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Abstract: The continuous evolution of metallic alloys in the automotive industry has led to the
development of more advanced and flexible constitutive models that attempt to accurately describe
the various fundamental properties and behavior of these materials. These models have become
increasingly complex, incorporating a larger number of parameters that require an accurate calibration
procedure to fit the constitutive parameters with experimental data. In this context, machine learning
(ML) methodologies have the potential to advance material constitutive modeling, enhancing the
efficiency of the material parameter calibration procedure. Recurrent neural networks (RNNs) stand
out among various learning algorithms due to their ability to process sequential data and overcome
limitations imposed by nonlinearities and multiple parameters involved in phenomenological models.
This study explores the modeling capabilities of long short-term memory (LSTM) structures, a type
of RNN, in predicting the hardening behavior of a sheet metal material using the results of a
standardized experimental three-point bending test, with the aim of extending this methodology
to other experimental tests and constitutive models. Additionally, a variable analysis is performed
to select the most important variables for this experimental test and assess the influence of friction,
material thickness, and elastic and plastic properties on the accuracy of predictions made by neural
networks. The required data for designing and training the network solutions are collected from
numerical simulations using finite element methodology (FEM), which are subsequently validated
by experiments. The results demonstrate that the proposed LSTM-based approach outperforms
traditional identification techniques in predicting the material hardening parameters. This suggests
that the developed procedure can be effectively applied to efficiently characterize different materials,
especially those extensively used in industrial applications, ranging from mild steels to advanced
high-strength steels.

Keywords: machine learning; material parameter identification; three-point bending; recurrent
neural networks (RNNs); long short-term memory (LSTM)

1. Introduction

In the past few decades, the sheet metal forming industry has faced significant chal-
lenges, including the growing complexity of product geometries, the introduction of new
advanced materials, and the pressing need to reduce design-production cycles [1]. To ad-
dress these challenges, there has been a continuous demand for technological advancements
and research to reach the so-called “first-time right” solution [2]. One promising solution
lies in the integration of machine learning (ML) approaches, which have gained promi-
nence across several industries. The constant evolution of advanced learning algorithms,
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driven by the interplay between the availability of large amounts of data (often referred to
as “big data”) and the exponential growth of computer performance, has revolutionized
problem-solving in engineering fields [3,4]. In the context of sheet metal forming, ML algo-
rithms offer a novel approach in studying topics such as [5,6] classification, detection, and
prediction of forming defects [7–9]; material modeling and parameter identification [10,11];
process classification [12], design, and optimization [13,14].

The automotive industry is one main driver for the development of theoretical and
experimental metal forming technologies [15]. This industry is currently acting to follow
the compelling and widespread efforts in addressing environmental concerns of energy
savings while also ensuring the demanding safety requirements. To achieve these goals,
vehicle manufacturers try to reduce the mass of the products, mainly through the weight
of a vehicle’s structure, by using lighter and stronger materials, such as advanced high-
strength steels (AHSS) [16,17]. Nevertheless, springback is more pronounced in these
materials than in conventional steels due to their unique material properties, which lead
to additional processing difficulties and costs for industrial applications [18]. To take ad-
vantage of the promising properties of AHSS, finite element analysis (FEA) of sheet metal
forming processes has become indispensable for predicting and optimizing the product’s
manufacturing process. In this context, the accuracy of sheet metal forming simulations by
FEA is highly affected by the constitutive models chosen to represent the material behavior.
This behavior normally includes four independent but interconnected phenomena [19]:
(a) the elastic behavior and its influence on springback; (b) the yield criteria; (c) the forming
limits; and (d) the hardening model. Regarding the hardening laws, the major develop-
ments include the study of the strain rate effects [20], the distortional hardening [21] and
the kinematic hardening [22] through the description of the tension–compression stress
differential (SD) [23], the Bauschinger effect, the work-hardening stagnation [24], and
the permanent softening [25]. Recent advances in this topic have led to the increased
complexity of modern constitutive models with additional empirical parameters, making
the calibration procedure more difficult and time-consuming, particularly when multiple
experimental tests are required [26].

Due to the limitations imposed by nonlinearities and multiple parameters in the consti-
tutive models, several authors have been using ML, including deep learning (DL) networks,
as a meta-modeling technique, not only for material parameter inverse identification [27–30]
but also for the development of accurate alternative data-driven constitutive models [31,32].
The latter represents a higher level of machine learning integration into constitutive model-
ing, in which the relationships between stress and strain are learned purely from data with-
out incorporating any prior preconceptions, knowledge, or analytical formulations [33–35].
Huber et al. [36] developed a neural network for identifying material parameters in a
finite deformation viscoplasticity model with static recovery. Their study demonstrated
that neural networks can identify meaningful material parameter sets, enabling accurate
predictions of experimentally observed material behavior, even under complex loading
histories. Ktari et al. [37] performed parameter identification for anisotropic thin-walled
tubes using the ring hoop tensile test coupled with neural networks. The findings were val-
idated through finite element simulation results. Yao et al. [38] explored a rate-dependent
model integrating plasticity and damage. The authors utilized a hybrid approach, merging
neural networks with genetic algorithms for parameter identification, focusing on tensile
experiments. Morand and Helm [39] proposed multiple parallel-trained multi-layer percep-
tron (MLP) models to predict hardening model parameters from stress–strain curves. The
authors opted for this approach due to the non-uniqueness of the solutions to the problem,
concluding that a single MLP model is inadequate for such a complex task.

Recurrent neural networks (RNNs), known for their effectiveness in modelling se-
quential tasks, can be especially helpful for modeling path-dependent plasticity, as recently
demonstrated by different authors [40–44]. In contrast with feed-forward neural networks
(FFNNs), RNNs are designed to handle time sequences and effectively incorporate data
from previous inputs in future predictions due to extra history-dependent hidden states
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presented in the network structure. The architecture of RNNs, being based on recursive
operations, is especially suited to model time or order sequences, such as plastic strains
and back stresses in physics-based plasticity. In order to model path-dependent plasticity,
Mozaffar et al. [44] developed an RNN that uses the time history of the strain field as an
input and the corresponding stress field as an output. The authors concluded that the
RNN presents superior performance in predicting complex history-dependent plasticity
when compared to the conventional FFNNs. In addition to these results, the architecture
of RNNs is more complex, and it requires generating high volumes of data for training.
Guo et al. [45] created a deep learning model for constitutive parameter identification
combining convolutional neural networks (CNNs) to filter input data noise with a long-
short term memory (LSTM) neural network, a specific type of RNN. This model identified
elastic parameters (Young’s modulus and Poisson’s ratio) and parameters of an exponential
hardening law from uniaxial tensile test results, incorporating strain fields, load history,
and geometry information from a specific sample region.

Cruz et al. [46] explored the use of ML algorithms in the form of feed-forward neural
networks to model different problems associated with sheet metal processing and material
characterization being one problem related to the identification of constitutive parameters.
The authors utilized the results of a standard three-point bending test, specifically the
punch force–displacement curve, to conduct the mechanical characterization of a metallic
sheet material, determining the parameters for the Swift hardening curve given by:

σ = K(ε0 + εp)
n, (1)

where σ is the true stress, εp is the plastic true strain, and K, ε0 and n are material param-
eters known as the strength coefficient, strain offset, and the strain hardening exponent,
respectively. The results exhibit strong agreement with simulation and reference models,
accurately predicting material parameters.

However, the proposed solution based on FFNNs considers only a few data points
of the curves obtained from the available three-point-bending tests to prevent an increase
in the network’s complexity. Specifically, the authors selected only five representative
points from the available punch displacement curves, leading to the underutilization of
the information acquired during the test. This under-sampling approach may lead to the
oversight of critical features and essential patterns within the curve that can be important
to correctly characterize the material behavior. Therefore, considering the results of a three-
point bending test in a more comprehensive deep learning approach based on recurrent
neural networks can be a major advantage to enhance the accuracy of parameter predictions.

This study aims to advance the use of machine learning techniques for identifying
material constitutive parameters, specifically by evaluating the application of RNNs in
material parameter identification using a three-point bending test, considering the potential
for extending this methodology to other applications and constitutive models. Additionally,
the study aims to expand the scope of application by incorporating material parameters that
were not previously considered, including the strain offset, ε0, the elastic modulus, material
thickness, and test conditions. The objective is to explore the impact of these factors on
the predictions made by neural networks. Accordingly, several sections are defined in
this article. Section 2 briefly describes recurrent neural networks, highlighting their major
advantages and disadvantages, as well as existing structure variations. Section 3 presents
the AHSS materials used in this article along with their experimental characterization of the
hardening law using the standard uniaxial tensile test. Additionally, the three-point bending
test is introduced, along with a brief study based on numerical results of the influence of
fundamental variables on the test result. This analysis forms the basis for selecting the
dataset used to train the developed RNNs. Section 4 outlines the implementation of the
LSTM models, explaining design choices, the training process, and hyperparameter tuning
aimed at optimizing the network’s accuracy. Finally, Section 5 analyzes and discusses the
results derived from the trained LSTM.
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2. Recurrent Neural Networks

Recurrent neural networks (RNNs) are a powerful class of supervised machine learn-
ing models specifically designed to handle sequential data and time-series analysis. Unlike
feedforward networks (Figure 1a), which propagate information through the network in
a unidirectional manner without loops, RNNs (Figure 1b) incorporate cyclic connections,
enabling them to process information and memorize dependencies in sequential data by in-
corporating insights from previous inputs, x0:t−1, and not only the current input, xt [47,48].
This memorization capability enhances the versatility of RNNs, making them essential
for various applications, including natural language processing tasks [49,50] and speech
recognition applications [51–53].

(a) (b)
Figure 1. Network structure of a (a) feed-forward neural network (FFNN) and (b) recurrent neural
network (RNN).

RNNs are composed of a hidden layer that can be “unfolded” into several high-
dimensional hidden states with non-linear dynamics, forming the network’s memory of
previous states. This unfolding technique allows RNNs to be trained using backpropagation
through time (BPTT), where a consistent set of weights is applied to a layer over different
timesteps. At time step t, the hidden state is denoted as ht ∈ Rn×h and the input as
xt ∈ Rn×d, where n represents the number of samples, d the number of inputs for each
sample, and h the number of hidden units. The trained parameters during the BPTT include
the weight matrix W xh ∈ Rd×h, the hidden-state-to-hidden-state matrix Whh ∈ Rh×h,
and the bias parameter bh ∈ R1×h. These elements form the basic structure of the recurrent
neural network. The information from the hidden state and input at each time step
undergoes transformation through an activation function ϕ, often a logistic sigmoid or tanh
function, which is crucial for preparing the gradients in the subsequent BPTT algorithm [47].

Using the presented notation, the hidden state, ht, can be defined by Equation (2),
while the output variable, yt, can be determined by Equation (3) [54]:

ht = ϕ(Whhht−1 + W xhxt + bh). (2)

yt = ϕ(Whyht + by). (3)

Training RNNs presents diverse challenges as the memory formed by recurrent connec-
tions can be significantly constrained by the training algorithms employed. Additionally,
RNNs face gradient vanishing and exploding problems during the training phase, lead-
ing to the network’s failure to capture long-term sequential dependencies in data. These
problems are characterized by the size of the gradient throughout the training process.
When the gradient is too small, it continues to decrease, updating the weight parameters
until they become insignificant. When that occurs, the algorithm is no longer learning.
On the other hand, exploding gradients happen when the gradient becomes excessively
large, leading to an unstable model. In such cases, the model weights grow uncontrollably,
compromising the network’s stability and undermining effective learning [55].
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Long-Short Term Memory

Different modified versions of recurrent neural networks have been proposed to
enhance the recall of past data stored in memory. Long short-term memory (LSTM) [49]
stands out as one of the most popular and efficient methods for reducing the effects of
vanishing and exploding gradients. This approach transforms hidden units into “memory
cells” (Figure 2), enabling the storage of additional information beyond the conventional
neural network flow in structures known as gated cells. These gates control the flow of data
to the hidden neurons and preserve the features extracted from previous times. LSTMs
consists of three main components: the output gate, Ot, input gate, It, and forget gate, Ft.
The input gate regulates the flow of new information into the cell state, while the output
gate controls the information that is exposed to the next layers of the network. The forget
gate is responsible for controlling the flow of information from the previous time step to
the current time step. The computation of these gates is defined by:

Ot = σ(xtW xo + ht−1Who + bo), (4)

It = σ(xtW xi + ht−1Whi + bi), (5)

Ft = σ(xtW x f + ht−1Wh f + b f ), (6)

where W xo, W xi, W x f ∈ Rd×h, and Whi, WhoWh f ∈ Rh×h are weight matrices, bo,
bi, b f ∈ R1×h are the biases, and σ represents the sigmoid function responsible for trans-
forming the gate outputs into the range (0, 1). Additionally, an intermediate memory
component cell is defined, known as the Cell candidate, c′t, which stores and carries poten-
tial new information from the current input (xt) and the previous hidden state (ht−1). The
candidate memory cell can be determined as:

c′t = tanh(xtW xc + ht−1Whc + bc), (7)

where W xc and Whc are weight matrices, bc is the bias term associated with the cell
candidate, and tanh represents the hyperbolic tangent activation function. This information
will be further processed and integrated into the cell state, ct, based on the decisions made
by the input gate and the output gate (Equation (8)). The cell state acts as a conveyor belt,
allowing information to flow unchanged, thus enabling the network to retain long-term
dependencies. Finally, the hidden state, ht is determined based on the cell state and the
output gate (Equation (9)).

ct = Ft ⊙ ct−1 + It ⊙ c′t. (8)

ht = Ot ⊙ tanh(ct). (9)

Figure 2. Network structure of an LSTM: xt represents the input, ht the hidden state, and ct the
cell state.
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3. Materials and Methods
3.1. Materials

The proposed methodology developed in this work was designed to characterize
the hardening behavior of steel materials, ranging from mild to advanced high-strength
steels, with a nominal thickness of tnominal = 0.8 mm. To validate the numerical and
experimental developments, three grades of dual-phase (DP) steel sheets were considered:
DP500, DP600, and DP780. Table 1 presents the measured thickness values for each material.
These measurements were taken using a digital micrometer (Mitutoyo Digimatic) with an
accuracy of 2 µm and a step of 0.001 mm, considering 25 different points of measurement. It
can be seen that the thickness of DP600 steel exceeds the nominal value of 0.8 mm, with an
average thickness of 0.817 mm. On the contrary, the DP500 and DP780 present an average
thickness close to the nominal value.

Table 1. Thickness measurements (average, µ and standard deviation, σ) of DP500, DP600, and DP780
sheet metal samples.

µ σ
[mm] [mm]

DP500 0.802 0.004
DP600 0.817 0.007
DP780 0.801 0.007

Dual-phase steels are a category of AHSS known for their exceptional balance between
strength and ductility. This excellent combination arises from the presence of martensite
islands within a ferrite matrix, resulting in distinctive mechanical properties that make it
suitable for a wide range of applications. The percentage of alloying elements present in
the chemical composition of each material is detailed in Table 2.

Table 2. Chemical composition of the DP500, DP600, and DP780 dual-phase steels.

Element (%) C Si Mn P S Cr Ni V Cu Al Nb B N

DP500 0.079 0.31 0.65 0.003 0.003 0.03 0.03 0.01 0.01 0.038 0.0 0.0003 0.003

DP600 0.089 0.20 0.85 0.014 0.004 0.03 0.03 0.01 0.01 0.046 0.019 0.0003 0.004

DP780 0.138 0.20 1.52 0.011 0.002 0.03 0.03 0.02 0.01 0.038 0.014 0.0002 0.003

Experimental Characterization—Uniaxial Tensile Test

To characterize the hardening behavior of dual-phase steels, experimental uniaxial
tensile tests were conducted according to ASTM E8 standards [56] along the rolling direction.
The specimens were tested at room temperature using an MTS 810 hydraulic testing
machine equipped with a 100 kN load cell. A constant cross speed of 5 mm/min was
selected, resulting in an initial strain rate of 10−3 s−1. For the acquisition of elongation
in the uniform section of the specimen and the corresponding strain evolution, an axial
extensometer (Epsilon Technology, ref: 3542-050M-100-HT2, USA) with an initial gauge
length of 50 mm was used. The resulting true stress–true strain curves for the tested
materials are represented in Figure 3a.

Based on these curves, the hardening behavior was determined using a Swift law
represented by Equation (1). The Swift parameters (K, ε0 and n) were optimized using the
Nelder–Mead method [57], also known as the simplex direct search method. This method
identifies the minimum mean square error (MSE) between the hardening law prediction
and the experimental stress–strain curve obtained from the uniaxial tensile test. Unlike
gradient-based methods, the Nelder–Mead method does not require derivatives of the
objective function and can handle functions with discontinuities. The identified hardening
parameters of the studied materials are summarized in Table 3, and the corresponding
hardening evolution curves are plotted in Figure 3b.
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(a) (b)
Figure 3. Experimental (a) true stress–strain curves and (b) comparison between the equivalent
stress–strain and hardening laws for the different studied materials.

Table 3. Identified parameters for the Swift hardening law based on experimental stress–strain data
for dual-phase steels.

K ε0 n

DP500 865.32 0.0026 0.1530

DP600 1011.01 0.0019 0.1563

DP780 1253.72 0.0001 0.1431

3.2. Three-Point Bending Test

The standard ASTM E290 [58] covers several bending tests used to evaluate the behav-
ior of materials when subjected to bending loads under different boundary conditions. The
most common is the guided-bend test, which uses a three-point bending setup (Figure 4a)
without using a female die. The test is conducted by placing a rectangular specimen
symmetrically on the support fixture mounted to the testing machine. Load is applied
at the specimen’s midpoint until either failure occurs or the predefined angle of bend or
maximum angle for the fixture is achieved. The bending angle is determined during the
test by projecting lines along the specimen’s flat surfaces outside the bend region and
measuring their intersecting angle. After completing the bending test, the curved surface
of the bend is examined to evaluate the presence of cracks or surface irregularities.

For sheet metal materials, the three-point bending test is widely used to evaluate the
springback effect of the tested material. As represented in Figure 4b, the removal of the
tools for a punch displacement, yp, of 20 mm leads to elastic recovery of the material, which
results in different bending angles before, αi, and after, α f , springback. The springback
is entirely intercorrelated with the stress distribution on sheet metal after forming, and
its magnitude is related to the ratio between the residual stress and the elastic modulus
of the material [59]. It is also influenced by material properties such as strain hardening,
elastic property evolution, the presence of Bauschinger effects, elastic and plastic anisotropy,
and tribology between contacting surfaces [60].

One of the main advantages of the three-point bending test is its simplicity. In fact,
this test does not require any special sample preparation, such as machining and can be
easily conducted on a universal tensile testing machine. However, despite its simplicity,
challenges arise due to the involvement of axial and transverse forces in the bending defor-
mation [61]. Additionally, factors such as friction, local deformation beneath the contact
points [62], and the determination of the stiffness of the testing system [63] can affect the
results. Interpreting the raw experimental data, normally represented as punch displace-
ment (yp) and punch force (Fp), and converting it into a stress–strain (σ − ε) response
typically involves the use of inverse fitting models [64–66] or analytical approaches [67].
These methods require accurate modeling of the test setup, often involving predetermined
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hardening models and iterative optimization loops. This strategy can be time-consuming,
particularly when multiple experimental tests are performed. Therefore, the methodology
proposed in this article, based on LSTMs, aims to overcome this limitation by determining
the stress–strain behavior of a given material using only the results of the three-point bend-
ing test. This approach takes advantage of the simplicity of the test, offering an efficient
alternative to traditionally inverse and analytical fitting methods for characterizing the
material’s hardening behavior. The developed LSTM network should consider as input
the punch force–displacement curve obtained in a three-point bending test and provide the
characteristic parameters of a Swift hardening law (Equation (1)).

(a) (b)
Figure 4. Schematic illustration of a (a) three-point bending test setup and the main variables:
support span (V), support radius (Rm), specimen length (L), specimen width (W), specimen thickness
(t), and punch radius (Rp); (b) example of a punch force–displacement (Fp − yp) curve of a sheet
metal material.

3.2.1. Experimental Details

The experimental three-point bending tests were conducted in an Instron 3900-R
universal testing machine equipped with a 1 kN load cell. Detailed information about the
test setup and sample geometry can be found in Table 4. Concerning the test conditions,
the maximum displacement, ypmax was set at 20 mm, and a crosshead speed of 200 mm/min
was employed. During the experimental three-point test, a notable inconsistency is evident
between the predicted and expected elastic moduli of the tested materials. This variation
is attributed to the stiffness (compliance) of the testing machine, which is influenced by
the materials used and the load cell. To address these differences, the determination of the
compliance of the testing system, Ks, is carried out, following the methodology outlined
in [68]. This process involves applying a load to the specimen supported on a rigid surface.
The compliance is then assessed within the linear zone, where the curved region induced
by indentation effects disappears [63]. For the particular experimental setup employed in
this study, the compliance obtained for the test system was Ks = 5335 N/mm.

Table 4. Three-point bending test geometry, test conditions, and sample geometry.

Three-Point Bending Test Geometry Test Conditions

Punch Radius Support Radius Support Span Max. Displacement Test Speed
Rm Rp V ypmax v

4 mm 6.25 mm 50 mm 20 mm 200 mm/min

Sample Geometry

Lenght Thickness Width
L t W

150 mm 0.8 mm 45 mm

3.2.2. Finite Element Model

Finite element modeling (FEM) is crucial in the proposed methodology, acting as a tool
to build the dataset needed to develop and train the LSTMs. The three-point bending test
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can be defined as a plane strain problem in which the blank width is much larger than the
blank thickness. Due to the symmetry of this test, only half of the real experimental setup
was considered in the 2D finite element model. The numerical model was developed using
ABAQUS with implicit analysis (ABAQUS/Standard) [69]. Punch and die were modeled
as fully analytical rigid surfaces, and the blank material was modeled with an elastoplastic
behavior using the Swift law for the hardening curve. The sheet blank was discretized using
819 deformable four-node solid elements (CPE4R type from the ABAQUS Library) and nine
layers through the thickness. For mesh discretization, a regular spacing was employed both
in the thickness and length directions. Coulomb friction was incorporated into the model
with a value of 0.1 [70]. Using this numerical model, a punch force–displacement curve and
the variation in the bending angle during the test are obtained. The corresponding curves
for the studied dual-phase steels (DP500, DP600, and DP780) are represented in Figure 5.
For each material, an experimental curve is also included. The parameters presented in
Table 3 were considered to model the plastic behavior of the dual-phase steels. The elastic
behavior was modeled using Young’s modulus, E, of 210 GPa and a Poisson’s ratio, ν,
of 0.3. The numerical results are consistent with the experiments, validating the proposed
FEA model.

Figure 5. Three-point bending force–displacement curves (Fp − yp) for the studied dual-phase steels
(DP500, DP600, DP780) obtained by finite element analysis, with comparison to experimental results.

3.2.3. Analysis of Fundamental Variables

As highlighted in Section 1, the three-point bending test was used in a previous
study [46] in which feed-forward artificial neural networks were integrated with the
test results to predict the parameters of a well-known hardening curve, the Swift law
(Equation (1)). However, the analysis was restricted to only two variables (K and n) in order
to reduce the dataset size and the complexity of the developed artificial neural network
(ANN). In order to broaden the applicability of the developed methodology, in this section,
the influence of different variables of interest on the results of the three-point bending
test will be evaluated. These variables are associated with material properties, such as
elasto-plastic behavior and material thickness, as well as test conditions. In the analysis,
primarily conducted using numerical results obtained through FEA, a key focus is placed on
assessing the impact of small variations in these variables on the results. This preliminary
study represents a fundamental step in the decision-making process, enabling the informed
selection of inputs and outputs for the ML methodology.

Effect of Swift Hardening Law Parameters

The first variable under analysis is the strain offset parameter, ε0, of the swift hardening
law. To analyze the influence of this parameter on the punch force–displacement results,
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DP500 steel will be used as an illustrative example. Using the numerical model presented
in Section 3.2.2 and the hardening parameters outlined in Table 3, different numerical
simulations were conducted. These simulations considered values of the parameter ε0
ranging from 0.0001 to 0.01 while maintaining the parameters K and n constant at 865.32
and 0.1530, respectively. The resulting punch force–displacement curves (yp-Fp) for each ε0
value are depicted in Figure 6a. As evident in this figure, ε0 has a significant influence on
the bending curve, particularly in the transition between the elastic and plastic zones.

(a) (b)

(c)
Figure 6. Influence of the ε0 parameter on the three-point bending: (a) force–displacement curve
(yp − Fp) (b) equivalent plastic strain (PEEQ) and principal stress fields for a yp = 7 mm, and (c) the
influence of ε0 on the material plastic curve (σ − εp).

Analyzing the stress–strain curves (σ − εp) illustrated in Figure 6c, it becomes evident
that the parameter ε0 exerts a significant influence on the obtained stress value, σ, partic-
ularly at low plastic strain values (εp < 0.10). In contrast, as the strain values increase,
the curves tend to converge, indicating a reduced impact of ε0 on the plastic behavior. In
fact, the levels of strain values obtained in a three-point bending test are low, as illustrated
in Figure 6b. This figure displays both the equivalent plastic strain (PEEQ) and stress fields
in the thickness of the material on the three-point bending test for a punch displacement,
yp of 5 mm. For this instance, the maximum value of equivalent plastic strain is approxi-
mately 0.03. Therefore, upon analyzing Figure 6c at this specific value of plastic strain, it
becomes evident that the corresponding stress value varies depending on the ε0 considered.
Additionally, the yield stress, σy, for εp = 0, varies with different ε0 values, resulting in
distinct behaviors during the elasto-plastic transition of the bending force–displacement
curves. Considering the observed influence of ε0 on the bending curve, especially in the
transition between the elastic and plastic zones (Figure 6a), it becomes evident that the
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developed model should incorporate not only the parameters K and n but also the variable
ε0 in order to achieve a more accurate prediction of the material’s hardening behavior.

Effect of Young’s Modulus

As mentioned in Section 3.1, the methodology developed in this study is specifically
designed for steel materials, with a particular focus on advanced high-strength steels
(AHSS). The elastic properties can vary across different grades of steels, with Young’s
Modulus typically falling between 200 and 210 GPa. In addition, Young’s modulus can
vary with the orientation relative to the rolling direction of the material, as indicated in the
study by Deng et al. [71]. To assess the influence of variations in Young’s modulus on the
three-point bending curves, a sensitivity analysis was conducted using DP500 and DP780
materials. Numerical simulations were carried out, adjusting Young’s modulus within the
range of 190 and 220 GPa while keeping plastic components constant, as specified in Table 3.
The resulting curves for DP500 and DP780 are presented in Figure 7a. Despite uncertainties
in elastic material characteristics, variations in Young’s Modulus were observed to have
a minimal impact on punch force–displacement curves in three-point bending tests. As
expected, the curves closely coincide throughout the test, diverging only in the elastic
regions. Although the modulus of elasticity may not exert a substantial influence on the
curves derived from the three-point test, a detailed understanding of the material’s elastic
properties is crucial to prevent errors when determining the material’s plastic parameters.
Hence, alongside determining the material’s hardening parameters, the methodology
should also conduct a preliminary check to confirm the material’s classification as steel.

Applying the Euler–Bernoulli theory in a plane strain analysis and treating the initial
flat sheet as a beam, the deflection of the sheet, δ, in the elastic region in response to the
punch force, can be determined as:

δ =
FpV3

48E′ I
(10)

where I is the moment of inertia of the specimen, and V is the support span (see Figure 4).
The modulus of elasticity, E′, is slightly different from the uniaxial Young’s modulus, E,
and can be expressed as follows:

E′ =
E

1 − ν2 , (11)

where ν is the Poisson’s ratio. Considering the sheet deflection equal to the punch displace-
ment, δ = yp, the material Young’s modulus can be calculated by:

E =
FpV3

(48yp I)(1 − ν2)
. (12)

This equation enables the calculation of the three-point bending modulus using the
punch force–displacement curve. Using the three-point bending results presented in
Figure 7a for the DP500 and DP780 materials and applying Equation (12), the elastic
bending modulus is shown in Figure 7b for different punch displacement values lower
than yp = 1 mm. It is evident that the obtained modulus, derived from the theoretical
approach, tends to converge toward a constant value that is approximately close to the
expected value. This analytical approach will be the basis of comparison for validating the
predictions generated by the ML approach developed.
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(a) (b)
Figure 7. Representation of (a) the influence of Young’s modulus variations on DP500 and DP780
three-point bending curves and (b) the corresponding elastic bending modulus (Equation (12)).

Effect of Material Thickness

An important source of variability to consider is associated with material thickness.
In the context of sheet metal materials, variations in thickness are common due to the
manufacturing process, resulting in differences in thickness from coil to coil and also from
head to tail [72]. Therefore, it is important to evaluate the impact of these small thickness
variations on the outcomes of the three-point bending test. To address this question,
a sensitivity analysis was conducted using DP600 material as a representative case, aiming
to evaluate the influence of variations in material thickness on the three-point bending
Fp − yp curve. Numerical simulations were carried out for different thicknesses within a
range of ±0.1 mm from the nominal value, resulting in material thicknesses between 0.7
and 0.9 mm, respectively. The corresponding curves for each case are presented in Figure 8a.
The figure illustrates that even minor fluctuations in material thickness can significantly
impact the force–displacement curve. Therefore, it is crucial to consider material thickness
to prevent the potential impact of even minor variations on the predictions made by the
developed neural networks.

(a) (b)
Figure 8. Influence of material thickness in three-point bending curves in the case of DP600: (a) orig-
inal punch force–displacement curves (Fp − yp); (b) corrected punch force–displacement curves
(F∗

p − yp).

Analyzing the stress distribution on the normal section of a sheet bent profile and
considering that the material is strain-hardening according to a Swift law, the equilibrium
equation is deduced using the moment M (see Figure 9), as follows [73]:

M =
∫ t

2

− t
2

σ1 y dy. (13)



Metals 2024, 14, 84 13 of 33

Figure 9. Stress distribution on a normal section in bending, considering a strain-hardening material.

The entire section is assumed to behave under elastoplastic deformation, and stress,
σ1, at some distance, y, from the middle surface is given by:

σ1 = K(ε0 + ε1)
n = K

(
ε0 +

y
ρ

)n
, (14)

where ρ is the radius of curvature of the bending sheet. This equation reduces to the linear
elastic model considering n = 1, K = E′, and ε0 = 0. Therefore, the equilibrium equation
can be written as:

M = 2K
∫ t

2

0

(
ε0 +

y
ρ

)n
y dy = 2Kρ−n

[
tn+2

2n+2(n + 2)
− ε0tn+1

2n+1(n + 1)

]
. (15)

Simplifying the terms, the following equation can be defined for bending a non-linear
material:

M
In

= 2Kρ−n, (16)

where In represents the second moment of area for a unit width of sheet, which is given by:

In =
tn+2 − 2ε0tn+1

2n+2(n + 2)(n + 1)
. (17)

Based on these considerations, it is possible to normalize the force–displacement
curves for different material thicknesses relative to the nominal material thickness (tnom)
using a new variable, the corrected punch force (F∗

p ), which can be calculated as follows:

F∗
p = Fp ·

(
It
n

Itnom
n

)
, (18)

where It
n and Itnom

n represent the second moment of area for the case of thickness t (different
from tnom) and nominal thickness, respectively. Therefore, it can be concluded that the
normalized curve depends not only on the material thickness, t, but also on the hardening
parameters n and ε0.

The normalized curves for each thickness of the DP600 material are represented in
Figure 8b. The normalization procedure considers two different conditions. For points
in the elastic regime, up to the point represented by letter A, the second moment of area
was calculated considering the linear elastic model with n = 1 and ε0 = 0. On the
other hand, for points in the plastic regime (i.e., points after the point A, see Figure 8b),
the parameters n and ε0 from Table 3 were considered. This normalization procedure brings
the normalized curves for each thickness into closer alignment with the nominal curve
(tnom = 0.8 mm) both in the elastic and plastic zones. This presents a significant advantage
in this study, allowing the methodology to be applied to materials with slight deviations
from the nominal thickness. Additionally, it reduces the number of virtual cases needed for
numerical simulation, as the generated dataset will only consider material thicknesses of
0.8 mm.
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Effect of Friction

Friction is an inherent aspect of the three-point bending test, with forces emerging at
two locations: at the contact points between the sheet and punch, and between the sheet
and the supports. Friction is characterized by Coulomb’s friction force model, where the
friction force is directly proportional to the normal force and a friction coefficient. While it
is improbable for the friction coefficient to remain constant throughout the process, for sim-
plicity, an average coefficient, µ, is assumed [74]. Nevertheless, accurately determining the
friction coefficient for the three-point bending test poses challenges due to factors such as
the machining quality of the specimen surface and the structure of the supporter during
the test [75]. To analyze the impact of the friction coefficient on the test results, a sensitivity
analysis was numerically conducted using DP steels (DP500, DP600, and DP780). Different
Coulomb friction coefficients, µ, ranging from 0.02 to 0.4, were considered to characterize
the friction between the sheet and the tools. The elastic behavior was defined by a constant
Young’s modulus, E, of 210 GPa and a Poisson coefficient, ν, of 0.3. Plastic behavior was
described using the Swift parameters presented in Table 3. The results for the studied
materials, depicted in Figure 10, highlight a significant impact of the friction coefficient on
the obtained punch force values during the test. As expected, a higher friction coefficient
corresponds to a higher punch force for a fixed displacement value. An interesting point
to analyze is related to the moment when the punch ceases its downward movement and
initiates an upward motion—denoted as point A in Figure 10a.

At this point, the friction force at the points where the sheet touches the supports
changes sign, and as is visible for all materials, the difference between the force between
points A and B is strongly influenced by the coefficient of friction present. Based on the
work of [74], the friction coefficient can be estimated as:

µ =
∆Fsin(90 − α)

2Fmsin(α)
, (19)

where ∆F represents the drop in punch force between points A and B, Fm is the mean value
between FA and FB, and α represents half of the bending angle at position A. Using as an
example the DP500 with an expected friction value of µ = 0.04, the bending angle in point
A is α = 83.83◦, Fm is equal to 232 N, and ∆F of 199 N. These values lead to an estimated
friction value of µ = 0.046, which closely matches the expected value.

To establish the potential range of friction coefficients within the available experimental
setup, three-point bending tests were conducted using dual-phase steels. Two lubrication
conditions were tested: dry and abundant application of lubricant to both the supports
and sheet metal, using Quaker 6130 lubricant. The experimental details, as outlined in
Section 3.2.1, were taken into account. The results for both lubrication conditions are
illustrated in Figure 10d for DP500, DP600, and DP780. As visible, the presence of lubricant
for the experimental setup considered does not significantly change the force values.
Additionally, the drop of force for a punch displacement, yp of 20 mm is approximately the
same for both conditions and is coherent across the three materials. Therefore, a constant
friction coefficient can be assumed. Comparing these values with the reference curve
obtained numerically, it can be observed that the friction coefficient for this experimental
test is near 0.1 regarding the lubrication conditions employed. Consequently, the friction
coefficient will not be considered as a variable of interest to be predicted by the developed
ML model.
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(a) (b)

(c) (d)
Figure 10. Influence of the friction coefficient, µ, on the force–displacement curves of the three-point
bending for (a) DP500, (b) DP600, and (c) DP780; (d) influence of friction conditions (dry and abundant
lubrication) on the experimental three-point bending test results; points A and B in (a) correspond to
the moments when the punch ceases its downward movement and initiates an upward motion.

3.3. Proposed Methodology

Based on the preceding analysis, this study proposes a machine learning framework
based on long short-term memory networks to predict both elastic and plastic parame-
ters of sheet metal materials based on experimental three-point bending test curves. The
methodology employed is schematically depicted in Figure 11. Initially, an experimental
force–displacement curve is obtained through a standardized three-point bending test,
following the test conditions outlined in Section 3.2.1. The acquired experimental data are
then processed, and the force is normalized using Equation (18). This correction ensures
that the force values become independent of small variations in material thickness in rela-
tion to a nominal thickness. Subsequently, a first ML algorithm (ML model—elasticity), based
on LSTM networks, is deployed to evaluate the elastic segment of the force–displacement
curve, ultimately determining the associated elastic parameters, i.e., Young’s modulus (E).
As mentioned earlier, this methodology is specifically tailored for steel materials, where
the hardening behavior is well-described by a Swift law. In the event that the calculated
modulus falls within the range of 190 to 220 GPa, a secondary ML algorithm comes into
play. This secondary algorithm then extracts the corresponding hardening parameters,
providing a comprehensive mechanical characterization of the material. However, if the
calculated Young’s modulus does not fall within this specified range, the algorithm stops,
bypassing the second ML model. In such cases, the algorithm only provides the perti-
nent elastic parameters and alerts the user that the material is not steel, and therefore,
the plastic components will not be calculated. Accordingly, this methodology ensures a
systematic and robust approach to mechanical characterization, particularly tailored to
steel materials and their hardening characteristics. The outlined steps guarantee a compre-
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hensive understanding of the material’s elastic and plastic mechanical behavior, facilitating
accurate predictions.

Experimental
Three−Point
Bending Test

Data Processing

ML Model —
Elasticity

190 ≤ E (GPa) ≤ 220

ML Model —
Plasticity

End

Fp – yp
data

F∗
p – yp
data

Output
Parameters:

E

Yes

No

Output
Parameters:

K, ε0, n

Figure 11. Flowchart illustrating the proposed methodology for predicting elastic and plastic param-
eters of sheet metal materials using experimental three-point bending test curves and RNNs.

The data required to train the ML models was obtained using the numerical model
presented in Section 3.2.2. Python scripts were developed to automatically create and mod-
ify the finite element model, enabling the consideration of different material parameters.
These scripts were also employed to submit the analyses. To extract results from each of the
preceding numerical simulations, an additional Python script was developed. This script
is responsible for extracting fundamental data for the development of LSTMs, including
punch displacement, punch force, bending angle, and material parameters.

Two distinct datasets were considered, one for training the ML model—elasticity
(Section 4.1) and the other for training the ML model—plasticity (Section 4.2). The key
characteristics of both datasets are summarized in Table 5. For the ML model that predicts
Young’s modulus of the tested material, 20 different Young’s modulus values were numeri-
cally considered, equally spaced within E = [70, 250] GPa. For each value, three different
sets of hardening parameters (K, n and ε0) were randomly chosen within the intervals
specified in the table, resulting in 60 distinct virtual materials. The second dataset was
created to have sufficient data to train the ML model responsible for predicting the harden-
ing parameters of steels. Consequently, the elastic parameters were fixed at E = 210 GPa
and ν = 0.3. The plastic parameters were considered to be variable, with the combinations
illustrated in Figure 12, resulting in a total of 637 cases. Thirteen values of K uniformly
distributed within K = [400, 1600] were selected, and seven values of the n parameter were
selected uniformly distributed in the range n = [0.05, 0.35]. For the parameter ε0, seven
cases were considered in the range ε0 = [0.0001, 0.01]. The combination of these three
parameters covers the characterization of the hardening behavior of different types of steel
materials, ranging from mild steels to advanced high-strength steels.
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Figure 12. Combinations of Swift hardening parameters (K, n, ε0) selected to generate the dataset for
training the ML model—plasticity consist of 13 values for the K variable ranging between 400 and 1600
with increments of 100, 7 values for the n variable ranging between 0.05 and 0.35 with increments of
0.05, and 7 values for ε0 {0.0001, 0.0005, 0.001, 0.0025, 0.005, 0.0075, 0.01}.

Table 5. Elastic properties and Swift law hardening parameters considered to develop the ML models.

Properties ML
Model—Elasticity

ML
Model—Plasticity

Elastic Modulus E 50–240 GPa 210 GPa

Poisson Coefficient ν 0.3 0.3

K 400–1600 400–1600
Swift Parameter ε0 0.0001–0.01 0.0001–0.01

n 0.05–0.35 0.05–0.35

4. Long Short-Term Memory Implementation

As mentioned in Section 2, long short-term memory (LSTM) networks are designed
to address various sequence-related problems. In this study, LSTMs are applied to solve
a “sequence-to-one” problem, wherein the model processes an input sequence and gener-
ates a single output at the end of the analysis of the complete sequence. The first model
focuses on predicting the Young’s modulus parameter (ML model—elasticity), while the
second is dedicated to predicting plastic parameters K, n, and ε0 (ML model—plasticity). The
sequential nature of the data obtained from the three-point bending test can be effectively
managed by the LSTM architecture, allowing the model to capture patterns and dependen-
cies within the sequential punch force–displacement curve. The following sections explore
the implementation of LSTM-based models for both ML models, offering insights into the
training process.

4.1. Implementation of ML Model—Elasticity

The data needed to train the model were divided into three separate data sets: training,
validation, and testing. This division ensures that the model learns from a substantial part
of the data (training dataset), validates its performance on cases not seen during training
(validation dataset), and finally, evaluates its generalization (testing dataset). Proportions
of 70%, 15%, and 15% were considered, resulting in 42 cases for training, 9 for validation,
and 9 for testing. Figure 13 shows examples of punch force–displacement curves selected
from the original dataset. The selection is restricted to cases with Young’s moduli of 100
and 220 GPa. In the figure, a color scheme is employed for clarity: grey denotes cases
from the training dataset, black curves represent cases from the validation dataset, and red
curves correspond to cases from the testing dataset.
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The main objective of this ML model is to determine the Young’s modulus of the tested
material. Therefore, it is reasonable to consider only the data points from the initial phase
of the test, where the relationship between force and displacement follows a linear pattern.
Specifically, for each curve derived from numerical simulation, originally comprising a total
of 500 points, 20 points were selected within the punch displacement range of yp = 0 mm
to yp = 2 mm. It is worth noting that, in some instances, these selected points may include
data from the plastic component, as visually demonstrated in Figure 13.

Figure 13. Punch force–displacement curves for cases in the training (grey), validation (black),
and testing (red) datasets, illustrating selected points for ML development within the yp = 0 mm to
yp = 2 mm range.

The development of the ML model and the subsequent training process were imple-
mented using Python code, making use of the robust deep learning library Keras [76] for
LSTM networks. In configuring the LSTM model, a crucial parameter to account for is the
number of hidden units in the LSTM layer. This value corresponds to the dimensionality of
the output space, i.e., the size of the hidden state at a given time step, ht in Equation (9)
and determines the capacity of the model to capture patterns in the sequential data. For
this preliminary ML model developed, as the relationship between variables is essentially
linear, only five hidden units were considered in the LSTM layer. After the LSTM layer,
a dense layer was incorporated to aggregate the output of each hidden unit into a single
output, representing the value of Young’s modulus.

Normalization of data is a fundamental preprocessing step in the development of
ML models. This practice stabilizes and speeds up the training process, ensuring that the
model learns efficiently without being affected by varying scales in the input and output
features. In this context, both input and output variables were normalized to a standardized
range between -1 and 1. The training process employed the Adam optimization algorithm
to minimize the mean square error (MSE) loss function in the validation dataset. The
Adam optimization algorithm is an adaptive learning rate optimization algorithm with
exponential decay. In this case, an initial learning rate of 0.1 is applied and undergoes a
reduction of 0.96 every 100 epochs. The model was trained for a total of 2500 epochs, and
the best-performing epoch on the validation set was selected.

The training curves depicted in Figure 14a demonstrate the convergence of both the
training and validation errors throughout 2500 epochs. Both error curves converge to
a minimized error value, presenting an MSE in the order of 1 × 10−4. This value was
determined with the input and output normalized. Such convergence is indicative of the
model’s robust learning without signs of overfitting.

More information on the model’s performance can be found in Figure 14b, illustrating
the coefficient of determination, R-squared (R2), for the prediction of Young’s modulus.
Notably, the coefficient R2 is approximately one across all three datasets, indicating a high
level of accuracy in the predictions. In the most challenging case, denoted by the letter A,
the obtained relative error is 2.5%, falling within the testing dataset. For this specific case,
the expected Young’s modulus is 220 GPa, and the ML model predicted 214 GPa, which is
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an acceptable deviation. Despite a difference of 6 GPa, this material is still classified as steel,
as the obtained Young’s modulus falls within the admissible range (190 ≤ E(GPa) ≤ 220).

(a) (b)
Figure 14. Training and performance evaluation figures illustrating (a) the convergence of error
curves and (b) coefficient of determination (R2) in the training, validation, and testing datasets.

4.2. Implementation of ML Model—Plasticity

For the identification of the parameters of a Swift hardening law, an alternative LSTM
variant was explored—namely, the Bidirectional LSTM. This choice is justified by the
availability of the complete sequence of curves (Fp − yp) during the predicting phase.
This particular recurrent neural network architecture processes input data bidirectionally,
considering both forward and backward directions. Unlike simpler LSTM models that focus
only on past context, bidirectional LSTMs cover both past and future context, allowing
them to capture more detailed patterns in sequential data. In the context of a three-point
bending test, the punch force–displacement sequence is processed by the bidirectional
LSTM in two passes: one from the beginning of the test (yp = 0 mm) to the end (forward
pass) and another from the end to the beginning (backward pass). The outputs from both
passes are then combined to provide a comprehensive representation of the input sequence.

Considering the dataset presented in Figure 12, comprising 637 cases, three distinct
datasets were created. Following the approach of the previous ML model, the data were
randomly divided into training, validation, and testing sets with a distribution of 70%,
15%, and 15%, respectively. This division resulted in 446 cases for the training dataset,
along with 95 cases each for the validation and testing datasets, as shown in Figure 15. As
mentioned earlier, each curve in the dataset is structured with a total of 500 discrete points
for punch force and displacement. To streamline the data and minimize time spent during
the training process, each curve is uniformly sampled to include a total of 100 points. The
chosen number of points reflects a balance between the expressive capacity of the curve
without loss of relevant information and the associated computational costs.

The hyperparameter tuning process is crucial for optimizing the performance of any
ML model. In this context, hyperparameters are parameters whose values cannot be
learned from the data. Fine-tuning these hyperparameters is essential to optimize the
model’s overall effectiveness and generalization capabilities of the algorithm. Two different
hyperparameters were considered for this model: the number of units of the bidirectional
LSTM and the decay steps. The range of variability for these hyperparameters is shown in
Table 6, along with the fixed training parameters. A Bayesian optimization strategy [77] was
applied to systematically explore and identify the optimal hyperparameter configuration.
Multiple runs were considered, and the best performance was achieved with a total of
40 hidden units in the bidirectional LSTM and 3670 decay steps. Although each run was
trained for 50,000 epochs, the final model prioritizes the network weights associated with
the lowest error in the validation dataset.
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(a) (b) (c)

Figure 15. Distribution of cases in (a) training dataset (grey color), (b) validation dataset (black
color), and (c) testing dataset (red color), resulting from the random division of the complete dataset
(637 cases).

The results for the best model are presented in Figure 16. This figure shows the
coefficient of determination, R-squared (R2), for each variable (K, ε0 and n) split in each
dataset (training, validation, and testing). Both the true values and the predictions are
represented as normalized values. Similar to the previous model, both inputs and outputs
have been normalized within the range [−1, 1]. By analyzing the results, it can be observed
that, overall, the R-squared values are close to 1 for all variables across the three datasets.
As anticipated, the model demonstrates higher performance on the training dataset with an
R2 of 1 compared to the validation and testing datasets, which present lower values. When
comparing the prediction of the three variables, it is noticeable that the parameter ε0 has
the lowest R-squared value in the testing dataset (Figure 16f), registering 0.987. This could
be related to the limited number of cases in the original dataset, as only seven values for ε0
were considered within the range of [0.01 to 0.0001]. Improving the prediction performance
may involve generating more data distributed across the specified range. The variable
n also shows some values outside the expected range, particularly in the testing dataset
(Figure 16i).

In each dataset, three different cases are highlighted, denoted by the letter W. For
instance, in the training dataset (Figure 16a,d,g), cases WK, Wε0 , and Wn represent the
instances with the worst performance for the variables K, ε0, and n, respectively. These
instances are characterized by higher absolute errors between the predicted values and the
true values. It is noteworthy that for the validation dataset, the worst cases for n and ε0
correspond to the same instance. These specific cases will be further examined in the next
section to conduct a more detailed analysis of the model’s performance.

Table 6. Summary of training parameters

Training Parameters

Parameter Value/Range

Number of Units [10, 80]
Optimizer Adams
Learning Rate 0.1
Decay Steps [500, 5000]
Batch Size 64
Decay Rate 0.96
Epochs 50,000
Hyperparameter Tuner Bayesian Optimization
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 16. Coefficient of determination (R-squared) for each dataset (training, validation, and testing)
across (a–c) variable K, (d–f) variable ε0, and (g–i) variable n.

5. Results
5.1. Results for the ML Model—Elasticity

Based on the best model presented in Section 4.2, this section provides additional
results with three new virtual materials to complement the analysis of the predictive capa-
bilities of the ML model—elasticity. For that, the three-point bending test was numerically
simulated for the three new virtual materials, denoted as VM1, VM2, VM3, with Young
modulus values of 75, 215, and 22 GPa, respectively. These elastic parameter values were
not included in the original dataset used for developing the ML model, which means that
the trained model was not exposed to such values during its training and testing phase. For
each virtual material (VM1, VM2, VM3), the plastic parameters (K, ε0, and n) were randomly
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selected from the admissible range presented in Table 5. The corresponding values for each
virtual material are summarized in Table 7. Based on these elastic and plastic parameters,
the three-point punch force–displacement curves represented in Figure 17 were obtained
by FEA. For each curve, twenty points up to a punch displacement of yp = 20 mm were
considered as input for the trained ML model and are also represented in the figure. The
Young’s modulus predicted by the trained LSTM is summarized in Table 7. The results
demonstrate good accuracy, as the predicted values closely match the true values, with a
relative error consistently below 3% for the additional virtual materials. This high level of
accuracy is indicative of the model’s robust generalization capability, performing well not
only on materials of the original dataset but also on new randomly created materials. Addi-
tionally, it can be concluded that the prediction is independent of the plastic parameters of
the material since these values were randomly selected both in the training dataset and in
these additional cases. Even though, for some materials, the 20 points chosen contain points
outside the elastic regime, the ML model can effectively predict the respective modulus
of elasticity of the material. Following the intended approach of using the ML presented
in Figure 11, in this case, only the virtual material VM2 would be considered as steel and
advance to the next stage.

Table 7. Plastic parameters (K, ε0, n) randomly chosen for virtual materials (VM1, VM2, VM3) and
their corresponding Young’s modulus (E ) predictions by the ML model, along with a comparison to
the true values.

Swift Parameters Young’s Modulus (E)

Material K ε0 n True Values (GPa) Prediction (GPa) Relative Error

VM1 1020 0.007 0.23 75.00 75.91 1.21%
VM2 10111 0.0019 0.16 215.00 215.07 0.03%
VM3 1150 0.0032 0.32 225.00 221.68 1.48%

Figure 17. Three-point bending punch force–displacement curves obtained by FEA for virtual
materials VM1, VM2, and VM3 with Young’s modulus (E) values of 75, 215, and 225 GPa, respectively.

5.2. Results for the ML Model—Plasticity

Based on the best model presented in Section 4.2, this section provides additional
results to complement the analysis of the predicted capabilities of the ML model—plasticity.
Figure 18 illustrates the overall relationship between the three targets (K, ε0, and n) and the
obtained predictions for the entire dataset (637 cases) used in the development of this model.
In each graph, points marked with a blue star represent the predictions obtained by the
developed model, and the circles represent the true/expected values. In this representation,
the Swift parameters (K, ε0, and n) are shown in non-normalized values. It is visible that the
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majority of cases exhibit a close alignment between predictions and true values, particularly
evident in the training dataset. However, in some instances within the validation and testing
datasets, there is a slight deviation between predictions and true values.

(a) (b) (c)

Figure 18. Schematic representation of the comparison between the target (circles) and the prediction
(blue stars) for (a) the training dataset (grey color), (b) the validation dataset (black color) and (c) the
testing dataset (red color).

In order to quantify the worst cases and assess the influence of the prediction on the
resultant Swift curve, the instances labeled as W introduced in Figure 16 were analyzed
and are represented in Figure 19. The corresponding true stress–strain (σ − εp) curve for
each worst case, within a true strain range of εp = [0, 0.2], is presented in Figure 19a–c
for the training, validation, and testing datasets, respectively. Additionally, an example
of a case with an accurate prediction result is shown for each dataset (Best|Train, Best|Valid,
and Best|Test). For each case, two different stress–strain curves are presented: one obtained
considering the true parameter values (solid line), and the other using the parameters
predicted by the developed ML model (dashed/dotted lines). To better quantify the errors
between the stress values calculated using Swift parameters predicted by the ML model and
the true values, Figure 19d–f display the true stress error, ∆σ, for the cases belonging to the
training, validation, and testing datasets, respectively. The true stress error is determined
by the difference between the stress calculated by the ML model and the target value of
stress (∆σ = σLSTM − σtarget) for each value of plastic strain, εp.

Analysis of the best cases in the three datasets (Best|Train, Best|Valid, and Best|Test)
indicates that the predicted curves closely align with the target curve for the considered
range of plastic strain, exhibiting a stress error lower than approximately 5 MPa in all
datasets. This error value can be representative of the majority of the total number of cases,
as depicted in Figure 20. This figure includes both the histogram of the maximum absolute
stress error, |∆σ|max, (Figure 20a) and the corresponding quartile analysis (Figure 20b).
The maximum absolute stress error, |∆σ|max, corresponds, for each case, to the maximum
absolute difference in stress values determined between a plastic strain, εp, of 0 and 0.2.
The quartile analysis shows that 75% of the total number of cases (75th percentile Q3)
present a maximum absolute stress error lower than 5 MPa. Additionally, 97% of the cases
present a maximum absolute stress error lower than 9.3 MPa, which in this context can
be considered completely acceptable. As evident from the analysis, 24 outliers have been
identified, with the histogram revealing that these cases are primarily from the validation
and testing datasets. Despite the existence of these outliers, they just represent 3% of all
cases, with the maximum absolute stress error never exceeding 30 MPa. This result suggests
that the proposed ML model, based on LSTMs, is capable of accurately determining the
Swift parameters for the majority of cases in the dataset. Additionally, the chosen LSTM
structure—specifically, one bidirectional LSTM layer with 40 hidden units—seems to be
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adequate for capturing the patterns in the sequential data and establishing correlations
between these patterns and the corresponding hardening parameters.

(a) (b) (c)

(d) (e) (f)

Figure 19. Comparison of predicted (dashed/dotted line) and expected (solid line) true stress–strain
curves (σ − εp) for cases WK , Wε0 , and Wn for the training (a), validation (b) and testing (c) datasets
and respective true stress errors, ∆σ, for the training (d), validation (e) and testing (f) datasets;
Best|Train, Best|Valid and Best|TestBest|Train are examples of cases with an accurate prediction result.

The worst cases (WK, Wn, and Wε0) across the three datasets reveal potential outliers
in the predictions. In the training dataset, the highest stress error, Figure 19a,d, occurs
for the case WK|Train at a plastic strain value of εp = 0.2, presenting a maximum absolute
stress error of approximately 10 MPa. Therefore, as indicated in Figure 20b, this case is
considered an outlier. The expected K value for this case is 1000, and the predicted value is
971.56, resulting in a relative error below 3%. On the other hand, the worst cases, Wn|Train
and Wε0|Train, can be considered accurate results, as the maximum absolute stress error is
below 5 MPa.

For the validation dataset, as illustrated in Figure 19b,e, the worst case is again the one
that considers the maximum absolute error in the prediction of the K parameter, WK|Valid.
The expected K value for this case is 1600, and the predicted value is 1661.31, resulting in a
relative error in the prediction of approximately 3%. This difference leads to a maximum
absolute stress error value of 23 MPa for a plastic strain value of εp = 0.2. Consequently,
as illustrated in Figure 20, this case stands out as the most extreme outlier in the prediction,
meaning that all the other cases exhibit superior performance. As mentioned earlier, for the
validation dataset, the worst cases, Wn|Valid and Wε0 |Valid, are the same, meaning they have
the same hardening parameters. Similar to the training dataset, this case can be considered
a good result, as the stress error falls within the acceptable range of ±5 MPa.

Finally, for the testing dataset, as depicted in Figure 19c,f, the maximum stress errors
for the cases WK|Test, Wn|Test and Wε0 |Test are similar and closer to 10 MPa. Once again,
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the parameter K contributes the most to the increase in the stress error, which, in this case,
represents an outlier, as represented in Figure 20b. From this analysis, it can be concluded
that the K parameter has the greatest influence on the maximum stress error obtained. It
should, therefore, be the parameter with the lowest prediction error in order to minimize
the stress errors. An analysis of the performance graphs presented in Figure 16 confirms
that this variable is, in fact, the best performer in this methodology, with an R2 very close
to unity.

Although the prediction of the parameters ε0 and n is not as accurate as for the
parameter K, it can be concluded that the influence of the prediction errors obtained for
these parameters does not have a notable impact on the final stress–strain curve. The worst
cases for these two variables (Wε0 and Wn) exhibit errors of less than 10 MPa for the
three datasets, suggesting absolute stress errors similar to the majority of the total cases.

An important aspect to highlight is the value of stress for a plastic deformation of zero,
i.e., the yield stress, obtained by the ML approach. This value is generally well determined
for the cases analyzed, with errors below 10 MPa. Assuming that the outliers presented
represent the worst cases, it can be concluded that the proposed ML model demonstrates a
high degree of accuracy in predicting the stress–strain relationship, with maximum errors
never exceeding 30 MPa.

(a)

(b)
Figure 20. Representation of (a) histogram of maximum absolute stress errors |∆σ|max and (b) respec-
tive quartile analysis.

Results for Materials with Thickness Variations

As stated in Section 3.3, the proposed methodology should be prepared to be applied
to materials with thicknesses within a range t = 0.8 ± 0.1 mm. Therefore, in Section 3.2.3,
a new approach was used to transform the sequence of punch force, Fp, into a corrected
punch force, F∗

p . This variable standardizes the force values in relation to the nominal
thickness, tnom, as given in Equation (18), using not only the material thickness but also the
material hardening parameters (n and ε0). However, these two variables are among the
main outputs to be predicted by the developed machine-learning model. Consequently,
before conducting the three-point bending tests, they are unknown. To address this issue,
a compromise solution is to consider average values for both variables. Given that the
admissible parameter space for n and ε0 is [0.05, 0.35] and [0.0001, 0.01], respectively, the fol-
lowing analysis will consider the use of arbitrarily intermediate values of n = 0.15 and
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ε0 = 0.001. To validate this simplification, two new virtual materials, denoted as VM4 and
VM5, were considered, and their parameters are presented in Table 8. Both materials have
a K parameter of 600 but have distinct values for the remaining parameters. Specifically,
VM4 presents the lower parameter combination, with n = 0.05 and ε0 = 0.0001, while
VM5 represents the higher parameter combination, with n = 0.35 and ε0 = 0.01. For
each material, three numerical simulations were conducted considering distinct values of
thickness t = {0.7, 0.8, 0.9}, corresponding to the limits of applicability of the proposed
methodology. The resulting punch force–displacement curves for each material and thick-
ness are presented in Figure 21a. In this graph, it is evident that materials with the same
Young’s modulus and identical thickness exhibit a similar punch force relationship in the
elastic regime.

Table 8. Swift parameters and Young’s modulus of virtual materials VM4 and VM5.

Swift Parameters Young’s Modulus

Material K ε0 n E (GPa)

VM4 600 0.0001 0.05 210VM5 600 0.01 0.35

(a) (b)

(c) (d)
Figure 21. Influence of material thickness for VM4 and VM5 on (a) punch force–displacement curve,
(b) corrected punch displacement curve, (c) true stress–strain curves predicted by the trained LSTM,
and (d) stress error.

The corrected punch force–displacement curves for these materials are presented in
Figure 21b. Applying Equation (18), two sets of parameters were considered: n = 1 and
ε0 = 0 for the elastic part, and the parameters n = 0.15 and ε = 0.001 for the plastic
component of the curve. It is evident that even when assuming average parameter values,
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the curves for thicknesses of 0.7 and 0.9 mm tend to closely align with the curve for the
nominal thickness, tnom = 0.8 mm, in both the elastic and plastic zones.

The true stress–strain curves corresponding to parameters predicted by the trained
ML model, utilizing the corrected punch displacement curves for each case, are presented
in Figure 21c. Upon comparison with the target curve, it is evident that, as expected,
the predictions for cases where the material thickness is equal to the nominal thickness are
very accurate, with the curves coinciding with the target. For these cases, the stress error,
∆σ, is approximately 0 as represented in Figure 21d. On the other hand, for thicknesses
different from the nominal thickness, there is an observable increase in prediction errors.
The resulting stress–strain curves deviate slightly from the target curve, leading to higher
stress errors. Nevertheless, these errors remain below 30 MPa for the cases under analysis,
which can be considered admissible. It is important to note that this methodology is
designed to be applied to small variations in thickness, and the specified thickness range
of ±0.1 mm was intentionally overestimated. In reality, variations around the nominal
thickness are not expected to be of this order of magnitude. Therefore, the consideration of
intermediate parameters for n and ε0 results in an acceptable solution with stress errors
lower than 30 MPa.

5.3. Experimental Results

After validating the two implemented ML models, this section focuses on evaluating
their performance using experimental three-point bending results of the studied dual-phase
steels (DP500, DP600, and DP780). The experimental punch force–displacement curves
presented in Figure 5 were replaced by the corrected punch force–displacement curves,
taking into consideration the measured thickness of each material (Table 1) and the average
values of n and ε0, set to 0.15 and 0.001, respectively.

For the first ML model that evaluates the elastic behavior and determines the Young’s
modulus of the material, twenty points were considered in the initial part of the curve
between a punch displacement of 0 and 20 mm. The predicted Young’s modulus for each
material is summarized in Table 9. As expected, the Young’s modulus of the three materials
is closer to the reference modulus of steel, and the predicted values are also similar to those
obtained using the analytical expression, Equation (12), with differences below 10 GPa. As the
modulus of elasticity obtained falls within the limits allowed by the algorithm, i.e., [190 220],
the ML model that predicts the Swift hardening parameters for steels can be applied.

Starting from the corrected experimental curve, 500 discrete points were selected
across the curve to format the data for the application of the ML model—plasticity. The
Swift hardening parameters (K, n, and ε0) predicted by this model are summarized in
Table 9. Additionally, they are compared with the Swift parameters obtained using the
experimental tensile test and the optimization algorithm presented in Section 3.1. As is
evident, the two methodologies provide different sets of hardening parameters, with the
parameter ε0 exhibiting the most significant differences. For DP780, the predicted ε0 using
the three-point bending test is 10 times higher than the one obtained by the tensile test.

Table 9. Comparison of Young’s modulus predicted by the ML model—elasticity with the analytical
approach (Equation (12)) and comparison of Swift parameters predicted by the ML model—plasticity
with the parameters obtained from experimental tensile test curves.

Young’s
Modulus

Swift
Parameters

E (GPa) K ε0 n

Material Analytical Ml
Elasticity

Tensile 3Point
Bend Tensile 3Point

Bend Tensile 3Point
Bend

DP500 192 191 865.32 835.56 0.0026 0.0035 0.1530 0.1421
DP600 208 209 1011.01 1063.21 0.0019 0.0039 0.1563 0.1805
DP780 196 194 1253.72 1281.27 0.0001 0.0010 0.1431 0.1559
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To evaluate the impact of different parameter sets on the resulting true stress–strain
(σ − εp) curves, the results for each material are systematized in Figures 22–24 for the
DP500, DP600, and DP780, respectively. For each material, the left figure represents the
corresponding true stress–strain curve considering the set of Swift law parameters obtained
by the three-point test and the parameters obtained based on the experimental tensile test.
The reference hardening curve obtained experimentally using the experimental tensile test
is also represented. On the right side image, the stress error ∆σ for each Swift approximation
is shown. In this case, the stress error is calculated as the difference in stress between each
Swift curve and the experimental reference. A zero error indicates that for a given value
of plastic strain, εp, the stress obtained from the Swift equation and the stress obtained
experimentally are approximately equal. In the overall analysis, the Swift hardening law
obtained by the three-point bending can approximate the stress–strain relation very well for
all the considered materials, with an accuracy similar to the one obtained using traditional
optimization algorithms based on the tensile test. The maximum stress error does not
exceed 30 MPa for the considered range of plastic strain, a value that is in concordance with
the analysis made in Section 5.2. Analyzing the results in detail for small values of plastic
strain, specifically below εp < 0.01, it becomes clear that the Swift curve with parameters
obtained by three-point bending tends to improve the characterization of the material’s
behavior. The error curves for εp = 0 tend to exhibit a significantly reduced error when
considering the Swift curve with parameters obtained by three-point bending than the one
obtained by the tensile test. Consequently, the estimated yield stress value tends to be more
accurately characterized.

(a) (b)
Figure 22. Influence of Swift hardening parameters obtained based on the experimental tensile
test and three-point bending Test on (a) true stress–strain curves and (b) respective stress error, ∆σ,
analysis for DP500 dual-phase steel.

(a) (b)
Figure 23. Influence of Swift hardening parameters obtained based on experimental tensile test and
three-point bending test on (a) true stress–strain curves and (b) respective stress error, ∆σ, analysis
for DP600 dual-phase steel.



Metals 2024, 14, 84 29 of 33

(a) (b)
Figure 24. Influence of Swift hardening parameters obtained based on experimental tensile test and
three-point bending test on (a) true stress–strain curves and (b) respective stress error, ∆σ, analysis
for DP780 dual-phase steel.

6. Conclusions

This work provides a comprehensive study of the application of machine learning
models (ML), specifically long short-term memory networks (LSTMs), to characterize mate-
rial hardening behavior of sheet metal steels using the standard three-point bending tests.
The sequential nature of the data obtained through this test, i.e., the force–displacement
curve of the punch, led to the adoption of LSTMs instead of traditional feed-forward neural
networks (FFNNs). The proposed methodology involves the use of two different ML
models applied sequentially; namely, ML model—elasticity and ML model—plasticity. The
first model is responsible for evaluating the elastic modulus of the tested material. If this
Young’s modulus falls within the range of 190 to 220 GPa, it indicates that the material in
question possesses an elasticity characteristic of steel, and consequently, the second model,
ML model—plasticity, can then be applied. This model is responsible for determining the
Swift hardening parameters (K, n, ε0) of steels. LSTMs have consistently demonstrated
superior capabilities in capturing patterns in sequential data for both ML models, offering
a more detailed and accurate representation of material behavior.

Regarding the first model (ML model—elasticity), which predicts the Young’s modulus
of the tested materials, it can be concluded that the developed LSTM network accurately
estimates Young’s modulus for materials with parameters in the range between 50 and
240 GPa. The performance of this model was evaluated for cases within an original data set
and also for additional randomly generated materials, demonstrating its generalization
capacity. The results indicate that the developed model adequately characterized the elastic
modulus, demonstrating relative errors consistently below 3%.

For the second model (ML Model—Plasticity), which predicts material hardening
parameters, a bidirectional LSTM architecture was employed, considering both the forward
and backward punch force–displacement sequences. After implementing the LSTM and
conducting hyperparameter tuning using the Bayesian optimization tuner, it was found
that an LSTM network with 40 units proved to be efficient in simultaneously predicting the
parameters K, n, and ε0 in the respective ranges of [400, 1600], [0.0001, 0.01], and [0.05, 0.35].
The parameter ε0 appears to have a lower prediction accuracy. However, the associated
error does not significantly impact the predicted true stress–strain curves. On the other
hand, the parameter K exhibited the most accurate prediction results, with relative errors
below 7%. Nevertheless, it was also identified as the parameter that exerted the most
significant influence on the final stress–strain relationship. In the worst-case scenarios,
the trained model demonstrated a difference in the predicted stress value compared to
the expected stress values of approximately 3%, which, in this context, can be considered
acceptable. The evaluation of the influence of thickness on the three-point bending test
results demonstrated the robustness of the methodology in dealing with variations around
the nominal thickness. A new approach was considered to normalize the punch force,
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resulting in a normalized value independent of the experimental material to be tested and
characterized using this methodology. This approach assumed average parameter values
for n and ε0, and resulted in maintaining low stress errors, validating the methodology for
small thickness variations around ±0.1 mm.

Application of the developed ML models to experimental three-point bending tests
using three grades of dual-phase steels (DP500, DP600, DP780) produced promising results.
The ML model—elasticity accurately predicted Young’s modulus values consistent with
steel materials. Additionally, the ML model—plasticity successfully approximated Swift
hardening parameters for dual-phase steels, offering a viable alternative to traditional
optimization algorithms.

It is important to acknowledge the computational demands associated with the LSTM-
based approach. The extended training time required for hyperparameter tuning in LSTMs
poses a challenge, particularly as the dataset size grows. This computational demand is
a trade-off for the improved predictive capabilities and the ability to capture temporal
patterns offered by LSTMs compared to traditional ANNs .

In conclusion, this study establishes the efficacy of the LSTM-based ML models in accu-
rately characterizing material behavior in three-point bending tests. The developed models
exhibit strong predictive capabilities, a generalization to unseen materials, and demonstrate
promising results when applied to experimental cases. These results position LSTM-based
models as valuable tools for efficient hardening curve characterization for sheet metal
forming applications.

Considering these conclusions, future work will involve expanding the methodology
by exploring the use of pre-trained LSTM as the starting point of the new training phase
to develop LSTMs for other thicknesses and materials, such as aluminum alloys. This
approach is expected to offer advantages such as faster training times and improved
performance by leveraging prior learning. Additionally, the methodology developed in this
work will be expanded to include other mechanical tests, with a particular focus on those
related to bending loadings. One potential application involves the bending–unbending
test, which is fundamental for characterizing the kinematic hardening model of sheet metal
materials. Finally, to enhance the robustness of this methodology, exploring the extension
to physics-informed neural networks (PINNs) will be considered. The incorporation
of a physics-based loss function can help limit variability and address outliers in the
characterization process, especially in situations where a purely data-driven approach
is used.
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Abbreviations
The following abbreviations are used in this manuscript:

AHSS advanced high-strength steels
ANN artificial neural network
FEA finite element analysis
FEM finite element modeling
FFNN feed-forward neural network
SD stress differential
DP dual phase
DL deep learning
CNN convolutional neural network
LSTM long short-term memory
RNN recurrent neural network
RMSE root mean square error
MSE mean square error
MLP multi-layer perceptron

References
1. Cao, J.; Banu, M. Opportunities and Challenges in Metal Forming for Lightweighting: Review and Future Work. J. Manuf. Sci.

Eng. 2020, 142, 11. [CrossRef]
2. Wagoner, R.H. Sheet Springback. Contin. Scale Simul. Eng. Mater. Fundam.–Microstruct.–Process Appl. 2004, 777–794. [CrossRef]
3. Prates, P.A.; Pereira, A.F.G. Recent Advances and Applications of Machine Learning in Metal Forming Processes. Metals 2022, 12,

1342. [CrossRef]
4. Pugliese, R.; Regondi, S.; Marini, R. Machine learning-based approach: Global trends, research directions, and regulatory standpoints.

Data Sci. Manag. 2021, 4, 19–29. [CrossRef]
5. Liu, H.; Saksham, D.; Shen, M.; Chen, K.; Wu, V.; Wang, L. Industry 4.0 in Metal Forming Industry Towards Automotive

Applications: A Review. Int. J. Automot. Manuf. Mater. 2022, 1, 1. [CrossRef]
6. Kim, H.; Chae, H.; Kwon, S.; Lee, S. Optimization of Deep Learning Parameters for Magneto-Impedance Sensor in Metal

Detection and Classification. Sensors 2023, 23, 9259. [CrossRef]
7. Dib, M.A.; Oliveira, N.J.; Marques, A.E.; Oliveira, M.C.; Fernandes, J.V.; Ribeiro, B.M.; Prates, P.A. Single and ensemble classifiers

for defect prediction in sheet metal forming under variability. Neural Comput. Appl. 2019, 32, 12335–12349. [CrossRef]
8. Tsai, S.Y.; Chang, J.Y. Parametric study and design of deep learning on leveling system for smart manufacturing. In Proceedings

of the 2018 IEEE International Conference on Smart Manufacturing, Industrial & Logistics Engineering (SMILE), Hsinchu, Taiwan,
8–9 February 2018. [CrossRef]

9. Hamouche, E.; Loukaides, E.G. Classification and selection of sheet forming processes with machine learning. Int. J. Comput.
Integr. Manuf. 2018, 31, 921–932. [CrossRef]

10. Lourenço, R.; Andrade-Campos, A.; Georgieva, P. The Use of Machine-Learning Techniques in Material Constitutive Modelling
for Metal Forming Processes. Metals 2022, 12, 427. [CrossRef]

11. Jin, H.; Zhang, E.; Espinosa, H.D. Recent Advances and Applications of Machine Learning in Experimental Solid Mechanics: A
Review. Appl. Mech. Rev. 2023, 75, 6. [CrossRef]

12. Palmieri, M.E.; Lorusso, V.D.; Tricarico, L. Robust Optimization and Kriging Metamodeling of Deep-Drawing Process to Obtain a
Regulation Curve of Blank Holder Force. Metals 2021, 11, 319. [CrossRef]

13. Shamsuzzoha, A.; Kankaanpaa, T.; Nguyen, H.; Nguyen, H. Application of machine learning algorithm in the sheet metal
industry: An exploratory case study. Int. J. Comput. Integr. Manuf. 2021, 35, 145–164. [CrossRef]

14. Li, W.; Zhang, L.C.; Wu, C.H.; Wang, Y.; Cui, Z.X.; Niu, C. A data-driven approach to RUL prediction of tools. Adv. Manuf. 2023 11.
[CrossRef]

15. Uijl, N.D.; Carless, L. Advanced metal-forming technologies for automotive applications. In Advanced Materials in Automotive
Engineering; Elsevier: Amsterdam, The Netherlands, 2012; pp. 28–56. [CrossRef]

16. Hovorun, T.P.; Berladir, K.V.; Pererva, V.I.; Rudenko, S.G.; Martynov, A.I. Modern materials for automotive industry. J. Eng. Sci.
2017, 4, f8–f18. [CrossRef]

17. Ghosh, M.; Ghosh, A.; Roy, A. Renewable and Sustainable Materials in Automotive Industry. In Encyclopedia of Renewable and
Sustainable Materials; Elsevier: Amsterdam, The Netherlands, 2020; pp. 162–179. [CrossRef]

18. Hilditch, T.; de Souza, T.; Hodgson, P. Properties and automotive applications of advanced high-strength steels (AHSS). In
Welding and Joining of Advanced High Strength Steels (AHSS); Elsevier: Amsterdam, The Netherlands, 2015; pp. 9–28. [CrossRef]

19. Mendiguren, J.; Trujillo, J.J.; Cortés, F.; Galdos, L. An extended elastic law to represent non-linear elastic behaviour: Application
in computational metal forming. Int. J. Mech. Sci. 2013, 77, 57–64. [CrossRef]

http://doi.org/10.1115/1.4047732
http://dx.doi.org/10.1002/3527603786.ch42.
http://dx.doi.org/10.3390/met12081342
http://dx.doi.org/10.1016/j.dsm.2021.12.002
http://dx.doi.org/10.53941/ijamm0101002
http://dx.doi.org/10.3390/s23229259
http://dx.doi.org/10.1007/s00521-019-04651-6
http://dx.doi.org/10.1109/smile.2018.8353980
http://dx.doi.org/10.1080/0951192X.2018.1429668
http://dx.doi.org/10.3390/met12030427
http://dx.doi.org/10.1115/1.4062966
http://dx.doi.org/10.3390/met11020319
http://dx.doi.org/10.1080/0951192X.2021.1972469
http://dx.doi.org/10.1007/s40436-023-00464-y
http://dx.doi.org/10.1533/9780857095466.28
http://dx.doi.org/10.21272/jes.2017.4(2).f8
http://dx.doi.org/10.1016/b978-0-12-803581-8.11461-4
http://dx.doi.org/10.1016/b978-0-85709-436-0.00002-3
http://dx.doi.org/10.1016/j.ijmecsci.2013.09.026


Metals 2024, 14, 84 32 of 33

20. Joo, G.; Huh, H.; Kwon, J. Evaluation of rate-dependent hardening behaviors of AHSS sheets with novel tension and compression
test devices. J. Mater. Process. Technol. 2019, 270, 365–379. [CrossRef]

21. Manopulo, N.; Barlat, F.; Hora, P. Isotropic to distortional hardening transition in metal plasticity. Int. J. Solids Struct. 2015,
56–57, 11–19. [CrossRef]

22. Chaboche, J. Constitutive equations for cyclic plasticity and cyclic viscoplasticity. Int. J. Plast. 1989, 5, 247–302. [CrossRef]
23. Alves, J.; Oliveira, M.; Menezes, L.; Cazacu, O. The role of tension-compression asymmetry of the plastic flow on ductility and

damage accumulation of porous polycrystals. Ciência Tecnol. Dos Mater. 2017, 29, e234–e238. [CrossRef]
24. Yoshida, F.; Uemori, T. A model of large-strain cyclic plasticity describing the Bauschinger effect and workhardening stagnation.

Int. J. Plast. 2002, 18, 661–686. [CrossRef]
25. Rauch, E.; Gracio, J.; Barlat, F. Work-hardening model for polycrystalline metals under strain reversal at large strains. Acta Mater.

2007, 55, 2939–2948. [CrossRef]
26. Versino, D.; Tonda, A.; Bronkhorst, C.A. Data driven modeling of plastic deformation. Comput. Methods Appl. Mech. Eng. 2017,

318, 981–1004. [CrossRef]
27. Aguir, H.; BelHadjSalah, H.; Hambli, R. Parameter identification of an elasto-plastic behaviour using artificial neural net-

works–genetic algorithm method. Mater. Des. 2011, 32, 48–53. [CrossRef]
28. Abbassi, F.; Belhadj, T.; Mistou, S.; Zghal, A. Parameter identification of a mechanical ductile damage using Artificial Neural

Networks in sheet metal forming. Mater. Des. 2013, 45, 605–615. [CrossRef]
29. Schulte, R.; Karca, C.; Ostwald, R.; Menzel, A. Machine learning-assisted parameter identification for constitutive models based

on concatenated loading path sequences. Eur. J. Mech. A/Solids 2023, 98, 104854. [CrossRef]
30. Marques, A.; Pereira, A.; Ribeiro, B.; Prates, P.A. On the Identification of Material Constitutive Model Parameters Using Machine

Learning Algorithms. Key Eng. Mater. 2022, 926, 2146–2153. [CrossRef]
31. Ghaboussi, J.; Sidarta, D. New nested adaptive neural networks (NANN) for constitutive modeling. Comput. Geotech. 1998,

22, 29–52. [CrossRef]
32. Bock, F.E.; Aydin, R.C.; Cyron, C.J.; Huber, N.; Kalidindi, S.R.; Klusemann, B. A Review of the Application of Machine Learning

and Data Mining Approaches in Continuum Materials Mechanics. Front. Mater. 2019, 6 . [CrossRef]
33. Jang, D.P.; Fazily, P.; Yoon, J.W. Machine learning-based constitutive model for J2- plasticity. Int. J. Plast. 2021, 138, 102919. [CrossRef]
34. Zhang, A.; Mohr, D. Using neural networks to represent von Mises plasticity with isotropic hardening. Int. J. Plast. 2020, 132,

102732. [CrossRef]
35. Ibáñez, R.; Abisset-Chavanne, E.; González, D.; Duval, J.L.; Cueto, E.; Chinesta, F. Hybrid constitutive modeling: Data-driven

learning of corrections to plasticity models. Int. J. Mater. Form. 2018, 12, 717–725. [CrossRef]
36. Huber, N.; Tsakmakis, C. A neural network tool for identifying the material parameters of a finite deformation viscoplasticity

model with static recovery. Comput. Methods Appl. Mech. Eng. 2001, 191, 353–384. [CrossRef]
37. Ktari, Z.; Leitão, C.; Prates, P.A.; Khalfallah, A. Mechanical design of ring tensile specimen via surrogate modelling for inverse

material parameter identification. Mech. Mater. 2021, 153, 103673. [CrossRef]
38. Yao, D.; Duan, Y.-c.; Li, M.-y.; Guan, Y.-p. Hybrid identification method of coupled viscoplastic-damage constitutive parameters

based on BP neural network and genetic algorithm. Eng. Fract. Mech. 2021, 257, 108027. [CrossRef]
39. Morand, L.; Helm, D. A mixture of experts approach to handle ambiguities in parameter identification problems in material

modeling. Comput. Mater. Sci. 2019, 167, 85–91. [CrossRef]
40. Heider, Y.; Wang, K.; Sun, W. SO(3)-invariance of informed-graph-based deep neural network for anisotropic elastoplastic

materials. Comput. Methods Appl. Mech. Eng. 2020, 363, 112875. [CrossRef]
41. Abueidda, D.W.; Koric, S.; Sobh, N.A.; Sehitoglu, H. Deep learning for plasticity and thermo-viscoplasticity. Int. J. Plast. 2021,

136, 102852. [CrossRef]
42. Ghavamian, F.; Simone, A. Accelerating multiscale finite element simulations of history-dependent materials using a recurrent

neural network. Comput. Methods Appl. Mech. Eng. 2019, 357, 112594. [CrossRef]
43. Gorji, M.B.; Mozaffar, M.; Heidenreich, J.N.; Cao, J.; Mohr, D. On the potential of recurrent neural networks for modeling path

dependent plasticity. J. Mech. Phys. Solids 2020, 143, 103972. [CrossRef]
44. Mozaffar, M.; Bostanabad, R.; Chen, W.; Ehmann, K.; Cao, J.; Bessa, M.A. Deep learning predicts path-dependent plasticity. Proc.

Natl. Acad. Sci. 2019, 116, 26414–26420. [CrossRef]
45. Guo, Z.; Bai, R.; Lei, Z.; Jiang, H.; Liu, D.; Zou, J.; Yan, C. CPINet: Parameter identification of path-dependent constitutive model

with automatic denoising based on CNN-LSTM. Eur. J. Mech.-A/Solids 2021, 90, 104327. [CrossRef]
46. Cruz, D.J.; Barbosa, M.R.; Santos, A.D.; Miranda, S.S.; Amaral, R.L. Application of Machine Learning to Bending Processes and

Material Identification. Metals 2021, 11, 1418. [CrossRef]
47. Schmidt, R.M. Recurrent Neural Networks (RNNs): A gentle Introduction and Overview. arXiv 2019, arXiv:1912.05911.
48. Sherstinsky, A. Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network. Phys. D

Nonlinear Phenom. 2020, 404, 132306. [CrossRef]
49. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
50. Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to sequence learning with neural networks. Adv. Neural Inf. Process. Syst. 2014, 27,

3104–3112.

http://dx.doi.org/10.1016/j.jmatprotec.2019.03.011
http://dx.doi.org/10.1016/j.ijsolstr.2014.12.015
http://dx.doi.org/10.1016/0749-6419(89)90015-6
http://dx.doi.org/10.1016/j.ctmat.2016.06.006
http://dx.doi.org/10.1016/S0749-6419(01)00050-X
http://dx.doi.org/10.1016/j.actamat.2007.01.003
http://dx.doi.org/10.1016/j.cma.2017.02.016
http://dx.doi.org/10.1016/j.matdes.2010.06.039
http://dx.doi.org/10.1016/j.matdes.2012.09.032
http://dx.doi.org/10.1016/j.euromechsol.2022.104854
http://dx.doi.org/10.4028/p-5hf550
http://dx.doi.org/10.1016/S0266-352X(97)00034-7
http://dx.doi.org/10.3389/fmats.2019.00110
http://dx.doi.org/10.1016/j.ijplas.2020.102919
http://dx.doi.org/10.1016/j.ijplas.2020.102732
http://dx.doi.org/10.1007/s12289-018-1448-x
http://dx.doi.org/10.1016/S0045-7825(01)00278-X
http://dx.doi.org/10.1016/j.mechmat.2020.103673
http://dx.doi.org/10.1016/j.engfracmech.2021.108027
http://dx.doi.org/10.1016/j.commatsci.2019.04.003
http://dx.doi.org/10.1016/j.cma.2020.112875
http://dx.doi.org/10.1016/j.ijplas.2020.102852
http://dx.doi.org/10.1016/j.cma.2019.112594
http://dx.doi.org/10.1016/j.jmps.2020.103972
http://dx.doi.org/10.1073/pnas.1911815116
http://dx.doi.org/10.1016/j.euromechsol.2021.104327
http://dx.doi.org/10.3390/met11091418
http://dx.doi.org/10.1016/j.physd.2019.132306
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276


Metals 2024, 14, 84 33 of 33

51. Graves, A.; Mohamed, A.r.; Hinton, G. Speech recognition with deep recurrent neural networks. In Proceedings of the 2013 IEEE
International Conference on Acoustics, Speech and Signal Processing, Vancouver, British, 26–31 May 2013; pp. 6645–6649.

52. Amodei, D.; Ananthanarayanan, S.; Anubhai, R.; Bai, J.; Battenberg, E.; Case, C.; Casper, J.; Catanzaro, B.; Cheng, Q.; Chen,
G.; et al. Deep speech 2: End-to-end speech recognition in English and Mandarin. arXiv 2016, arXiv:1512.02595.

53. Chan, W.; Jaitly, N.; Le, Q.; Vinyals, O. Listen, attend and spell. In Proceedings of the 2016 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 20–25 March 2016; pp. 2620–2624.

54. Zhang, A.; Lipton, Z.C.; Li, M.; Smola, A.J. Dive into Deep Learning; Cambridge University Press: Cambridge, UK, 2021. [CrossRef]
55. DiPietro, R.; Hager, G.D. Deep learning: RNNs and LSTM. In Handbook of Medical Image Computing and Computer Assisted

Intervention; Elsevier: Amsterdam, The Netherlands, 2020; pp. 503–519. [CrossRef]
56. ASTM E8; E8M-16ae1—Standard Test Methods for Tension Testing of Metallic Materials. American Society for Testing and

Materials: West Conshohocken, PA, USA, 2016.
57. Lagarias, J.C.; Reeds, J.A.; Wright, M.H.; Wright, P.E. Convergence Properties of the Nelder–Mead Simplex Method in Low

Dimensions. SIAM J. Optim. 1998, 9, 112–147. [CrossRef]
58. ASTM E290; Standard Test Methods For Bend Testing Of Material For Ductility. ASTM International: West Conshohocken, PA,

USA, 2014.
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