6 g/min 
- [97] 

CoCrFeNiMn - Laser 
P = 350–400 W; v = 400–

600 mm/min; L = 0.25–0.3 
mm 

FCC [83] 

CoCrFeNiMo - Laser 
P = 950 W; v = 250 

mm/min; L = 0.3 mm; u = 
9.5 g/min 

FCC + σ + μ phase [79] 

CoCrFeNiMo0.2 - Laser 
P = 1000–1400 W; v = 400 

mm/min; L = 0.25 mm 
FCC [98] 

CoCrFeNiMo0.2 - Laser 
P = 1000–1400 W; u = 7–9 

g/min;  
L = 0.25 mm 

FCC [85] 

Figure 6. Gas pore and oxides (small black dots) in DEDed CoCrFeMnNi sample, adapted with
permission from Ref. [83]. Copyright of © 2024 Elsevier.



Metals 2024, 14, 437 10 of 31

Table 3. Summary of the processing parameters and constitute phases for DEDed CoCrFeNi-
based HEAs.

HEA Apparatus Energy
Source Processing Parameters Phases Ref.

AlCoCrFeNi - Laser P = 600–650 W; v = 5 mm/s;
L = 0.7–0.8 mm BCC [46]

AlCoCrFeNi TRUMPF TruLaser
Cell 7040 Laser P = 800 W; v = 800 mm/min;

L = 0.25 mm; FCC + BCC [89]

AlCoCrFeNi LENS MR7 Laser v = 2.5–40 mm/s;L = 0.15 mm; B2 [90]

AlCoCrFeNi2.1 optomec MR7 Laser P = 900 W; v = 900 mm/min;
u = 30 g/min BCC + L12 [91]

AlCoCrFeNi2.1 DML-V03AD Plasma arc v = 5 mm/s; P = 80 A FCC + B2 + sigma phase [92]

Al0.3CoCrFeNi LENS-750 Laser P = 300 W; v = 170 mm/s;
h = 0.381 mm; L= 0.254 mm FCC + L12 [93]

Al0.3Ti0.2Co0.7CrFeNi1.7 Optomec LENS-750 Laser P = 300 W; v = 12.7 mm/s;
h = 0.381 mm; FCC + L12 [94]

AlxCoCrFeNi (x = 0.3, 0.6 and 0.85) TRUMPF TruLaser
Cell 7040 Laser P = 800 W; v = 800 mm/min;

L = 0.25 mm; h = 2.6 mm

FCC (x = 0.3);
FCC + BCC (x = 0.6);

BCC + σ phase (x = 0.85)
[95]

CoCrFeMnNi - Laser P = 370 W; v = 800 mm/min;
u = 2 g/min FCC [84]

CoCrFeMnNi - Laser P = 300 W; v = 600 mm/min FCC + BCC [96]

CoCrFeNiMn - Laser P = 880 W; v = 10 mm/s;
u = 8.6 g/min - [97]

CoCrFeNiMn - Laser P = 350–400 W; v = 400–600
mm/min; L = 0.25–0.3 mm FCC [83]

CoCrFeNiMo - Laser P = 950 W; v = 250 mm/min;
L = 0.3 mm; u = 9.5 g/min FCC + σ + µ phase [79]

CoCrFeNiMo0.2 - Laser P = 1000–1400 W; v =
400 mm/min; L = 0.25 mm FCC [98]

CoCrFeNiMo0.2 - Laser P = 1000–1400 W; u = 7–9 g/min;
L = 0.25 mm FCC [85]

CoCrFeNiNbx (x = 0, 0.1, 0.15, 0.2) - Laser P = 1600–1650 W; v = 7 mm/s FCC (x = 0, 0.1 and 0.15);
FCC + Laves (x = 0.2); [99]

CoCrFeNiWx (x = 0, 0.2, 0.5, 0.7, and 1.0) DML-V03AD Plasma arc v = 5 mm/s; P = 80 A; L = 3 mm

FCC (x = 0);
FCC + µ phase (x = 2);
FCC + BCC + µ phase

(x = 7, 10)

[100]

CrMnFeCoNi - Laser P = 1700 W; v = 2 mm/s;
u = 10 g/min FCC [86]

CrMnFeCoNi - Laser
P = 1000–1400 W; v =

400 mm/min; L = 0.45 mm (single
direction and dual direction)

FCC [101]

CrMnFeCoNi - Laser P = 1000 W; v = 800 mm/min FCC [87]

CrMnFeCoNi/x wt.% TiC (x = 0, 2.5 and 5) - Laser - FCC (x = 0);
FCC + TiC (x = 2.5 and 5) [102]

CrMnFeCoNi/x wt.% WC (x = 0, 5 and 10) - Laser P = 1000 W; v = 500 mm/min FCC (x = 0 and 5);
FCC + M23C6 (x = 10) [103]

FeCrCoMnNi - Laser P = 600–1000 W; v = 800 mm/min;
L = 0.8 mm; u = 10 g/min FCC [104]

DED is utilized not only for fabricating large-scale HEA components, but also for the
production of coatings. Numerous studies have attempted to utilize HEAs as a coating to
clad on conventional alloys. Experimental data show that HEA coating can effectively im-
prove the mechanical properties of samples, especially their wear resistance [46,96,105–108].
Moreover, DED is an efficient way to develop functionally graded HEAs, achieved using
co-axial raw material feeders and each feeder’s changeable powder flow rate [109–118].
Gwalani et al. [110] fabricated a compositionally graded HEA with a continuously altering
chemical composition from Al0.3CoCrFeNi to Al0.7CoCrFeNi by loading two materials in
two hoppers. In the beginning, Al0.3CoCrFeNi was deposited with specific layers. Then, the
powder flow rate was gradually reduced to zero with the processing of DED and another
hopper with Al0.7CoCrFeNi began to supply onto the previous sample. Figure 7a shows
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the elemental composition change along the build direction of the sample. Figure 7b,c
exhibit that three regions were formed in the graded HEA, as follows: Al0.3CoCrFeNi, with
only the FCC phase detected; Al0.7CoCrFeNi, consisting of a dual phase of B2 + FCC; and
the transition region results in the intermediate composition and complex microstructure
consisting of elongated fcc grains, B2 precipitates along grain boundaries, and rudimentary
lamellae of fcc and B2. The strength of the samples is efficiently adjusted by the FCC phase
region (low hardness and strength), the B2 + FCC phase region (high hardness and strength),
and the transition region. A DEDed Co1Cr1Cu1Fe1Ni1Al0 to Co1Cr1Cu1Fe1Ni1Al3 HEA
was fabricated and investigated by Welk et al. [111]. A modulated plate-like microstructure
is found in the matrix, a phase change at a given location across the plate-like phase is
exhibited in Figure 8, and the phases enriching Cr, Fe, and Co were decomposed into
Cr- and FeCo-rich domains, resulting from the spinodal decomposition of this disordered
phase. The emergence of the graded HEA gives a new idea on the composition design of
the AMEd HEA alloy. The combination of varying phases with different properties through
the transition area can complement each other.
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3. The Design and Strengthening of CoCrFeNi-Based HEAs

The mechanical properties of HEAs are influenced by various factors, including
the chemical composition, manufacturing procedures, and the resultant microstructure.



Metals 2024, 14, 437 12 of 31

Given the typically low strength of CoCrFeNi HEA at room temperature, efforts have
been made to enhance its performance by designing and developing CoCrFeNi-based
HEAs. These CoCrFeNi-based HEAs typically possess superior strength and plasticity than
CoCrFeNi HEAs.

Moreover, the rapid cooling rate in AM processes can lead to the refinement of grains
and the introduction of a significant number of dislocations, hence enhancing the strength
of CoCrFeNi-based HEAs. The approaches for enhancement based on the composition
adjustment of CoCrFeNi can be classified into two types, as follows: the addition of
element(s) with large or small atomic radii and the addition of micro or nanoparticles,
as illustrated in Figure 9. In addition, appropriate post treatment after AM can further
improve the mechanical properties of CoCrFeNi-based HEAs. It is also essential to probe
the mechanical properties of the AMed HEAs to gain an in-depth understanding of the
composition–microstructure–processing–properties relationships. In the following content,
we discuss and summarize the tensile strength, ductility, the strength–ductility trade-off,
and associated strengthening mechanisms based on the abovementioned categories.
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3.1. Addition of Element(s)

CoCrFeNiMn HEAs are one of the most widely studied HEAs, as a representative of
HEAs crystallized into a single FCC solid solution. Excellent phase stability is observed
for CoCrFeNiMn HEAs. The binary Gibbs energy–composition plots exhibit that all the
binary systems in CoCrFeNiMn are FCC-promoting, apart from Cr-Mn. The Mn-Ni can
compensate for the effect of Cr-Mn, with a considerably negative Gibbs energy for the FCC
phase [119]. The strengthening effect brought about by the addition of Mn is negligible
in the CoCrFeNi system, because the stresses caused by the lattice distortion are highly
related to the deviations of atomic radius and shear modulus, which are very low for Mn
compared to Cr, in the CoCrFeNiMn system [120].

AM processes usually generate hierarchical structures because of the different thermal
histories along the depth of the sample. Dislocation cells have been found in the LPBFed
CrMnFeCoNi sample, as shown in Figure 10 [121]. The dislocation wall was composed of
tangled dislocations and multiple dislocations can be observed in the interiors of dislocation
cells. Moreover, elemental segregation and twinned structures can also be found, making
AM the promising way to fabricate parts with superior mechanical properties. Furthermore,
deformation twinning can be observed and activated upon the plastic deformation of the
AMed CoCrFeNiMn. It is known that the critical twinning stress for initiating deformation
is negatively related to grain size. With the grain size increasing from 35.1 µm to 88.9 µm, the
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deformation twinning stress increased from 542 MPa to 603 MPa [122]. The deformation
twinning boundaries also act as barriers towards dislocation motion and interact with
dislocations. In addition, the activation of the phase transformation from FCC to HCP was
also identified among the AMed HEAs [121], a property which is also commonly found
among low-SFE materials. Therefore, upon plastic deformation, the complex interactions
between the dislocation–deformation and twinning–stacking faults contribute to the steady
work-hardening capability and superior strength–ductility synergy.
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To enhance the solid solution strengthening and change the intrinsic mechanical
properties in the FCC phase, various elements with different atomic radii are introduced into
the FCC matrix to generate dual-phase structures to yield an improved strength [57,123,124].
Adding Al into the CoCrFeNi matrix is the most common way of increasing the strength
and hardness of the matrix [40,93,95,125]. Al has been proven to promote the formation
of BCC phases and inhibit the formation of FCC phases in HEAs, which can efficiently
improve the strength of CoCrFeNi HEAs.

The addition of Al in CoCrFeNi alloys resulted in solid solution strengthening due
to the large atomic radius of Al. The strength can be increased by more than ten times via
alloying additions of Al. Joseph et al. [95] have manufactured AlxCoCrFeNi (x = 0.3, 0.6,
and 0.85) using DED and the results show that the tensile yield strength increases with
the content of Al. The Al0.85CoCrFeNi alloy samples possessed the highest yield strength
of ~1400 MPa and a ductility of 25%. The strength increment contributed to the phase
transformation from a single FCC phase among the Al0.3CoCrFeNi HEA to the spinodal
decomposed BCC phase of the Al0.85CoCrFeNi HEA. The large atomic size of Al generates
solid solution strengthening, as well as precipitation hardening due to the spinodal-induced
dense precipitates.

Some research is focused on the AlCoCrFeNi2.1 HEA, a type of eutectic HEA, possess-
ing a “FCC + B2” lamellar microstructure, which shows an excellent combination of high
tensile strength and ductility [40,57,92,126]. Ren et al. [40] have successfully fabricated
AlCoCrFeNi2.1 HEA samples using LPBF. The dual-phase nanolamellar eutectic structure
consists of an FCC phase and a BCC phase. Detailed microstructural characterizations
into the BCC phase reveal the bicontinuous Ni–Al-rich and Co–Cr–Fe-rich nanostructures.
Such nanolamellar structures are thought to be the primary reason for the high strength of
LPBFed AlCoCrFeNi2.1 HEAs. Moreover, the high density of dislocation introduced using
LPBF also contributes to improving strength, exceeding 1300 MPa.

Other alloy elements, such as W [100], Nb [99], Ti [62], Mo [69] and so on, have
been studied to investigate the influence of phase evolution and microstructure on the
mechanical properties. The tensile properties and strengthening mechanisms for AMed
alloy element-enhanced CoCrFeNi-based alloys are summarized in Table 4.
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Table 4. Tensile properties and related strengthening mechanisms of CoCrFeNi-based alloys (enhanced by alloy elements).

HEA Compositions Manufacturing Process Yield
Strength (Mpa)

Ultimate Tensile
Strength (Mpa)

Elongation
(%) Strengthening Mechanisms Ref.

AlCoCrFeNi EBM 769 ± 12.7 (BD 0◦) 1073.5 ± 21.3 (BD 0◦);
312.6 ± 114.5 (BD 90◦)

1.2 ± 0.2 (BD 0◦);
0 (BD 90◦) - [78]

AlCoCrFeNi2.1 LPBF 1329 1621 11.7

Grain boundary strengthening
and phase boundary

strengthening within the
nanolamellar structure and the

high density of dislocation
introduced using LPBF

[57]

AlCoCrFeNi2.1 DED 421.1 (top)/
389.1 (bottom)

929.1 (top);
981.8 (bottom)

15.6 (top)
21 (bottom) Second phase strengthening [92]

AlCoCrFeNi2.1 LPBF 1333 1640 13.6
Interface strengthening and
dislocation strengthening

introduced using LPBF
[40]

Al0.3CoCrFeNi LPBF 730 896 29%
High dislocation density caused
by using LPBF, grain refinement

and crystallographic texture
[54]

Al0.3CoCrFeNi DED+Annealing
410;

500 (500 ◦C with 100 h);
630 (620 ◦C with 50 h)

- 28 (500 ◦C with 100 h);
18 (620 ◦C with 50 h) Precipitation strengthening [93]

Al0.3CoCrFeNi DED 194 250 40 - [125]

Al0.3Ti0.2Co0.7CrFeNi1.7 DED+Annealing
700;

1000 (800 ◦C with 5 h);
1150 (600 ◦C with 50 h)

1100;
1300 (800 ◦C with 5 h);
1420 (600 ◦C with 50 h)

18;
5 (800 ◦C with 5 h);

4.5 (600 ◦C with 50 h)
Precipitation strengthening [94]

Al0.5CoCrFeNi LPBF 609 878 18% - [60]

Al0.5FeCoCrNi LPBF 579 721 22% - [58]

AlxCoCrFeNi DED
200 (x = 0.3);
400 (x = 0.6);

1400 (x = 0.85);

1300 (x = 0.3);
1500 (x = 0.6);
220 (x = 0.85);

100 (x = 0.3);
78 (x = 0.6);

25 (x = 0.85);

Precipitation hardening and lattice
distortion [95]

AlxCoCrFeNi LPBF -
300 (x = 0);

520 (x = 0.1);
900 (x = 0.5)

12 (x = 0);
2 (x = 0.1);
10 (x = 0.5)

[53]

Co1.5CrFeNi1.5Ti0.5Mo0.1

LPBF+ST 773.0 ± 4.2 1178 25.8 ± 0.6% Grain refinement

[62]
EBM+ST 743.4 ± 11.6 932.2 ± 4.8 4.0 ± 0.2% Ni3Ti intermetallic compounds for

strengthening

Co1.5CrFeNi1.5Ti0.5Mo0.1 EBM+ST -
900;

1300 (ST-AC);
1100 (ST-WQ)

4;
18 (ST-AC);
37 (ST-WQ)

Homogeneous precipitation with
ultrafine size [77]
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Table 4. Cont.

HEA Compositions Manufacturing Process Yield
Strength (Mpa)

Ultimate Tensile
Strength (Mpa)

Elongation
(%) Strengthening Mechanisms Ref.

CoCrFeMnNi LPBF - 681 12.5 The reaction between Mn and
oxygen reaction lead to what? [38]

CoCrFeNiMn LPBF+HT 465–510 541–609 19–34
Dislocation strengthening, friction

stress, and grain boundary
strengthening

[44]

CoCrFeNiMn EBM 205 ± 3 497 ± 2 63 ± 1 - [80]

CoCrFeNiMo0.2 DED
532 (P = 1000 W);
557 (P = 1200 W);
560 (P = 1400 W)

-
37 (P = 1000 W);
47 (P = 1200 W);
51 (P = 1400 W)

- [98]

CoCrFeNiNbx (x = 0, 0.1, 0.15,
0.2) DED increase with the content of Nb decrease with the content of Nb The entanglement between the

dislocations and the Laves phase [99]

CoCrFeNiTiMo LPBF
861 (BD 0◦);
817 (BD 45◦);
744 (BD 90◦)

861 (BD 0◦);
817 (BD 45◦);
744 (BD 90◦)

21 (BD 0◦);
25 (BD 45◦);
26 (BD 90◦)

The anisotropic microstructure
along BD and the existence of local

strain
[69]

CoCrFeNiWx DED

186.8 (x = 0);
284.8 (x = 0.2);
461.9 (x = 0.5);
554.5 (x = 0.7);
566.7 (x = 1)

526.6 (x = 0);
627.4 (x = 0.2);
786.8 (x = 0.5);
597.8 (x = 0.7);
566.7 (x = 1)

50.8 (x = 0);
28.7 (x = 0.2);
2.6 (x = 0.5);
0.6 (x = 0.7);
0.3 (x = 1)

Solid solution strengthening
caused by W and second phase

strengthening
[100]

CrMnFeCoNi DED 353 564 26 Refined grain and high density of
dislocation introduced using DED [86]

CrMnFeCoNi DED 517 660 26
The lattice friction resistance, fine

grain strengthening, and
dislocation strengthening

[127]

CrMnFeCoNi DED
320.7;

427.4 (LSP = 1);
489.8 (LSP = 5)

531.7;
570.7 (LSP = 1);
639.9 (LSP = 5)

31.9;
40.1 (LSP = 1);
61 (LSP = 5)

LSP can improve the relative
density of parts and accelerate

grain refinement and the
formation of nanotwins.

[87]

CoCrFeMnNi LPBF+HIP - 601;
649 (HIP)

35;
18 (HIP)

HIP can eliminate the micro-pore
and micro-crack [60]

CoCrFeNiMn DED 518 660 19

Finer equiaxed grains and
dendritic columnar grains and

high density of dislocation
introduced using DED

[97]

CoCrFeMnNi DED+Annealing 424;
232.2 (annealed)

651.3;
647.1 (annealed)

47.9;
58.3 (annealed)

High dislocation density and fine
cell structure [83]

ST: solid solution; AC: air cooling; WQ: water quenching; HT: heat treatment; HIP: hot isostatic pressing; BD: building direction; LSP: laser shock peening.



Metals 2024, 14, 437 16 of 31

Apart from alloy components, interstitial elements such as C, B, N, and others are
commonly added to the CoCrFeNi-based matrix. These elements serve to reinforce the
material by occupying interstitial positions within the host structure and generating nano-
precipitates. Kim et al. [65] fabricated C-doped CoCrFeMnNi using LPBF and found that
the formation of nanosized M23C6-type precipitates provided additional strengthening by
interacting with dislocations and interrupting the crack propagation. The yield strength
of the C-doped CoCrFeMnNi part can reach 800–900 MPa, with a maintained ductility
of 25–30%. Seol et al. [128] added a small quantity of boron into Fe20Mn20Cr20Co20Ni20
and Fe40Mn40Cr10Co10 HEAs. The results showed that all the doped HEAs have higher
strength than their undoped counterparts and their ductility can also exceed the undoped
sample with proper annealing treatment. It suggested that the small quantity of boron
(300 ppm) can enhance the grain boundary cohesion and retard capillary-driven grain
coarsening, which resulted in a reduced grain size. The dominant deformation mechanism
in Fe20Mn20Cr20Co20Ni20 and Fe40Mn40Cr10Co10 remained the same, twinning-induced
plasticity (TWIP) and dislocation strain hardening and some mechanical twinning, leading
to the improvement of strength and ductility. Zhang et al. [129] fabricated a NiCoFeCrAl3
coating mixed with a small amount of C, Si, Mn, and Mo using laser cladding to enhance
the solid solution strengthening, which is attributed to the atomic size mismatch. The
microhardness increased from 506 HV (fabricated via arc melting) to 800 HV. The strength
and ductility synergy can be achieved using AMed N-doped FeCoNiCr HEAs [64]. The
hierarchically heterogeneous structures (Figure 11) comprised a bimodal grain structure,
low-angle boundaries, and dislocation networks. The high strength was attributed to the
plastic strain gradient generated from the deformation in the grain with different sizes
and the solution strengthening from N atoms. The ductility was caused by the strain
hardening from high back stress. Similar research on heterogeneous structures generated
by introducing interstitial elements has been conducted by other researchers. In a previous
study [130], adding C and N into FeCoCrNi exhibited heterogeneous structures consisting
of fine grains distributed around coarse grains, a majority of high-angle GBs, a minority of
low-angle GBs, and dislocation cell structures. The formation of such a structure can be
promoted by introducing interstitial elements in the AMed HEAs, because overlapping
the laser beam leads to re-melting in some regions where grains are refined more times
than in others. In another study [131], LPBF manufactured, N-doped CoCrFeNi and the
same heterogeneous structures were found, which provide effective diffusion paths to
significantly promote the outward segregation of Cr, forming a thick protective Cr oxide
layer, which renders excellent corrosion resistance. In Zhu’s review [132], heterogeneous
structures’ extraordinary combination of strength and ductility are attributed to hetero-
deformation-induced strengthening and hetero-deformation-induced strain hardening,
separately. Both result from back and forward stress simultaneously, which are induced by
a geometrically necessary dislocation pile-up. The effect of grain refinement, precipitate
hardening, and dislocation hardening contributes to their superior tensile strength. Besides
the effect of the doped interstitial elements, the rapid repeated thermal cycle of AM pro-
cesses inhibits grain growth. Furthermore, it enhances the strength of the matrix via the
Hall–Petch relationship. The processing parameters have an essential effect on deciding the
grain size. Zhou et al. [42] manufactured CoCrFeNi and FeCoCrNiC0.05 HEAs with various
laser parameters using LPBF. Figure 12 illustrates that the grain size decreased with the
decreased laser power and the increased scanning speed. The selected laser parameters
are critical because too high or low an energy density input produces intrinsic defects
in the samples. The yield strength and elongation of interstitial element-doped AMed
CoCrFeNi-based HEAs are summarized in Figure 13 and compared with the value of
CoCrFeNi manufactured using AM and casting.
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Figure 12. FeCoCrNiC0.05 HEAs manufactured using LPBF with (a) 400 W, 800 mm/s; (b) 400 W, 1200 
mm/s; (c) 300 W, 800 mm/s; and (d) 250 W, 800 mm/s. The evolution of grain size with (e) scanning 
speed and (f) laser power, adapted with permission from Ref. [42]. Copyright of © 2024 Elsevier. 
Figure 12. FeCoCrNiC0.05 HEAs manufactured using LPBF with (a) 400 W, 800 mm/s; (b) 400 W,
1200 mm/s; (c) 300 W, 800 mm/s; and (d) 250 W, 800 mm/s. The evolution of grain size with
(e) scanning speed and (f) laser power, adapted with permission from Ref. [42]. Copyright of ©
2024 Elsevier.
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Upon plastic deformation, dislocations start to move and interact with each other,
leading to an increase in the material’s strength. This hardening effect can be illustrated
by the strain hardening rate curve. There are typically three work-hardening stages for
CoCrFeNi-based alloys [137–139]. The rapid strain-hardening rate drop in the first stage
is due to the elastic–plastic transition during yielding, indicating that dislocation slip
dominates the deformation. The plateau in the second stage indicates the activation of
deformation twinning. Due to the significant back-stress [140] or an intersecting planar slip
band, there may even be a steady increase in the second work-hardening stage [141]. At the
third stage, the dislocation-accommodating capacity is running out, leading to a decreased
work-hardening rate. Many factors jointly control the work hardening capacity, including
temperature and strain rate [138], grain size, and the secondary phase in AlxCoCrFeNi
HEAs [142].

3.2. Additive of Micro/Nanoparticles

In addition to introducing alloy elements and interstitial elements to strengthen the
matrix, micro or nanoparticles are added to modify the microstructure and properties of
the HEAs. Most of the selected particles are ceramic, such as carbide [102,103,143–145],
nitride [67,68,146], and oxide [147,148]. Shen et al. [143] have investigated the effect of
the addition of SiC to the DEDed CoCrFeNi matrix. It is shown that Cr7C3 appears in
the samples of CoCrFeNi(SiC)0.3 and CoCrFeNi(SiC)0.5 HEAs, beside the FCC phase. The
hardness and compressive strength increase with the increase in SiC, accompanied by the
sacrifice of plasticity. The improvement is ascribed to the formation of Cr7C3. Moreover, the
result of elemental distribution illustrates that a significant number of Si and a tiny amount
of C were dissolved in the FCC phase, which caused the decrease in lattice parameters
and enhanced the solid solution strengthening. Similarly, Amar et al. [102] fabricated
a CrMnFeCoNi alloy with different TiC additions, using DED. It was found that the
resulting tensile strength increased from 550 MPa for CrMnFeCoNi HEAs to 610 MPa for
CrMnFeCoNi HEAs with 2.5 wt.% TiC and 723 MPa for CrMnFeCoNi HEAs with 5 wt.%
TiC. The observation of the fracture surface of each sample shows that with the increase
in TiC, the size of the dimple decreased until it vanished in the CrMnFeCoNi with 5 wt.%
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TiC sample (Figure 14). The incorporation of TiC in the HEA resulted in a decrease in the
number of slip bands, hence enhancing the strength of the material, while simultaneously
reducing its plasticity. CrMnFeCoNi-based composites with a 0%, 5%, and 10% addition of
WC were successfully manufactured using DED [103]. The grain size exhibited a reduction
when the WC ratio increased (Figure 15a–c), whereas the Cr23C6 precipitates were evenly
distributed throughout the matrix (Figure 15d–g). The addition of WC can enhance the
strength, resulting in a maximum yield strength of 675 MPa with a 10% WC content,
compared to 300 MPa without WC. Nevertheless, the improvement in strength comes at
the cost of reduced ductility, which declined from 50% to 9% due to the inclusion of WC.
Incorporation of 5% WC contributes to the significant strength elevation from 300 MPa
to 502 MPa without compromising too much ductility (from 50% to 37%). Therefore,
these results demonstrated that the mechanical properties of HEAs can be tailored via
carefully adjusting the phase fraction of the strengthener. Jiang et al. [147] conducted an
investigation to examine the impact of CeO2 on the microstructure and characteristics of
FeCoCrAlNiTi HEAs. They produced coatings of CoCrAlNiTix(CeO2) (x = 0, 0.5, 1 wt.%)
via DED. The introduction of CeO2 resulted in the formation of dendritic structures that
were consistently homogeneous and refined. The wear resistance is improved prominently
and the wear mechanism changed from adhesive, oxidative, fatigue, and abrasive wear
for the FeCoCrAlNiTi coating to mainly abrasive wear for the FeCoCrAlNiTi-1 wt.% CeO2
coating. The higher hardness and resistance to scratching and plastic deformation are
ascribed to the refinement and solid solution strengthening caused by CeO2. The addition
of nitride to the HEA’s matrix has a comparable effect to the inclusion of carbide or oxide
in terms of changing the microstructure and mechanical characteristics. Resultingly, 5 wt.%
TiN and 95 wt.% CoCrFeNiMn HEAs were successfully manufactured by Li et al. [67]. The
printability is diminished by the addition of TiN, due to the augmentation of the laser
reflectivity by the particles, necessitating a greater amount of energy to completely melt the
powder mixture. An atomic diffusion occurs between the matrix and TiN and the matrix
consisting of an FCC structure tends to be isotropic and equiaxial. The strength of the HEA
composite is almost twice as much as that of the HEA. The primary factor contributing
to this difference is the refinement, resulting from the rapid cooling rate in LPBF, coupled
with the introduction of TiN as novel nucleation sites within the grain, which effectively
suppresses grain development.
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Figure 14. Observation of the fracture morphology of (a–c) CrMnFeCoNi HEAs, showing obvious
necking and transgranular dimpled fractures; (d–f) CrMnFeCoNi HEAs with 2.5 wt.% TiC, showing
shallow dimples on the fracture surface and a reduced number of slip bands; and (g–i) CrMnFeCoNi
HEAs with 5 wt.% TiC, showing no dimple formations and associated brittle fractures, adapted with
permission from Ref. [102]. Copyright of © 2024 Elsevier.
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Figure 15. EBSD analysis and grain diameter distribution of CrMnFeCoNi HEAs with (a,a1) 0%
WC, (b,b1) 5% WC, and (c,c1) 10% WC. (d–f) SEM images showing the formation of precipitates,
(g) elemental partitioning behavior of the precipitate (blue color) and the matrix (red color), (h) ele-
mental distribution between the precipitate and the matrix, adapted with permission from Ref. [103].
Copyright of © 2024 Elsevier.

A particular core–shell structure is sometimes mentioned in the research regarding
AMed CoCrFeNi-based/particle HEAs. The reason for generating this structure is diverse.
The core–shell structure was found in the LPBFed B4C-added CoCrFeNi sample [144].
The structure was generated due to the B4C not being fully melted, causing the carbide
transformation in the precipitate. With a content of 1% wt. B4C, the resulting tensile
strength of CoCrFeNi/B4C increased to 1421 MPa from 691.1 MPa for CoCrFeNi. The
increased strength is mainly due to the formation of a core–shell structure (Figure 16),
consisting of M23C6, M7C3, M3C carbide, and Cr2B. The transformation between varying
carbides in the core–shell structure provides extra boundaries that can hinder and store the
mobile dislocations and emit the stacking fault once the accumulated dislocation overpasses
the critical stress. Egg-like core–shell structures were found to be formed in the Y2O3-doped
AlCoCrCuFeNiSi0.5 HEA [149]. Y2O3 functions as a catalyst that enhances the process of
liquid phase separation. The core–shell was initially induced from the minority AlNi-rich
liquid phase and transformed into a Cu-depleted phase (shell) and Cu-enriched phase
(core), following the sequence of solidification. The tensile properties and strengthening
mechanism for particle-enhanced CoCrFeNi-based HEAs are summarized in Table 5.
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Table 5. Tensile properties and related strengthening mechanisms of CoCrFeNi-based alloys (enhanced using micro/nanoparticles).

HEA Composition Manufacturing Process Yield
Strength (Mpa)

Ultimate Tensile
Strength (Mpa)

Elongation
(%) Strengthening Mechanisms Ref.

(CoCrFeNi)100−xNx (x = 0, 0.25 and 0.50 at. %) LPBF
530 (x = 0);

630 (x = 0.25);
730 (x = 0.5)

707 (x = 0);
807 (x = 0.25);
850 (x = 0.5)

43 (x = 0);
38 (x = 0.25);
29 (x = 0.5)

The interstitial strengthening caused
by N [146]

CoCrFeNi(SiC)x (x = 0, 0.1, 0.3 and 0.5) DED - - - Second phase strengthening and
solid solution strengthening. [143]

CoCrFeNi-1 wt.% B4C LPBF 1249.5 1421 10.60% Hall–Petch strengthening, precipitate
strengthening [144]

CrMnFeCoNi-x wt.% TiC (x = 0, 0.25 and 0.5) DED
300 (x = 0);

330 (x = 0.25);
385 (x = 0.5)

550 (x = 0);
610 (x = 0.25);
723 (x = 0.5)

50 (x = 0);
47 (x = 0.25);
32 (x = 0.5)

Dislocation movements are impeded
by the addition of TiC [102]

CoCrFeMnNi-5 wt.% NbC LPBF+HT 870 1050 15 Grain refinement and dislocation
strengthening [145]

CoCrFeMnNi-12 wt.% TiN LPBF - 1100 7.5 The addition of TiN causes grain
refinement. [67]

CrMnFeCoNi-5 wt.%
Fe54.5Cr18.4Mn2.0Mo13.9W5.8B3.2C0.9Si1.3

LPBF 675 820 12.3

Dislocation strengthening caused by
the difference of thermal expansion

coefficients between Fe-based
metallic glass and matrix, solid
solution strengthening, grain

refinement strengthening, dispersion
strengthening

[149]

FeCoCrNiMn-x wt.%
Fe43.7Co7.3Cr14.7Mo12.6C15.5B4.3Y1.9 (x = 5, 10,

20 and 30)
LPBF

315 (x = 0);
384 (x = 5);

595 (x = 10);
916 (x = 20)

-
80 (x = 5);

58 (x = 10);
39 (x = 20)

The solid solution strengthening
caused by the atomic size mismatch

between FeCoCrNiMn and the
amorphous alloy and the resistance
towards dislocation motion by the

particle.

[63]

CrMnFeCoNi-x wt.% WC (x = 0, 5 and 10) DED
300 (x = 0);
502 (x = 5);
675 (x = 10)

550 (x = 0);
776 (x = 5);
845 (x = 10)

50 (x = 0);
37 (x = 5);
9 (x = 10)

M23C6 precipitates are formed,
which hinder the propagation of slip

bands, grain refinement, and
precipitate strengthening.

[103]

HT: heat treatment.
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4. Post-Treatment Strategies for AMed HEAs

HEAs tend to become brittle following the AM process, due to the significant residual
stress that is retained after rapid solidification. Heat treatment is commonly applied to
AMed parts to relieve residual stress and enhance their properties and performance.

Annealing is one of the most popular heat treatments and it is commonly used in HEA
studies [70,83,104,150–152]. Generally, the microstructure of the HEA can be tailored by
the annealing treatment using the decomposition of the dislocation network and associated
recrystallization under certain circumstances. Post-heat treatment of the AMed component
might result in the formation of different forms of precipitates, depending on the matrix
compositions and annealing temperatures. Lin et al. [150] have manufactured FeCoCrNi
HEAs using LPBF and have clarified the relationship between strength and annealing
temperature in the temperature range between 773 K and 1573 K. The shape of the grain
tended to be equiaxial with the increased annealing temperatures, as shown in Figure 17.
The residual stress reduced with the annealing temperature, the dislocation density in the
grain decreased gradually, and the annealing twins were generated during recrystallization.
The synergistic effect of dislocation annihilation, recrystallization, and internal stress relief
reduces tensile strength and increases ductility.
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Solid solution heat treatment and aging heat treatment have also been used to adjust
the mechanical properties of as-built parts [40,62,77,153,154]. LPBF and EBM have been
utilized to manufacture Co1.5CrFeNi1.5Ti0.5Mo0.1 HEAs with a relative density higher than
99% [62]. The solid solution treatment with water quenching improved the tensile stress
and ductility of LPBFed and EBMed samples. The post-treatment not only altered the
grain size and morphology of the sample, but also changed the size and volume fraction
of the ordered precipitates in the sample. Figure 18 depicts the correlation between the
size and volume fraction of the ordered precipitates and the tensile strength, as well as the
relationship between grain size and strength in Co1.5CrFeNi1.5Ti0.5Mo0.1 HEAs. Moreover,
eliminating the Ni3Ti phase can also contribute to enhancing its mechanical performance,
since the Ni3Ti intermetallic was considered the source of crack initiation and propagation,
leading to early permanent fracture.

Besides the typical heat treatments that can be applied to most metals and alloys, hot
isostatic pressing (HIP) is a promising solution for AMed metals and alloys because the
combination of high temperature and pressure can effectively eliminate the internal pores
in the AMed samples. The inherent residual stress generated by the rapid cooling process
can be relieved to a great extent. Joseph et al. [155] have manufactured an Al0.3CoCrFeNi
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alloy using DED and the relative density can reach 99.4%. The value can be increased up
to 99.5% after HIP and it was found that HIP efficiently removed the pores with a large
diameter (>5 µm). The Al0.6CoCrFeNi and Al0.85CoCrFeNi samples showed less ductility
after HIP, due to the growth of the B2 precipitate and the appearance of σ-phase precipi-
tates. The trend was similar for the LPBF process. The relative density of CoCrFeMnNi
increased from 98.2% to 99.1% after HIP [60]. The residual stress decreased after HIP, due
to the simultaneous application of high pressure and temperature and the preferential
orientation changed from <001> texture to random grain orientation, accompanied by
the homogeneously distributed elements. The tensile strength increased from 601 MPa to
649 MPa after HIP with the sacrifice of ductility.
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Other surface treatments, such as shot peening and ultrasonic impact treatment, are
also used to minimize the residual stress of AMed metals and alloys. Laser shock peening
(LSP) was implemented to modify the properties of CrMnFeCoNi HEAs manufactured
using DED [87]. The LSP process was controlled by the laser energy input and the number
of laser impacts. The surface roughness increased dramatically by increasing the impact
number, because of the formation of craters. The residual stress on the surface of the sample
tended to be compressive, due to the introduction of severe plastic deformations, which
can remove the pores on the surface after manufacturing and improve the strength of the
matrix. The generation and propagation of cracks were hindered by the compressive stress
remaining on the surface during the tensile experiment, which caused concurrent increases
in tensile stress and ductility. Most interestingly, the microstructure changed gradually
along the thickness of the samples; the area close to the surface showed ultrafine grains
and mechanical twins, while coarser grains and dislocations can be witnessed for those
areas away from the free surface.

5. Summary and Perspective

HEAs have attracted considerable attention because of their unique characteristics
that distinguish them from conventional metallic materials. Considerable efforts have been
dedicated to investigating the possible utilization of HEAs, especially CoCrFeNi-based
HEAs, in structural applications. From a compositional viewpoint, CoCrFeNi-based HEAs
can be broadly classified into two groups. The first category involves incorporating one or
more elements into the CoCrFeNi-based matrix. The elements can consist of alloy elements
characterized by large atomic radii or interstitial elements distinguished by small atomic
radii. The second category involves the incorporation of micro and nanoparticles into the
CoCrFeNi-based alloy, mainly ceramic particles.
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The implementation of the AM technique enhances the competitiveness and adapt-
ability of the HEA community across many applications. Typically, the mechanical strength
of AMed CoCrFeNi-based HEAs is higher than those produced using traditional methods,
due to the rapid solidification observed in AM techniques. This might be attributed to the
increased density of dislocations, resulting from the rapid solidification process. It is crucial
to find out the optimal processing parameters of AM to achieve a high mechanical perfor-
mance, and unsuitable parameters will bring in defects to the parts printed; for example,
input energy can not only alter the grain size, but also introduce pores or cracks within
the samples. Additionally, appropriate post-processing measures can further improve the
mechanical properties of the AMed components, due to the elimination of deleterious
phases and the reduction in residual stress. Usually, the LPBFed CoCrFeNi-based HEAs
possess higher strength than the EBMed parts, because of the lower thermal gradient ratio
to the melt pool’s solidification rate. Nevertheless, LPBFed parts tend to have a higher
internal stress than EBMed ones; the preheating procedure in EBM effectively mitigates the
residual stress induced by the manufacturing process.

Most AMed CoCrFeNi-based HEAs exhibit single FCC phases. The most preva-
lent method for achieving an exceptional combination of strength and ductility in AMed
CoCrFeNi-based HEAs is through the creation of the BCC phase inside the matrix by intro-
ducing BCC stabilizer elements or altering the adding element ratio. This is attributed to
the inherent high strength of the BCC phases and ductility of the FCC phase. Additionally,
processing temperatures such as energy input also greatly affect the phases formed. Increas-
ing energy results in an elevated temperature in the molten pool; this effectively prevents
the segregation of elements and the vaporization of elements with low melting points,
leading to a phase discrepancy between the raw material and the prototypes. Furthermore,
the utilization of lattice distortion and the formation of secondary precipitates also shows
great potential in achieving enhanced mechanical characteristics.

Several strengthening mechanisms operate simultaneously at ambient temperature,
broadly divided into solid solution strengthening, grain boundary strengthening, precipi-
tate hardening, and dislocation hardening. When micro/nanoparticles are added to the
matrix, the tiny particles will not only act as obstacles towards dislocation movement,
but also become new nucleation sites in the grain, resulting in grain refinement. Inter-
estingly, it has been shown that distinct core–shell structures can arise. Further study is
required to confirm and explore the impact of the particle’s core–shell structures on the
mechanical properties of HEAs. Additionally, it expands the potential for future advance-
ments in the design of compositions and the regulation of the mechanical properties of
CoCrFeNi-based HEAs.
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