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Abstract: The corrosion resistance of titanium alloy poses a crucial challenge, significantly affecting its
prospect for service and application. The present study aimed to investigate the corrosion resistance
of Ti-6Al-4V ELI alloys with varying surface roughness in hydrofluoric acid solution, in order to assess
the influence of roughness on their corrosion resistance performance. The weight loss percentage,
surface morphology evolution, and roughness variation of Ti-6Al-4V ELI alloys before and after
exposure to hydrofluoric acid corrosion were characterized. While the weight loss and weight loss
percentage of the Ti-6Al-4V ELI alloy increased with prolonged corrosion, the overall weight loss
rate decreased. The accumulation of TiF3 phases and depletion of the Ti-6Al-4V ELI matrix mutually
led to the alterations of the surface roughness. Due to the inability to prevent fluoride ions from
contacting with the Ti-6Al-4V ELI alloy, continuous corrosion occurred in hydrofluoric acid. Based on
these experimental results and analysis, the corrosion mechanism of the Ti-6Al-4V ELI alloy corroded
by hydrofluoric acid solution was elucidated. Furthermore, an analysis was conducted to explore
the influence of corrosion time on mechanical properties by analyzing the decay in compressive
properties of the Ti-6Al-4V ELI titanium alloy after hydrofluoric acid corrosion treatment. The bearing
capacity of the Ti-6Al-4V ELI alloy deteriorated over the corrosion time.

Keywords: Ti-6Al-4V ELI; corrosion resistance; surface morphology; surface roughness; mechanical
property recession

1. Introduction

Titanium and its alloys are characterized by their low density, high specific strength/
stiffness, and biocompatibility, as well as excellent corrosion and heat resistance [1–5]. The
aforementioned characteristics render titanium alloy highly promising in the domains of
aerospace engineering, marine engineering, and biomedical engineering [6–9]. Furthermore,
the utilization of titanium alloys as raw materials for additive manufacturing is highly
commendable [10–14]. In the extensive application scenarios of titanium alloy, the service
performance of titanium alloy is contingent upon its corrosion resistance [15], a critical
property that has attracted considerable interest from researchers and engineers.

The physicochemical properties of titanium and its alloys have also demonstrated
desirable characteristics [12,16]. Under normal conditions, titanium alloys typically exhibit
high resistance to corrosion by most strong acids due to the formation of a stable oxide
film on their surfaces [17]. However, the corrosion resistance to hydrofluoric acid (HF) is
generally insufficient. In the fields of aerospace and biological engineering [18,19], it is
often imperative to employ hydrofluoric acid for pretreatment or corrosion of titanium
alloys, which inevitably impacts their properties. For example, titanium alloys used as
dental implants in the oral cavity are frequently exposed to fluoride ions from toothpaste
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or tap water. It has been demonstrated that implants can often benefit from optimal surface
roughness and microstructural features [14,20,21].

In order to alter the performances of titanium alloys, the surface topography of ti-
tanium and its alloys can be altered through various methods such as mechanical and
chemical approaches. In terms of solution etching techniques, titanium and its alloys can
be modified by H2SO4 [2], HCl [20], NaCl [22], H3PO4 [23], HF [24], or their combination.
Ti-6Al-4V alloy is nowadays extensively employed as one of the most commonly utilized
titanium alloys, consisting of α + β phases [3,22]. The Ti-6Al-4V extra low interstitial
(ELI) alloy [12,25] has been developed as a modification of the Ti-6Al-4V alloy by reducing
the content of carbon, oxygen, nitrogen, and iron elements with the aim of enhancing
its physicochemical and mechanical properties. For example, the surface topography of
Ti-6Al-4V ELI alloy can be modified using the hydrofluoric acid etch technique [26,27], and
such fluoride modification on Ti-6Al-4V ELI alloy is beneficial to its biomedical applica-
tions [28]. In the field of biomedical engineering, fluoride modification of titanium alloy
is advantageous for promoting bone growth around the implant [18,29]. Consequently,
this method enhances the physical interlocking and bonding strength between bone and
titanium implant [24]. However, there is still a lack of understanding of the corrosion
issues of hydrofluoric acid and how the surface roughness associates with the corrosion
resistance of Ti-6Al-4V ELI alloy to hydrofluoric acid. Researchers and engineers should
pay close attention to a series of corrosion issues arising from hydrofluoric acid and explain
the influence of surface roughness on the corrosion resistance of Ti-6Al-4V ELI alloy to
hydrofluoric acid. Additionally, the degradation behavior of mechanical properties in
Ti-6Al-4V ELI alloy after exposure to hydrofluoric acid corrosion has not been fully in-
vestigated. Addressing these challenges and developing effective treatment methods are
crucial for advancing the application of Ti-6Al-4V ELI alloy in the fields of aerospace and
biological engineering.

Aiming at exploring the impact of surface roughness on corrosion resistance, in the
present study, we investigated the corrosion resistance property of Ti-6Al-4V ELI alloys
with varying surface roughness to hydrofluoric acid solution. Specifically, the weight loss
percentage, evolution of surface morphology, and changes in roughness before and after
exposure to hydrofluoric acid corrosion were assessed. Next, based on the experimental
findings, we elucidated the corrosion mechanism of the Ti-6Al-4V ELI alloy when subjected
to hydrofluoric acid solution. Finally, we evaluated the influence of the corrosion time on
the mechanical properties of the Ti-6Al-4V ELI alloy through an analysis of the degradation
in mechanical properties after the hydrofluoric acid corrosion treatment.

2. Materials and Methods
2.1. Corrosion Experiment

The Ti-6Al-4V ELI alloy was developed by reducing the content of C, O, N, and
Fe elements, and the element composition is summarized in Table 1. Initial cylindrical
specimens with a diameter of 4.0 mm and a height of 3.0 mm were fabricated from machined
Ti-6Al-4V ELI alloy bars (M state).

Table 1. The element composition of Ti-6Al-4V ELI alloy/wt.%.

Element Ti Al V Fe C N O Other

wt.% Bal. 6.15 4.28 0.20 0.009 0.010 0.112 <0.30

To achieve varying surface roughness, the surface of the specimen was ground to
achieve different levels of roughness (raw machined surface, 400# and 240#) by different
sandpapers. The 2% HF solution was prepared by diluting a 40% HF solution with deion-
ized water. The specimens were all cleaned using an ultrasonic cleaner and weighed using
an analytical balance. Subsequently, the specimens were immersed in 2% HF solutions
(Figure 1) for varying corrosion times (5, 30, 60, and 90 min) at room temperature with-
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out agitation. In this study, the corrosion experiment was repeated at least three times
under different conditions, and the average values were obtained by three results. For
the Ti-6Al-4V ELI specimens, a sufficient amount of 2% HF solution was prepared for
corrosion [28,30,31]. Following the corrosion experiment, the specimens were meticulously
cleaned using an anhydrous ethanol, dried in air and weighed again using an analytical
balance [32]. The weight loss (W), weight loss percentage (P), and weight loss rate (C) were
calculated utilizing Equations (1)–(3):

W = m0 − m1, (1)

P =
m0 − m1

m0
× 100%, (2)

C =
m0 − m1

T
(3)
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Figure 1. The illustration of the corrosion experiment and specimens of Ti-6Al-4V ELI alloy with
different surface roughness.

The weights of the specimens before and after the corrosion experiment are denoted
as m0 and m1, respectively. T represents the duration of the corrosion process. The detailed
parameters for the corrosion experiments and samples are summarized in Table 2. The sur-
face labels (R0, R1, R2) represent the specimens with different surface states. R0 represents
the raw machined surface. R1 and R2 represent the surfaces ground to different levels of
roughness, 400# and 240#, respectively.

2.2. Characterization

The surface morphologies of specimens, both before and after corrosion, were ob-
served using a scanning electron microscope (SEM, EVO 10, Jena, Germany) equipped
with an energy dispersive spectroscope (EDS, Oxford Xmax 50, Borehamwood, UK). The
phase composition was analyzed using an X-ray diffraction (XRD, Bruker D8 ADVANCE,
Karlsruhe, Germany) with Cu-Kα radiation. The surface morphologies and roughness
were characterized by an atomic force microscope (AFM, MFP-3D Infinity, Santa Barbara,
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CA, USA) and a white light interferometer (WLI, Profilm 3D, Unterhaching, Germany).
Compression tests were carried out at an initial strain rate of 10−3 s−1 on a universal
mechanical testing machine (MTS, C45.105, Eden Prairie, MN, USA) to characterize the
recession in compressive properties. To ensure data stability and repeatability, at least three
compressive specimens were tested for each condition at room temperature.

Table 2. The detailed parameters of the corrosion experiments and specimens.

Number Surface Label Surface State Etching Time/min

1 R0 Raw machined surface 0
2 R0 Raw machined surface 5
3 R0 Raw machined surface 30
4 R0 Raw machined surface 60
5 R0 Raw machined surface 90
6 R1 400# ground 0
7 R1 400# ground 5
8 R1 400# ground 30
9 R1 400# ground 60
10 R1 400# ground 90
11 R2 240# ground 0
12 R2 240# ground 5
13 R2 240# ground 30
14 R2 240# ground 60
15 R2 240# ground 90

3. Results and Discussion
3.1. Weight Loss of Ti-6Al-4V ELI Alloy Subjected to Hydrofluoric Acid Corrosion

The results of the weight loss (W), weight loss percentage (P), and weight loss rate
(C) calculated by Equations (1)–(3) are presented in Figure 2. The repetitive measurements
were performed, and the standard deviations were calculated. The average values and the
standard deviations of the weight loss (W), weight loss percentage (P), and weight loss
rate (C) are summarized in Table 3. It was observed that both the weight loss and weight
loss percentage increased as the corrosion time prolonged. Initially, the specimens with
different surface states (R0, R1, R2) exhibited similar levels of weight loss and weight loss
percentage. These findings indicated that in the initial corrosion stage (during the first
30 min), the surface roughness had a limited impact on the weight loss and weight loss
percentage of the Ti-6Al-4V ELI alloy (Figure 2a,b). As the corrosion time exceeded 30 min,
the average values of the weight loss and weight loss percentage (Ave. of W and P in
Table 3) for specimens with different surface states (R0, R1, and R2) showed tiny differences.
Considering the standard deviation (Std. of W and P in Table 3), the effect of surface
roughness on the weight loss and weight loss percentage was not significant. Although
the weight loss and weight loss percentage increased with the prolongation of corrosion
times, a distinct reduction in the weight loss rate was noticed (Figure 2c). Specially, when
the corrosion time exceeded 30 min, it was observed that the average values of the weight
loss rate (Ave. of C in Table 3) for specimens with R0 surface became a little higher than
those with R1 and R2 surfaces. From the difference in curves in the Figure 2, it can be seen
that the influence of the surface roughness on the curves of weight loss rate was greater
compared with the curves of weight loss and weight loss percentage. Considering the
standard deviation (Std. of C in Table 3), however, the effect of the surface roughness on the
weight loss rate was still not significant. These findings highlighted that the weight loss,
weight loss percentage, and weight loss rate varied significantly with corrosion progression,
while their sensitivity to the influence of surface roughness was limited.
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Figure 2. (a) Weight loss, (b) weight loss percentage, and (c) weight loss rate of specimens with
different surface states at various HF solution corrosion times.

Table 3. The average value (Ave.) and the standard deviation (Std.) of the weight loss (W, g), weight
loss percentage (P, %), and weight loss rate (C, g·min−1).

Time
R0 R1 R2

Ave. Std. Ave. Std. Ave. Std.

W

5 0.00517 0.00010 0.00529 0.00010 0.00532 0.00005
30 0.02722 0.00050 0.02749 0.00055 0.02754 0.00016
60 0.05192 0.00145 0.05061 0.00079 0.04990 0.00087
90 0.07363 0.00045 0.07198 0.00136 0.07161 0.00106

P

5 3.11366 0.06365 3.33350 0.03117 3.25631 0.04789
30 16.42258 0.29857 16.69526 0.35188 16.77791 0.07577
60 31.30024 0.83020 30.76174 0.51683 30.47066 0.41385
90 44.35515 0.20741 43.59825 0.76163 43.58085 0.67050

C

5 0.001030 0.000021 0.001060 0.000020 0.001060 0.000010
30 0.000907 0.000017 0.000916 0.000018 0.000918 0.000005
60 0.000865 0.000024 0.000844 0.000013 0.000832 0.000015
90 0.000818 0.000005 0.000800 0.000015 0.000796 0.000012

3.2. Surface Roughness of Ti-6Al-4V ELI Alloy before and after Corrosion

The changes in the surface roughness indexes (indicated by Sa and Sq [26,30]) of the
Ti-6Al-4V ELI alloy before and after corrosion were investigated, as illustrated in Figure 3.
Sa (arithmetical mean height) is the extension of Ra (arithmetical mean height of a line) to a
surface. Sq (root mean square height) represents the root mean square value of ordinate
values within the definition area. It is equivalent to the standard deviation of heights. It was
observed that the specimens with R0 surfaces exhibited a lower initial surface roughness
compared with specimens with R1 and R2 surfaces (R0: 0.209, R1: 0.582, R2: 0.728 for Sa,
R0: 0.269, R1: 0.764, R2: 0.933 for Sq). Interestingly, it was found that with an increase in
the corrosion time, the surface roughness of specimen with R0 continuously rose; however,
the specimens R1 and R2 demonstrated a distinct trend in contrast to the former case. It
was observed that there was a consistent reduction in the surface roughness of specimens
with R1 and R2 to a minimum value (~0.2) before experiencing a subsequent increase
(~0.3). The surface roughness variations between the initial state (0 min) and the final
state (90 min) are shown in Table 4. It was found that the surface roughness variation
was different for different surface states (Sa and Sq > 0 for R0, Sa and Sq < 0 for R1 and
R2). The results were different from the investigation findings of Bezuidenhout et al. [33].
The results of their research showed that the surface roughness tended to decrease as the
duration of the corrosion increased. In our study, however, there were increasing stages of
surface roughness, depending on the initial roughness values and whether the minimum
roughness was reached. Furthermore, it is worth noting that in this study the 0.2% HF
solution corrosion imposed a limitation on the surface roughness, approximately at the
level of 0.2 µm.
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Figure 3. The surface roughness indexes (a) Sa and (b) Sq of Ti-6Al-4V ELI alloy before and after
corrosion.

Table 4. The surface roughness variation between initial state (0 min) and final state (90 min).

Surface Label Initial State Final State Variation

Sa
R0 0.209 0.490 0.281
R1 0.582 0.307 −0.275
R2 0.728 0.262 −0.466

Sq
R0 0.269 0.641 0.372
R1 0.764 0.409 −0.355
R2 0.933 0.338 −0.595

Further, the evolution of surface morphology under different corrosion periods on
Ti-6Al-4V ELI alloy before and after corrosion with the increasing corrosion time was
explored as illustrated in Figure 4. Initially, during the first 30 min of corrosion, the surface
morphology of the specimen exhibited a distinctive pattern of strip groove with varying
altitudes, attributed to the utilization of abrasive paper with different mesh grades. Then it
was noticed that subsequent corrosion by the HF solution induced substantial changes in
the surface morphology of the specimen, leading to the disappearance of the strip groove
pattern (initial surface morphology of R0, R1, R2 at 0 min in Figure 4) and the emergence
of a columnar peak and valley morphology instead (surface morphology of R0, R1, R2 at
5, 30, 60, 90 min in Figure 4). Moreover, it was found that noticeable changes occurred in
the altitudes of these peaks and valleys with the increasing corrosion time. These results
demonstrated that the HF solution corrosion had markable impacts not only on the surface
roughness but also on alterations in the overall surface morphology.

3.3. Microstructure of Ti-6Al-4V ELI Alloy before and after Corrosion

Subsequently, the alterations on the phase and microstructure of the Ti-6Al-4V ELI
specimens at different corrosion stages are examined. As shown in Figure 5, a consistent
XRD diffraction pattern after the corrosion on Ti-6Al-4V ELI alloy was found [33]. Particu-
larly, the positions of diffraction peaks remained consistent after corrosion, while there was
a slight increase in the intensity of diffraction as the corrosion time increased. Importantly,
it was noted that there was a distinct strength on the diffraction peaks of the TiF3 phase
at the first 5 min of corrosion. The diffraction peaks of the TiF3 phase were observed to
strengthen with the increase in the corrosion time. It is speculated that the formation of
the TiF3 phase was on the specimen surface initially. In the hydrofluoric acid solution, the
passivation film on the surface of the titanium alloy was destroyed and removed, leading
to direct contact between fluorine ions and titanium. Consequently, it was observed that
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a gradual accumulation of TiF3 phase occurred on the specimen surface along with the
generation of hydrogen.
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In order to assess the changes in the microstructure of sample surfaces, the microstruc-
tural characteristics among specimens with different degrees of corrosion were compared.
Figure 6 presents the SEM images of the Ti-6Al-4V ELI alloy specimens before and after
2% HF solution corrosion. It is observed that the specimen surface exhibited black regions
and white phases. Random distribution regions formed on all the sample surfaces after
corrosion. Specifically, the white phases appeared as polygonal particles dispersed within
the black region. According to the further element analysis results obtained by EDS, it was
revealed that the black regions consisted of Ti-6Al-4V ELI alloy, while the white phases
were composed of TiF3 particles. We believe that the development of T6Al4V/TiF3 in two
phases was mainly due to the dynamic equilibrium of corrosion/formation of different
compositions. To be specific, the HF solution reacted with the Ti-6Al-4V ELI alloy, leading
to the formation of the TiF3 phase on the specimen surface. Simultaneously, there was
a continuous consumption of the Ti-6Al-4V ELI alloy as the matrix, which progressively
developed a notched substrate. TiF3 phases gradually deposited on the rough Ti-6Al-4V ELI
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substrate. The accumulation of TiF3 phases and depletion of the Ti-6Al-4V ELI matrix re-
sulted in the alterations of surface characteristics including surface roughness, morphology,
and compositions.
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In addition, the microstructural changes with corrosion were studied by AFM. The
AFM images in Figure 7 illustrate the surface topography of the Ti-6Al-4V ELI alloy spec-
imens before and after exposure to a 2% HF solution for corrosion testing. The colors
on the AFM images correspond to different elevations, indicating variations in the spec-
imen surface topography. Notably, significant alterations were observed in the surface
morphology of specimens with R0 and R2 with the increasing corrosion time. The strip
groove patterns disappeared, and the peak/valley morphologies emerged, proving that
the different microstructure characterization methods of surface morphology evolution by
WLI, SEM, and AFM presented consistent and correct results.

Given the findings in how the surface morphology and compositions changed, the
corrosion mechanism of the Ti-6Al-4V ELI alloy corroded by 0.2% HF solution is illustrated
in Figure 8. Due to the inability to prevent fluoride ions from coming into contact with the
titanium alloy, continuous corrosion occurs in hydrofluoric acid. For specimens with R0
surfaces, with the initially lower roughness (raw machined surface), it is believed that the
application of hydrofluoric acid could result in a coarsening effect. Then, the fluoride ions
reacted quickly with titanium, leading to the rapid accumulation of the TiF3 phase on the
surface of specimen. This, in turn, led to the gradual formation of bulges on the surface. In
the case of a specimen with an R2 surface characterized by an initially higher roughness,
there was a quick reaction on the peaks, while a slower reaction occurred in the valleys,
resulting in a gradual polishing effect on the surface of the specimen [33]. The continuous
depletion of the Ti-6Al-4V ELI alloy along with the gradual accumulation of the TiF3 phase
contributed to the changes in the surface roughness.
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3.4. Recession Behavior of Mechanical Properties after HF Solution Corrosion

Last, the alterations in the compressive mechanical behaviors [13] of the Ti-6Al-4V ELI
specimens after corrosion were investigated. Figure 9a shows the force–displacement curves
of the Ti-6Al-4V ELI alloy subjected to 2% HF solution corrosion over varying durations. It
was observed that with the increasing compression displacement, the compressive force
increased. Initially, it was found that there was a linear elastic stage, followed by yielding
and plastic deformation stages. Ultimately, when it reached its ultimate compression
limit, the Ti-6Al-4V ELI alloy specimen fractured abruptly, resulting in a rapid drop in
the compression force. The stress–strain curves of the Ti-6Al-4V ELI alloy subjected to
2% HF solution corrosion with different times are shown in Figure 9b. The trend of the
corresponding curve was similar to that of the force–displacement curve. It is worth
noting that the stress–strain curves were closer because the effect of changes in specimen
cross-section size before/after corrosion was excluded. These results proved that the stress
level of the Ti-6Al-4V ELI alloy with different corrosion times remained almost unchanged;
however, the maximum compressive force decreased.
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The Ti-6Al-4V ELI alloy specimen without corrosion exhibited the highest bearing ca-
pacity throughout the entire compression process compared with specimens with corrosion.
Figure 10a shows the quasi-static compression processes of the Ti-6Al-4V ELI alloy before
and after corrosion (corrosion times of 0, 5, and 90 min). It was evident that the compression
deformation process of the specimen before and after corrosion was similar, indicating
that the surface corrosion carried out in this study had little effect on the deformation
process of the complete sample. However, as the corrosion time increased, there was a
gradual decrease in the bearing force of the Ti-6Al-4V ELI alloy specimen. This decrease
was attributed to the corrosion experienced by the specimens when exposed to hydrofluoric
acid solution, resulting in the surface erosion. Moreover, it was noticed that the surface
of the Ti-6Al-4V ELI alloy was continuously consumed by hydrofluoric acid, leading to
a gradual reduction in the specimen diameter as shown in Figure 10b. The reduction
in the bearing area subsequently led to a gradual decline in the compressive load with
the increasing corrosion time. Therefore, the bearing capacity of the Ti-6Al-4V ELI alloy
specimen deteriorated over time when exposed to HF solution. The diameters (D, mm), the
bearing area (S, mm2), the maximum compressive force (Fmax, kN), and the compressive
stress (σc, MPa) of the specimens are listed in Table 5. By this quantitative comparison, we
demonstrated that the diameters, the bearing area, and the maximum compressive force
decreased with the increase in the corrosion time. This underscored the importance of
considering such corrosion-driven mechanical property changes when utilizing Ti-6Al-4V
ELI alloy as crucial engineering materials.

Table 5. The diameters (D, mm), the bearing area (S, mm2), the maximum compressive force (Fmax,
kN), and the compressive stress (σc, MPa) of specimens.

Time D S Fmax σc

0 6.233 30.50 60.74 1993.61
5 6.207 30.24 57.80 1909.26
30 6.080 29.02 56.51 1976.48
60 5.903 27.35 51.30 1930.71
90 5.753 25.98 50.21 1934.46
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4. Conclusions

In this study, we investigated the corrosion resistance property of Ti-6Al-4V ELI alloys
with varying surface roughness to hydrofluoric acid solution. The main conclusions are
summarized as follows:

• The weight loss and weight loss percentage of the Ti-6Al-4V ELI alloy increased with
longer corrosion times, while the weight loss rate decreased. Compared with the
weight loss and weight loss percentage, the influence of the surface roughness on the
weight loss rate was greater. The weight loss, weight loss percentage, and weight
loss rate varied significantly with corrosion progression, while their sensitivity to the
influence of surface roughness was limited.

• HF solution corrosion imposed a limitation on the surface roughness at approximately
0.2 µm. Furthermore, it not only affected the surface roughness but also induced
alterations in the surface morphology, transitioning from the strip groove pattern to a
columnar peak and valley morphology instead.

• The microstructure of the specimen surface exhibited two distinct phases: the black
regions and white phases after corrosion. We believed that the HF solution reacted
with the Ti-6Al-4V ELI alloy, leading to the formation of TiF3 phases. The accumulation
of TiF3 phases and the depletion of the Ti-6Al-4V ELI matrix collaboratively altered the
surface roughness. The continuous corrosion occurring in hydrofluoric acid solution
was mainly caused by the titanium alloy’s inability to prevent fluoride ions from
coming into contact with it.

• As the corrosion time increased, the surface of the Ti-6Al-4V ELI alloy was continuously
consumed by hydrofluoric acid, leading to a gradual reduction in the bearing area.
Hence, the bearing capacity of the Ti-6Al-4V ELI alloy specimen deteriorated over time.

These findings underscore the importance of considering corrosion resistance and
surface properties when utilizing Ti-6Al-4V ELI alloy in various applications, particularly
in the presence of hydrofluoric acid.
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