
Citation: Liu, J.; Liu, Y.; Wang, G.; Lu,

N.; Cui, J.; Wang, H. Fatigue

Reliability Assessment for Orthotropic

Steel Decks: Considering Multicrack

Coupling Effects. Metals 2024, 14, 272.

https://doi.org/10.3390/

met14030272

Academic Editor: Alireza

Akhavan-Safar

Received: 24 January 2024

Revised: 23 February 2024

Accepted: 23 February 2024

Published: 25 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

metals

Article

Fatigue Reliability Assessment for Orthotropic Steel
Decks: Considering Multicrack Coupling Effects
Jing Liu 1, Yang Liu 1, Guodong Wang 1,2,*, Naiwei Lu 1 , Jian Cui 1 and Honghao Wang 1

1 Key Laboratory of Bridge Engineering Safety Control by Department of Education, School of Civil
Engineering, Changsha University of Science & Technology, Changsha 410114, China;
ljtbdr@stu.csust.edu.cn (J.L.); liuyangbridge@163.com (Y.L.); lunaiwei@csust.edu.cn (N.L.);
cuijian@stu.csust.edu.cn (J.C.); wanghonghao@stu.csust.edu.cn (H.W.)

2 National-Local Joint Laboratory of Engineering Technology for Long-Term Performance Enhancement of
Bridges in Southern District, Changsha University of Science & Technology, Changsha 410114, China

* Correspondence: guodongw@csust.edu.cn; Tel.: +86-18774891894

Abstract: Multiple fatigue cracks are generally present in practical engineering due to the existence
of welding; the size and number of cracks of orthotropic steel bridge decks are greatly uncertain.
The component failure conditions caused by these cracks may have correlations. Currently, it is still
a challenging issue to develop a physical model of multiple fatigue crack propagation in bridge
decks and perform a fatigue reliability assessment, which is also the motivation that drives the
innovation of this study. A fatigue reliability evaluation method is presented for orthotropic steel
bridge decks, considering the coupling effect of multiple cracks and the randomness of vehicle
loading. A numerical simulation method for multifatigue crack growth is developed by combining
the ABAQUS and FRANC3D programs. The equivalent crack depth under different spacing and
depths of collinear cracks is calculated by using numerical simulation and the multicrack equivalent
characterization method. The critical damage accumulation function of multiple fatigue cracks is
established using linear elastic fracture mechanics. Subsequently, the critical damage accumulation
function of multiple fatigue cracks is established based on linear elastic fracture mechanics. In order
to solve the time-consuming problem of traditional Monte Carlo method, the iHL-RF method and
AK-MCS method are developed for fatigue reliability analysis. The results show that compared
with the single-crack model, the fatigue reliability of orthotropic steel deck will be crucially reduced
considering the coupling effect of double cracks. The MCS, iHL-RF and AK-MCS methods can
effectively solve the fatigue reliability analysis problem. Compared with the MCS method, the
reliability calculation time based on AK-MCS method is significantly reduced. The AK-MCS method-
based method reduces the time for calculating the reliability of orthotropic steel decks by 50%
compared with the iHL-RF method. The reliability analysis of orthotropic steel deck bridge based on
AK-MCS method is proved to be efficient and accurate.

Keywords: orthotropic steel deck; multiple cracks; AK-MCS method; fatigue reliability

1. Introduction

An orthotropic steel deck bridge has outstanding advantages, such as light weight,
high strength, factory production, and convenient construction and assembly [1–3], which
is a landmark achievement in modern steel structure bridges. There are many welds on
the steel bridge plate, and the welding defects are difficult to detect and maintain effective
control of, which leads to crack initiation [4]. Under the long-term action of heavy vehicles,
the welding structure details of the top plate and longitudinal ribs are prone to fatigue
cracks and rapid growth. Many steel deck bridges, both domestically and internationally,
experienced fatigue cracks shortly after their opening to traffic, such as the Severn Bridge
in the UK, the Akashi Strait Bridge in Japan, and the Junshan Yangtze River Bridge in
China [5,6]. The fatigue properties of single cracks in precracked structures have been
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extensively studied [7,8]. However, with the increase in bridge service time, the number
and size of fatigue cracks in the steel deck bridge crucially increase, and the interaction
between dense cracks will accelerate the initiation and propagation of cracks. After multiple
crack tips come into contact, fusion occurs, resulting in larger cracks that significantly affect
the crack propagation speed, leading to a sharp decrease in the fatigue life of steel bridge
decks [9]. Therefore, it is necessary and urgent to conduct a reliability analysis on steel
bridge decks under the influence of multiple fatigue cracks in welds.

An orthotropic steel deck bridge is a structure composed of longitudinal and trans-
verse stiffeners (longitudinal and transverse ribs) that are perpendicular to each other,
along with the bridge deck cover plate, to jointly bear wheel loads. The stiffness of this
structure is different in the two perpendicular directions, resulting in structural anisotropy.
The reliability analysis of the orthotropic bridge panel should be carried out to ensure its
sufficient strength. In the traditional reliability calculation methods, most studies are based
on the known function [10]. However, when calculating the reliability of actual engineer-
ing, the engineering structure is very complex, and the calculation is cumbersome. The
performance function is a highly nonlinear implicit function, and traditional methods such
as first-order and second-order moments can easily lead to low computational efficiency
and poor accuracy in the results [11]. Therefore, the Monte Carlo method based on finite
element software is usually used to calculate the structure reliability [12], except for the
problem of small failure probability due to the limitation of the Monte Carlo simulation
method itself. The accuracy of the calculation results depends on the number of calculation
times of finite element software. The lower the failure probability of actual engineering
structures, the higher the reliability. The number of calculations will increase by tens or
hundreds of times, leading the calculation cost to be unacceptable.

To solve the above problems, it is an effective method to construct a proxy model to
replace the implicit function of the actual complex structure. The proxy model method
is essentially a fitting technique that can discover implicit relationships between input
and output variables and make predictions [13]. At present, a variety of proxy model
methods have been developed, including polynomial response surface [14], radial basis
function [15], neural network [16] and Kriging [17]. The Kriging proxy model only considers
the relationship between variable values, which can be combined with other reliability
calculation methods to further improve the calculation efficiency and accuracy. Kriging is
widely used in reliability calculation due to its good nonlinear fitting ability and unique
error evaluation function [18]. Fan et al. [19] adopted the Kriging model to optimize the
reliability design of crane bridges. Du et al. [20] used parallel subset simulation and the
Kriging model to analyze the reliability of a cantilever tube. The results showed that
the efficiency was improved under the condition of meeting the accuracy. Lv et al. [21]
proposed an active-learning reliability analysis method (AK-LS) combining the Kriging
model and linear sampling, screened out the best sample points for improving model
accuracy through the constructed active-learning function and constructed a high-precision
Kriging model with fewer sample points. Echard et al. [22] proposed an active-learning
reliability analysis method (AK-MCS) combining the Kriging model and Monte Carlo
simulation method, screened out the points near the failure surface and the points with
large prediction errors and realized the high fitting of the limit state boundary with fewer
sample points.

This paper is organized as follows: First, the fatigue crack growth model of the
orthotropic steel deck is established. Next, a reliability calculation framework for multiple
fatigue cracks in orthotropic bridge decks based on finite element models is proposed.
Then, the equivalent crack depth under different spacing and depth of collinear cracks
is calculated by using numerical simulation and multicrack equivalent characterization
method. Following this, the iHL-RF method and AK-MCS method for fatigue reliability
analysis of multicrack orthotropic decks are developed. Finally, the accuracy and timeliness
of multiple methods under different working conditions are compared.
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2. Materials and Methods

The method based on the S-N curve AASHTO (American Association of State Highway
Transportation Officials) is a typical method for evaluating steel bridge components [23].
However, the AASHTO method requires a large number of fatigue tests to obtain the
relevant parameters and cannot consider the crack size information in the fatigue evalu-
ation process. Based on the Paris crack growth model, John et al. [24] proposed a linear
elastic fracture mechanics method for fatigue reliability assessment. The Paris equation of
crack growth:

dα

dN
= C(∆K)m (1)

where α is the fatigue crack size, specifically, the crack depth, in this paper; N is the number
of loading cycles; C and m are the fatigue growth correlation coefficients; and ∆K is the
amplitude of the stress intensity factor. According to the linear elastic fracture mechanics
(LEFM) theory [25], it can be estimated as follows:

∆K = Kmax − Kmin = YSeq
√

πα (2)

where Seq is the equivalent stress amplitude under varying amplitude load; Y is a geometric
function considering the crack shape of the member.

The fatigue crack size corresponds to the number of load cycles. The number of load
cycles is defined as N1 and N2, then the integral of Equation (1) can be obtained as follows:∫ α2

α1

1(
Y
√

πα
)m dα =

∫ N2

N1

CSeq
mdN (3)

A damage accumulation function is proposed to reflect the fatigue crack size from α1
to α2 [26], which is defined as follows:

ψ(α2, α1) =
∫ α2

α1

1(
Y
√

πα
)m dα (4)

The relationship between damage accumulation function and load accumulation is
as follows:

ψ(α2, α1) = CSeq
m(N2 − N1) (5)

When the critical crack size is specified, the fatigue failure criterion of the structure
subjected to (N2 − N1) stress cycle can be defined as:

αC − αN ≤ 0 (6)

where αN is the crack size of the in-service structure after N stress cycles, which can be
redefined as the crack evolving from the initial size of α0 (the N0 stress cycle) to the α2 size
(the N stress cycle). Once αN exceeds the critical crack size αC, a failure problem can be
considered to have occurred.

For fatigue reliability analysis of bridge components, Equation (6) can be considered
the limit state. Since damage accumulation function ψ(α2, α1) is monotonically increasing
with crack size, the limit state function of Equation (6) can be redefined as:

g(x) = ψ(αC, α0)− ψ(αN , α0) ≤ 0 (7)

g(x) =
∫ αc

α0

1(
Y
√

πα
)m dα − CSeq

m(N − N0) ≤ 0 (8)

where ψ(αc, α0) is the fatigue damage accumulation function from the initial crack size to
the critical crack size, namely, the critical threshold of the limit state equation. Ψ(αN, α0) is
the damage accumulation function from the initial crack size α0 through N stress cycles to
αN, namely, the load-effect part of the limit state function.
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It is considered that the initial depth of the double crack α0 is equivalent to a single-
crack depth αe after the extended coupling effect, and the coupling equivalent to a single
crack continues to expand to the critical depth αc. According to the recommendation of the
IIW (International Institute of Welding) [27], when the crack propagation depth reaches
half of the thickness of the roof plate, the component is considered to have failed. During
this process, Y changes with the crack size; the expression on the right of Equation (8) is
processed with piecewise integral.

g(x) =
∫ αe

α0

1(
Y
√

πα
)m dα +

∫ αc

αe

1(
Y
√

πα
)m dα − CSeq

m(N − N0) (9)

The stress cycle number is defined as follows: N = 365 × n × Nd. Equation (9) can be
converted to

g(x) =
∫ αe

α0

1(
Y0
√

πα
)m dα +

∫ αc

αe

1(
Ye
√

πα
)m dα − 365nNdCSeq

m (10)

where Nd is the number of daily cycles of stress; n is the service life of the bridge. Y0
and Ye are the boundary correction factors for the reference stress intensity factors, respec-
tively [28].

Y0 = 0.4804 − 0.5116(α0/T) + 0.2072(α0/T)2 − 1.0116(α0/T)3 + 0.9562(α0/T)4 (11)

Ye = 0.5459 + 0.2219(αe/T) + 0.7656(αe/T)2 − 1.5501(αe/T)3 + 0.9562(αe/T)4 (12)

where αe is the crack depth of the collinear double crack considering the coupling effect
equivalent to a single crack, which is calculated using the ABAQUS-FRANC3D interactive
technique; T is the plate thickness; and Rs is the collinear double-crack spacing ratio.

Considering the actual random variation of load, the lateral distribution coefficient of
the wheel track at the bridge panel e and the annual traffic volume growth coefficient αy
are further added to the limit state function.

g(x) =
∫ αe

α0

1(
Y0
√

πα
)m dα +

∫ αc

αe

1(
Ye
√

πα
)m dα − e365nNdCSeq

m(1 +
n + 1

2
αy) (13)

where the double crack spacing ratio, initial crack depth, crack propagation coefficient,
wheel track transverse distribution coefficient, equivalent stress amplitude and daily stress
cycles were random distribution variables. Table 1 shows the random variable distribution.

Table 1. Random variable distribution.

Variable Distribution Mean Variation Coefficient

Rs Uniform [29] 0.1 3

α0 lognormal [30] 0.5 0.2

C lognormal [31] 5.21 0.6

e lognormal [32] 0.78 0.1

Seq
normal (driving lane) [33]
normal (passing lane) [33]

17.67
16.87

0.44
1.53

Nd
normal (driving lane) [34]
normal (passing lane) [34]

5685
1140

480
52

3. Structural Reliability Analysis Based on iHL-RF Method

For the fatigue reliability problem described in performance function Equation (13),
the failure probability is defined as follows:

Pf = P[g(x) ≤ 0] ≈ Φ(−βu) (14)
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where βu is the reliability index corresponding to the failure probability; Φ(·) is the standard
normal cumulative distribution function. In the standard normal space, the reliability index
βu can be calculated as:

βu =||u∗||2 (15)

where u* is a design point in standard normal space. In a geometric sense, βu is the point
corresponding to the minimum Euclidean distance from the limit state plane to the origin
in standard space. The solution of design point u* involves a constrained optimization
solution problem, which is defined as

βu =

{
min

√
u2

1 + u2
2 + . . . + u2

n =
∣∣∣∣u∣∣∣∣2

s.t.g(u) = 0
(16)

where u = [u1, u2, . . . , un] is a random variable in a standard normal space, which corre-
sponds to random variable x one by one and can be calculated from variable x by equal
probability transformation method to obtain u.

The iHL-RF method is a gradient-based line search method proposed by Hohenbich-
ler [35], which can effectively solve the above-constrained optimization problems. iHL-RF
uses the following iterative equation to search design points:

u(k+1) = u(k) + λd (17)

where k is the number of iterations; d is the search direction; λ is the search step, which
defined as:

d = [
g(u)
∇g(u)

+ αT
u u]αu − u (18)

where ∇g(u) is the gradient vector of the function. ∇g(u) and αu are calculated as:

∇g(u) = [
∂g
∂u1

,
∂g
∂u2

, . . . ,
∂g

∂un
]
T

(19)

αu =
−∇g(u)
||∇g(u)|| (20)

According to the Armijo criterion, the search step λ must meet the following condi-
tions [36]:

m(u(k+1))− m(u(k)) ≤ 1
2

λ(∇g(u)Td) (21)

where m(·) is the value function. When Equation (16) reaches the optimal value, the value
function will also reach its minimum value.

m(u) =
1
2

u2 + c|g(u)| (22)

where c is the penalty parameter and must meet the following conditions:

c >
||u||

||∇g(u)|| (23)

Take a two-dimensional example as an example; its performance function is expressed
as follows [37]:

g(x) = x1 − 1.7x2 + 1.5(x1 + 1.7x2)
2 + 5 (24)

where x1 and x2 are standard normal random variables. The iHL-RF method is used to
solve the example, and the reliability of the example is 2.873. The iterative route in the
process of solving the iHL-RF method is shown in Figure 1.
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4. Structural Reliability Analysis Method Based on AK-MCS Method

The AK-MCS method combining active-learning Kriging (AK) and MCS has been a
research hotspot in recent years, which can effectively balance the computational efficiency
and precision of structural reliability analysis [22].

4.1. Kriging Modeling

The Kriging model regards the performance function as a random field model, which
is mainly composed of polynomials and random processes. For a given initial sample set
X = [x1, x2, . . . , xm]

T, X ∈ Rn and corresponding response set G = [g(x1), g(x2), . . . g(xm)]
T,

the Kriging model can be expressed as follows:

g(x) = f(x)T β + ξ(x) (25)

where f (x) is the polynomial function variable; β is the regression coefficient vector. ξ(x)
is a random process with mean 0 and variance σ2, whose covariance function is defined
as follows:

cov
[
ξ(xi), ξ(xj)

]
= σ2R(θ, xi, xj) (26)

R(θ, xi, xj) = exp
n

∑
k=1

[
−θk(xk

i − xk
j )
]
, θk > 0 (27)

where R(θ, xi, xj) is the correlation between samples xi and xj; this paper adopts the form
of the Gaussian function. θ is a parameter variable of 1 × n. The superscript k represents
the k-th component of sample xi.

Based on sample set X and response set G, the regression coefficient β and variance σ2

are estimated as follows:
β̂ = (FTR−1F)

−1
FTR−1G (28)

σ̂2 =
1
m
(G − Fβ̂)

T
R−1(G − Fβ̂) (29)

where F is the regression coefficient matrix of the training sample; R is the regression
coefficient matrix of the training sample: R =

[
Rij

]
m×m, Rij = R(θ, xi, xj).

The estimated value and prediction variance at unknown point x is calculated as follows:

µĝ = f(x)T β + r(x)R−1(G − Fβ̂) (30)

σĝ = σ̂2
[
1 + u(x)T(FTR−1F)

−1
u(x)− r(x)TR−1r(x)

]
(31)

u(x) = FTR−1r(x)− f(x) (32)

r(x) = [R(θ, x1, x), R(θ, x2, x), . . . R(θ, xm, x)]T (33)
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Compared with proxy models such as NN (Neural Network) and SVM (Support
Vector Machine), the prediction variance Equation (31) provided by the Kriging model
can be used to measure the prediction uncertainty of the model, which is one of the basic
prerequisites for carrying out the active-learning Kriging technique.

4.2. AK-MCS Method

There is a fatigue reliability analysis problem for performance function g(x) and the
input random variable x. The direct MCS method requires a large sample sampling of input
random variables and a calculation of output response values of each group of samples in
turn. The whole calculation process of the MCS method is lengthy in duration, leading the
proxy model to not be adopted into the field of structural reliability analysis.

In essence, the AK-MCS method uses the Kriging proxy model to approximate the
actual function. In addition, it uses the MCS method to estimate the failure probability,
which can effectively avoid a lot of calls to the actual function. This is different from the
traditional one-time sampling directly counting sample sets. AK-MCS will first sample
a small initial sample set and then gradually sample the key areas through the active-
learning function and gradually improve the global and local approximate accuracy of the
Kriging model.

According to the principle of MCS calculation of failure probability, as long as the
positive and negative coincidence of each sample can be correctly identified, the failure
probability can be accurately calculated. For those samples with a high risk of crossing
the limit state surface ĝ(x), it must be added to the training sample set to improve the
approximate accuracy of the model near the limit state surface. Samples selected for the
Kriging model construction generally have three characteristics: (1) they are close to the
limit state surface; (2) they have large model prediction variance, which means that the
symbol of the sample is prone to be misestimated; (3) and simultaneously possessing the
above two points. Therefore, the learning function is constructed as follows:∣∣µĝ(x)

∣∣− U(x)σĝ(x) = 0 (34)

The risk that indicates whether the sign of the Kriging model’s predicted value U(x)
is consistent with the sign of the actual function ĝ(x) is related to the low confidence
bounding function (LCB), and Equation (34) can be redescribed as:

U(x) =

∣∣µĝ(x)
∣∣

σĝ(x)
(35)

For U function, when U = 2, the probability that its symbol is incorrectly estimated at
an unknown point is Φ(−2) = 0.023, so min(U(x)) ≥ 2 can be used as the convergence
criterion for the active-learning process.

Taking a two-dimensional four-series system as an example, its performance functions
are defined as follows [38]:

g(x) =



3 +
(x1 − x2)

2

10
− (x1 + x2)√

2

3 +
(x1 − x2)

2

10
+

(x1 + x2)√
2

(x1 − x2) +
7√
2

(x2 − x1) +
7√
2

(36)

where x1 and x2 are random variables subject to a standard normal distribution, respectively.
AK-MCS is used to solve the reliability problem of the above series system, and the
reliability index is 2.845. The point selection process of the U function is shown in Figure 2.
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The selected sample points are uniformly distributed near the limit state surface. Due to the
U function, we can balance the searchability of the region near the limit state surface and
the global region and effectively prevent the agglomeration phenomenon of the selected
sample points while ensuring the selection of points near the limit state surface.
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4.3. AK-MCS Calculation Process

According to the calculation principle of AK-MCS, its specific calculation process is
shown in Figure 3.

(1) A candidate sample set Sc is generated. According to the distribution of input
variables, a candidate sample set Sc with size Nc is obtained with sampling.

(2) The initial training sample set X and the corresponding response value G are gen-
erated. To construct an initial Kriging model, it is necessary to obtain N initial samples
X = [x1, x2, . . . , xN]

T first and then calculate its true performance function response value
G = [g(x1), g(x2), . . . g(xN)]

T. The size of the initial sample set X defines N = max(n + 2, 12).
(3) Construct the Kriging model. According to the sample set X and its response value

G, the Kriging model is constructed based on the DACE toolbox.
(4) The predicted response value and failure probability of Kriging were calculated.

Based on the Kriging model, the predicted response value ĝ(xi), i = 1, 2, . . . Nc of all
samples in candidate sample set Sc is calculated, and its failure probability is calculated
as follows:

P̂f =
Nĝ(xi)<0

Nc
(37)

(5) Determine the next best update point xb. Based on the Kriging method, the predic-
tion response values and prediction variance of all samples in candidate sample set Sc are
estimated, respectively. Then, function U values in all candidate samples are calculated
according to Equation (35), and the sample corresponding to the minimum value is selected
as the best update point xb.

(6) Determine whether it is convergent. When U(xb) ≥ 2, the convergence condition
is met, go to step (8); otherwise, go to step (7).

(7) Update the Kriging agent model. When the convergence criterion is not satisfied,
calculate the true response value g(xb) of the best update point xb and add it to the sample
set X and its response value G to reconstruct the Kriging model and return to step (4).

(8) Calculate the coefficient of variation of failure probability. If the convergence crite-
rion in step (6) is satisfied, the coefficient of variation for calculating the failure probability
is as follows:

Cov(P̂f ) =

√√√√ 1 − P̂f

P̂f (Nc − 1)
(38)
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If Cov(P̂f ) is less than 0.05, go to step (10); otherwise, go back to step (9).
(9) Update the candidate sample set. If the coefficient of variation of the failure

probability is oversized, the candidate sample set Sc is increased, and the update process is
restarted by going back to step (4).

(10) End AK-MCS, output P̂f .
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Figure 3. AK-MCS calculation flowchart.

5. Simulation Method of Crack Propagation Based on ABAQUS-FRANC3D
Interactive Technique

The ABAQUS-FRANC3D interactive technique was used to analyze the fatigue crack
growth. Liu et al. [39] used ABAQUS-FRANC3D interaction technology to calculate the
fatigue crack stress intensity factor at the weld toe between the longitudinal rib and the roof
of the steel bridge panel and verified its accuracy through tests. Two semi-elliptical initial
cracks were inserted at the toe of the joint between the top plate and the U-rib weld base
on FRANC3D (version 7.5.5) software. The dimensions were as follows: short half-axis
a (depth direction), long half-axis c, spacing s. Two cracks were vertically symmetrically
arranged along both sides of the central axis of the welding toe. A crack grid was adopted
to repartition the crack, and a solid submodel with a mesh size of 0.2 mm was established.
The crack propagation depth was calculated using the finite element method until the
crack depth reached 50% of the roof thickness. Figure 4 shows the ABAQUS-FRANC3D
interactive workflow. The model is cut along the axis to indicates collinear cracks, and the
grid of collinear crack fronts is shown in Figure 4.

A long-span steel box girder suspension bridge was used to establish the finite element
model, as shown in Figure 5. The model material was Q345D steel, the elastic modulus
was 2.1 × 105 MPa, and the Poisson ratio was 0.3. There were two transverse partitions
and two U-ribs. The model length and width were 3200 mm and 1400 mm, respectively.
The thicknesses of the top plate and U-rib were 16 mm and 8 mm, respectively. The top
plate U-rib upper mouth width was 300 mm, the lower mouth width 170 mm, the height
280 mm, and the transverse partition thickness was 10 mm. The welding seam with 80%
was used to connect the U-rib and the top plate of the steel bridge panel. The assembly
clearance parameter g between the top plate and the U-rib was 0.5 mm. The finite element
model adopted two-point loading; the loading area was 200 mm × 200 mm. The three-way
displacement of all nodes at the bottom of the transverse partition of the steel bridge panel
was constrained.
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Figure 5. Parameters of U-rib and top plate of steel bridge deck. (unit: mm).

In actual engineering, the coupling effect between multiple cracks in engineering
structures results in the structural fracture analysis becoming complicated. At present,
the equivalent elliptic criterion is commonly used in multicrack analysis if the two cracks
located on the same side are coplanar cracks. When the crack spacing is less than the long
axis length of the smaller crack, the semi-elliptical crack that can envelop the two cracks can
be equivalent to one crack. Figure 6 shows the multiple crack equivalent characterization
method [40].
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The stress intensity factor and crack depth at the crack front of a collinear double
crack can be calculated with the interaction technique of ABAQUS-FRANC3D. Table 2
shows the equivalent crack depth under a different initial crack depth and tip spacing. The
above response surface and the corresponding test data points are represented as shown in
Figure 7. Figure 7 shows that there is a certain correlation between αe, α0 and Rs. In this
study, a polynomial response surface is used to construct the relationship between the three
based on the test data. The overall trend of the test data points and the response surface
is consistent.

Table 2. Relevant test data between αe, α0 and Rs.

α0/mm Rs αe/mm α0/mm Rs αe/mm

1 0.5 1.2948 3 0.33 3.348
1 1 1.6284 3 0.5 3.5868
1 1.5 1.9169 3 0.66 3.8187
1 2 2.2819 3 0.83 4.174
1 2.5 2.6597 3 1 4.41
1 3 3.06 4 0.25 4.271
2 0.5 2.437 4 0.375 4.4913
2 1.5 2.682 4 0.5 4.681
2 1 3 4 0.625 4.8997
2 1.25 3.364 4 0.75 4.8
2 1.5 3.79

Third order polynomial with cross terms is used to fit the above data

αe = 1.814 − 1.519α0 − 2.184Rs + 0.8039α0
2 + 3.195α0Rs + 0.8079Rs

2 − 0.0804α0
3

−0.4312α0
2Rs − 0.8022α0Rs

2 + 0.00938Rs
3 (39)
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6. Reliability Calculation

To study the influence of annual traffic growth on the fatigue reliability of the steel
bridge deck, this section analyzes the cases where annual traffic growth is 0%, 1%, 2% and
3%, respectively, while considering the difference between the driving lane and passing
lane on the steel bridge deck. The equivalent stress amplitude Seq and the number of daily
stress cycles Nd of different lanes are corrected accordingly; namely, different variable
distribution parameters are adopted.

Figure 8 shows the fatigue reliability analysis results of the steel deck based on the
MCS method (for driving lane state) for both the traditional single-crack model and the
multicrack coupling effect. Figure 8 shows that when the single-crack model is adopted, the
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fatigue reliability indexes of 0%, 1%, 2% and 3% corresponding to the annual traffic increase
in the bridge design base period (100 years) are 3.88, 3.19, 2.71 and 2.32, respectively.
Considering the coupling effect of double cracks, the fatigue reliability indexes of 0%,
1%, 2% and 3% corresponding to the annual traffic increase are 3.30, 2.63, 2.15 and 1.77,
respectively. Compared with the single-crack model, considering the coupling effect of
double cracks, the fatigue reliability indexes of steel deck all decrease.

In order to verify the computational efficiency of the iHL-RF method and AK-MCS
method in fatigue reliability analysis of steel bridge deck, this study adopts the above
methods to solve the fatigue reliability indexes of steel bridge deck driving lanes when the
annual traffic growth volume αy is 0%, 1%, 2% and 3%, respectively. Figures 9–12 shows
the analysis result. Figures 9–12 shows that both the iHL-RF method and AK-MCS method
can efficiently solve the fatigue reliability problem of steel bridge decks, and the errors
are within the acceptable range of engineering. To further compare the computational
efficiency of the iHL-RF method and the AK-MCS method, the reliability results of the
single crack and multicrack under different working conditions are shown in Tables 3 and 4.
The AK-MCS method has a great reduction in the number of function calls compared with
the iHL-RF method in both single-crack and double-crack cases, and the estimated relative
error is less than 2% in all cases.
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Figure 13 shows the fatigue reliability analysis results of the steel bridge deck based on
the MCS method (for passing lane state). Figure 13 shows the reliability of the single-crack
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model and the multicrack coupling effect model when the annual flow growth rate is
0%, 1%, 2% and 3%, respectively. The fatigue reliability index when the bridge reaches
the design base period (100 years) is superior to the target fatigue reliability index of 1.5.
Compared with the single-crack model, considering the coupling effect of double cracks,
the fatigue reliability indexes of steel decks all decrease.

In order to verify the computational efficiency of the iHL-RF method and AK-MCS
method for steel bridge deck fatigue reliability analysis (passing lane state), this paper
adopts the above methods to solve the fatigue reliability indexes of the steel bridge deck
passing lane with annual traffic growth of 0%, 1%, 2% and 3%, respectively. Since the
equivalent stress amplitude and the number of daily stress cycles of the passing lane are
smaller than that of the driving lane, the failure probability of the passing lane within about
100 years is relatively small. Therefore, longer service lives are used to analyze the reliability
of passing lanes, which are 180, 200, 220, and 240 years, respectively. Figures 14–17 show
the analysis results. It can be seen that the accuracy and effectiveness of the iHL-RF method
and the AK-MCS method can be effectively verified under the passing lane conditions. To
further compare the computing efficiency of the iHL-RF method and the AK-MCS method,
Tables 5 and 6 show the calculation results. The results of the two methods are similar
to those under driving lane conditions. Compared with the iHL-RF method, the number
of calls to performance functions with the AK-MCS method is crucially reduced, and the
estimated relative errors in all cases are less than 2%.
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Figure 13. Fatigue reliability analysis based on MCS (passing lane). (a) Single crack. (b) Double cracks.

Table 3. Fatigue reliability analysis results of single crack (driving lane).

Conditions
MCS iHL-RF AK-MCS

β β Ncall β Ncall

n = 40, αy = 0% 5.42 5.45 328 5.42 121
n = 40, αy = 1% 5.24 5.14 306 5.27 156
n = 40, αy = 2% 4.90 4.88 302 4.90 188
n = 40, αy = 3% 4.66 4.66 286 4.66 156
n = 60, αy = 0% 4.76 4.75 300 4.76 212
n = 60, αy = 1% 4.32 4.31 278 4.32 247
n = 60, αy = 2% 3.96 3.96 274 3.96 259
n = 60, αy = 3% 3.67 3.67 272 3.68 129
n = 80, αy = 0% 4.27 4.26 278 4.27 206
n = 80, αy = 1% 3.70 3.69 272 3.70 186
n = 80, αy = 2% 3.27 3.27 262 3.27 143
n = 80, αy = 3% 2.93 2.92 252 2.93 157

n = 100, αy = 0% 3.88 3.88 274 3.88 125
n = 100, αy = 1% 3.19 3.19 252 3.19 143
n = 100, αy = 2% 2.71 2.70 252 2.71 162
n = 100, αy = 3% 2.33 2.32 254 2.33 179
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Table 4. Fatigue reliability analysis results of double cracks (driving lane).

Conditions
MCS iHL-RF AK-MCS

β β Ncall β Ncall

n = 40, αy = 0% 4.84 4.83 346 4.83 104
n = 40, αy = 1% 4.55 4.52 324 4.54 122
n = 40, αy = 2% 4.29 4.27 324 4.29 127
n = 40, αy = 3% 4.07 4.05 310 4.07 135
n = 60, αy = 0% 4.16 4.15 302 4.17 153
n = 60, αy = 1% 3.72 3.71 294 3.73 125
n = 60, αy = 2% 3.38 3.36 286 3.38 139
n = 60, αy = 3% 3.09 3.08 276 3.10 154
n = 80, αy = 0% 3.67 3.66 282 3.68 129
n = 80, αy = 1% 3.12 3.10 276 3.12 153
n = 80, αy = 2% 2.70 2.69 276 2.70 171
n = 80, αy = 3% 2.36 2.35 270 2.36 185

n = 100, αy = 0% 3.30 3.29 286 3.30 146
n = 100, αy = 1% 2.63 2.61 274 2.62 169
n = 100, αy = 2% 2.15 2.13 266 2.14 193
n = 100, αy = 3% 1.77 1.76 260 1.77 112
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Figure 16. Single-crack fatigue reliability analysis based on AK-MCS (passing lane). (a) Reliability
calculation results, (b) Estimation error.

Table 5. Fatigue reliability analysis results of single crack (passing lane).

Conditions
MCS iHL-RF AK-MCS

β β Ncall β Ncall

n = 180, αy = 0% 5.49 5.62 346 5.49 156
n = 180, αy = 1% 4.58 4.56 286 4.58 162
n = 180, αy = 2% 3.94 3.93 274 3.93 161
n = 180, αy = 3% 3.48 3.47 270 3.48 138
n = 200, αy = 0% 5.37 5.44 342 5.37 164
n = 200, αy = 1% 4.33 4.30 278 4.33 197
n = 200, αy = 2% 3.65 3.64 272 3.65 136
n = 200, αy = 3% 3.18 3.17 252 3.17 147
n = 220, αy = 0% 5.29 5.29 326 5.30 172
n = 220, αy = 1% 4.08 4.07 274 4.07 189
n = 220, αy = 2% 3.39 3.38 252 3.39 142
n = 220, αy = 3% 2.90 2.89 252 2.90 172
n = 240, αy = 0% 5.24 5.14 322 5.24 139
n = 240, αy = 1% 3.86 3.85 274 3.86 160
n = 240, αy = 2% 3.15 3.13 252 3.14 148
n = 240, αy = 3% 2.65 2.64 252 2.65 176

Table 6. Fatigue reliability analysis results of double cracks (passing lane).

Conditions
MCS iHL-RF AK-MCS

β β Ncall β Ncall

n = 180, αy = 0% 5.10 5.02 350 5.10 176
n = 180, αy = 1% 4.00 3.99 310 3.99 169
n = 180, αy = 2% 3.38 3.36 286 3.37 152
n = 180, αy = 3% 2.93 2.91 278 2.93 164
n = 200, αy = 0% 4.88 4.85 348 4.87 171
n = 200, αy = 1% 3.75 3.73 304 3.75 184
n = 200, αy = 2% 3.10 3.08 276 3.10 163
n = 200, αy = 3% 2.63 2.62 274 2.64 180
n = 220, αy = 0% 4.73 4.69 346 4.71 178
n = 220, αy = 1% 3.52 3.50 284 3.52 141
n = 220, αy = 2% 2.84 2.82 278 2.84 172
n = 220, αy = 3% 2.36 2.35 272 2.36 193
n = 240, αy = 0% 4.59 4.55 328 4.59 145
n = 240, αy = 1% 3.30 3.28 286 3.30 147
n = 240, αy = 2% 2.60 2.62 258 2.60 185
n = 240, αy = 3% 2.12 2.10 266 2.12 117
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Figures 13–17 show the fatigue reliability of steel bridge deck decreases with the
increase in annual traffic volume, whether it is the driving lane or passing lane. Compared
with the single-crack model, considering the coupling effect of double cracks, the fatigue
reliability of the steel deck will be reduced to a certain extent. Both the iHL-RF method and
the AK-MCS method can effectively solve the above fatigue reliability analysis problems.
The performance function for calculating the reliability of bridge deck panels is quite
complex. Using the AK-MCS algorithm to calculate the fatigue reliability of steel bridge
decks can effectively reduce the number of calls to the performance function.

7. Conclusions

This study focuses on the fatigue reliability analysis of orthotropic steel decks. A
fatigue reliability analysis model considering the coupling effect of multiple cracks and the
randomness of vehicle load is established. The iHL-RF method and AK-MCS method for
fatigue reliability analysis are developed to solve the problem that the finite element model
analysis of random traffic flow takes time consumption. Considering the load difference
of steel bridge decks under two working conditions, the fatigue reliability of steel bridge
decks is analyzed, respectively. The main conclusions are as follows:

(1) Compared with the traffic lane, the equivalent stress amplitude Seq and the number
of daily stress cycles Nd of the passing lane are smaller. The fatigue reliability of the passing
lane on the steel bridge deck is higher under the same working conditions (annual traffic
increase and service time).

(2) Compared with the single-crack model, the fatigue reliability of steel decks will be
significantly reduced, considering the coupling effect of double cracks. The main reason is
that when the coupling effect of double cracks is considered, the threshold item ψ(αc, α0)
in the fatigue reliability function is relatively small, which leads to an increase in the
probability of fatigue failure of steel bridge decks. When the design life reaches 100 years
and the annual traffic growth amount αy = 3%, the multicrack fatigue reliability of the steel
bridge deck driving lane is lower than 2.

(3) The annual traffic increase αy has a crucial influence on the fatigue reliability of
steel bridge decks. For the driving lanes, the reliability difference between annual traffic
growth αy = 1% and αy = 3% after 100 years of service is 1.55 (single crack) and 1.53 (double
crack). For the passing lane, the difference in reliability between annual traffic growth
αy = 1% and αy = 3% after 240 years of service is 2.59 (single crack) and 2.46 (double crack).

(4) The MCS, iHL-RF and AK-MCS methods can effectively solve the above fatigue
reliability analysis problems. However, considering the calculation efficiency, iHL-RF and
AK-MCS can effectively reduce the number of function calls and ensure calculation accuracy.
When the performance function involves a complex and time-consuming finite element
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analysis process, AK-MCS can well balance the computational efficiency and calculation
accuracy of fatigue reliability analysis.
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Nomenclature

α fatigue crack size βu
reliability index corresponding to the
failure probability

N number loading cycles Φ(·) standard normal cumulative distribution function
C fatigue growth correlation coefficient u* design point in standard normal space
m fatigue growth correlation coefficient u random variable in a standard normal space
∆K amplitude of stress intensity factor k number of iterations

Seq
equivalent stress amplitude under varying
amplitude load

d search direction

Y
geometric function considering the crack shape of
the member

λ search step

αN
crack size of the in-service structure after N
stress cycles

▽g(u) gradient vector of the function

ψ(αc, α0)
fatigue damage accumulation function from the
initial crack size to the critical crack size

m(·) value function

ψ(αN, α0)
damage accumulation function from the initial crack
size α0 through N stress cycles to αN

c penalty parameter

Nd number of daily cycles of stress f (x) polynomial function variable
n service life of the bridge β regression coefficient vector

Y0
boundary correction factors for the reference stress
intensity factor

ξ(x) random process

Ye
boundary correction factors for the reference stress
intensity factor

R(θ, xi, xj) correlation

αe
crack depth of collinear double crack considering the
coupling effect equivalent to a single crack

θ parameter variable

T plate thickness F regression coefficient matrix of the training sample
Rs collinear double-crack spacing ratio R regression coefficient matrix of the training sample
Rs double-crack spacing ratio U(x) consistent with the sign of the actual function
α0 initial crack depth ĝ(x) related to the low confidence bounding function
e wheel track transverse distribution coefficient
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