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This document presents the supporting tables for the main text. Figure S1 presents 

the learning curve for each regressor. Figure S2 shows the mean absolute error of the op-
timised regressors for each target. 
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Figure S1. Learning curves for the random forest regressor predicting three mechanical properties. 
(a) R_1, (b) R_2, (c) R_3, (d) R_4, (e) R_5, (f) R_6, (g) R_7, (h) R_8, and (i) R_all. 
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Figure S2. Mean absolute error of prediction of each target for optimised models. (a) Tensile 
strength, (b) yield strength, and (c) elongation. 

Figure S3 illustrates the Pareto front train using each class-based regressor and re-
gressor trained on the entire dataset. Figure S4 depicts the hypervolume over the number 
of generations, indicating the convergence of the NSGA-II algorithm. Figure S5, Figure S6, 
and Figure S7 display the predicted concentrations of elements, which are not included in 
the main text, for 𝒫ଵ,  𝒫ଶ, and 𝒫଺, respectively. 
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Figure S3. Pareto front for individual classes optimising for tensile strength and elongation. 

  
(a) (b) 

  

  
(c) (d) 

Figure S4. Hypervolume plot showing the convergence of NSGA-II algorithm for (a) all, (b) Class 
1, (c) Class 2, and (d) Class 6. 
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Figure S5. Predicted alloy concentrations on Pareto front 1. (a) Si concentration, (b) Cu concentra-
tion, (c) Fe concentration, (d) Zn concentration, and (e) Zr concentration. 
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Figure S6. Predicted alloy concentrations on Pareto front 2. (a) Ag concentration, (b) Co concentra-
tion, (c) Cr concentration, (d) Fe concentration, (e) Sc concentration, (f) Si Concentration, (g) V con-
centration, (h) Zr concentration, and (i) Ti concentration. 
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Figure S7. Predicted alloy concentrations on Pareto front 6. (a) Cr concentration, (b) Fe concentra-
tion, and (c) Mn concentration. 

Figure S8 presents the elbow plot using KMeans clustering for Class 1. The figure 
suggests that no additional subclusters are present in Class 1. 
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Figure S8. Elbow method analysis for the optimal K value in Class 1. 


