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Abstract: The efficient fabrication of titanium components using laser direct metal deposition (DMD)
is gaining significant importance in the aerospace and medical sectors. The DMD process must
be appropriately designed to address the issue of oxidation, as titanium exhibits a high affinity for
oxygen. The carrier gas flow and shield gas flow, which have been considered secondary factors so far,
are shown to exert a substantial influence on the gas dynamics of the DMD process. By varying these
parameters, it is possible to identify the influence of the gas volume flows on the oxidation behavior
exhibited during the DMD process. To quantify the oxygen uptake in titanium structures during
buildup, hot carrier gas extraction is employed. Experiments are conducted using both a three-jet
and a coaxial nozzle to assess the influence of nozzle geometry. Additionally, the experiments are
conducted within a shielding gas chamber to demonstrate the benefits of such a chamber in mitigating
oxidation. Finally, the study reveals that by appropriately combining the parameters of carrier gas
volume flow, shield gas volume, and travel speed, it is possible to fabricate titanium components,
which fulfill the requirements regarding oxygen content of aerospace and medical applications even
without the utilization of a shielding gas chamber.

Keywords: oxidation; DMD; hot carrier gas extraction; oxygen uptake; titanium; titanium alloys

1. Introduction

In contemporary industrial manufacturing, additive manufacturing processes are
gaining increasing importance, primarily due to their free-forming nature and high mate-
rial efficiency. These processes can be categorized based on the feedstock (powder, wire,
etc.) and energy source (laser, electric current) used to melt the substrate and feedstock
material [1]. This study focuses on investigating the direct metal deposition (DMD) pro-
cess, wherein powder is injected through a nozzle into a melt pool created by a laser on a
substrate. Previous research has extensively studied Fe- and Ni-based alloys in the DMD
process, examining the impact of key machine parameters, such as laser power, travel
speed, and powder mass flow, on the width, height, and crack formation of buildups [2–6].
The concept of linear heat input has been found effective in establishing suitable process
parameters for most Fe- and Ni-based alloys, ensuring a strong metallurgical bond between
the substrate and buildup material, and achieving high material density with low poros-
ity [6,7]. However, the study of additive manufacturing with titanium and its alloys remains
relatively underexplored. Titanium is of particular interest to the aerospace and medical
industries due to its corrosion resistance, biocompatibility, and excellent strength-to-density
ratio [8–11]. Yet, titanium differs from Fe- and Ni-based alloys as it has a high affinity for
oxygen, necessitating an investigation of oxidation during the DMD process [12]. Oxida-
tion can deteriorate the mechanical properties of titanium components [13]. Gurappa’s
research elucidates that the development of a hard and brittle oxygen diffusion zone un-
der the oxide layer significantly impairs the high-temperature performance of titanium
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alloys, resulting in reduced tensile strength and diminished fatigue resistance [14]. More-
over, Casadebaigt et al. demonstrates the embrittlement caused by oxidation in titanium
fabricated by laser and electron melting [15].

Guleryuz and Cimenoglu [16] have investigated the oxidation behavior of Ti6Al4V in
a temperature range of 600–800 ◦C based on the weight gain over time intervals of 0.5–72 h.
Oxidation kinetics can be described by the equation,

∆W
A

= K·t1/n, (1)

where ∆W
A is the normalized weight gain, K is the rate constant, t is the oxidation time and n

is the reaction index. It is shown that in the range of 600–700 degrees Celsius, the oxidation
kinetics can be described by a parabolic function (n equals 2). As a result, the oxidation rate
decreases over time. Above 700 degrees Celsius, the oxidation kinetics can be described
by a linear law (n equals 1), so that the oxidation rate remains constant over time. Various
studies explain this behavior of oxidation kinetics. According to Du et al. [17], thermal
expansion coefficient mismatch between the outer layer (OL) and the substrate generates
high stresses, limiting OL adherence. Yu et al. [18] observed increased oxidation rates at
700 ◦C after 20 h due to OL failure. In a study of commercially pure titanium oxidation
from 500–700 ◦C, Coddet et al. [19] noted that OL adhesion strength remained high below
650 ◦C but decreased to nearly zero at 700 ◦C.

A problem in the studies [8–19] is that the oxidation time period is not applicable to
the DMD process because the melt pool lifetime can be calculated by the equation,

tmelt =
s
v

, (2)

where s is the laser focus diameter and v is its travel speed. The melt pool lifetime (assuming
the machine parameters used in this study are, travel speed: 720 mm/min, laser spot
diameter: 3 mm) is 0.25 s and thus does not fall within the range of the studies [8–19].
To solve this problem, different titanium samples are set up at different gas flow settings
and different travel speeds. As pointed out in the work of Keller et al. [20] the nozzle
geometry, carrier gas, and shield gas volume flow have a significant effect on the spatially
present oxygen concentration.

The aim of this work is to transfer the quasi-static simulation and oxygen measure-
ments in the work of Keller et al. [20] to the resulting oxidation of the DMD structure of
Ti6Al4V. Thus, the influence of the dynamics of the process on the oxidation of Ti6Al4V
can be investigated. To meet industry standards, the maximum permissible oxygen con-
centration in titanium components is defined in DIN 17850 [21] for pure titanium and DIN
17851 [22] for titanium alloys such as Ti6Al4V (Titanium Grade 5, Omax = 2000 ppm for
aerospace industry) and Grade 23 (Ti6Al4V extra low interstitials (ELI), Omax = 1300 ppm
for medical industry). Finally, limit values for the carrier gas, shielding gas flow rates,
and travel speed should be developed, which can be used to build titanium components
that meet the requirements of the aerospace and medical industry.

This study aims to investigate and analyze the impact of shielding gas volume flow,
carrier gas volume flow, the usage of a shielding gas chamber, and travel speed on the
oxidation during the DMD process.

2. Materials and Methods

A Yb:YAG laser (TruDisk 3001) with a wavelength of 1030 nm and a maximum laser
output power of 3 kW was used for the DMD experiments. The powder was delivered to
the powder nozzle by the powder feeder via antistatic hoses. The powder was coaxially
injected into the laser-generated melt pool on a Ti6Al4V substrate via an argon carrier
gas stream. Two different nozzle geometries were used to evaluate the influence of the
nozzle geometry: a coaxial nozzle and a three-jet nozzle. The Ti6Al4V powder particles
were manufactured by electrode induction melting inert gas atomization from the company
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Oerlikon Metco, 5610 Wohlen, Switzerland. The powder particle fraction is between
45–105 µm (D50 = 68 µm) and the particles were spherical as shown in Figure 1.
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Figure 1. SEM image (image taken at 400× magnification) of the used Ti6Al4V powder for the
DMD experiments.

The chemical composition of the powder and substrate used can be seen in Table 1.

Table 1. Chemical composition of the substrate and powder material in weight percentage.

Ti Fe C H O N Al V

Substrate Bal. 0.17 0.013 0.002 0.115 0.0045 6.25 4.09
Powder Bal. 0.24 0.002 0.002 0.05 0.004 6.34 4.25

Figure 2 shows the overall methodology used in this work. To investigate the influence
of the gas flow settings (carrier gas flow and shield gas flow), they were varied on 6 different
levels for two different nozzle geometries inside and without a shielding gas chamber.
The remaining main machine parameters such as laser power, travel speed, and mass
flow were kept constant. It should be mentioned that oxidation decreases with increasing
mass flow (assuming constant travel speed and laser power), as part of the laser power is
reflected and absorbed by the powder, so that a lower energy density is coupled into the
substrate, which ultimately leads to lower temperatures and thus oxidation and vice versa.
The travel speed was varied on three different levels. Detailed information can be found in
the following explanations.

In order to evaluate the influence of the gas dynamics, the machine parameter laser
power P = 1100 W, powder mass flow ṁ = 4 g/min, and travel speed v = 720 mm/min
were kept constant and only the carrier gas and shield gas volume flow were varied. Argon
was used as the shielding gas and carrier gas volume flow species. The absolute volume
fraction of argon is 99.998% and has the following impurities: H2O < 3 ppm, O2 < 2 ppm,
N2 < 10 ppm, CH4 < 1 ppm, and CO2 < 1 ppm. The variation of the gas flow settings can
be seen in Table 2.
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Figure 2. Methodology to determine the influence of gas flow settings, nozzle geometry, a shielding
gas chamber, and travel speed on the oxidation of Ti6Al4V.

Table 2. Experimental plan for investigating the effects of gas flow settings, nozzle type, and shielding
gas chamber on oxidation during the DMD process.

Experimental
No.

Carrier Gas
Flow (L/min)

Shield Gas
Flow (L/min)

Carrier to Shield
Gas Volume
Flow Ratio

Nozzle Type Shielding Gas
Chamber

1 2 15 0.13
2 2 30 0.07

3 4 15 0.27
Three-

jet/coaxial
nozzle

Yes/No

4 4 30 0.13
5 8 15 0.53
6 8 30 0.27

These experiments were carried out for both nozzle geometries, outside and inside a
shielding gas chamber (as described in the work of Keller et al. [20]). To obtain a globally
low oxygen concentration inside the chamber, the chamber was flooded with argon for
10 min before each experiment. It should be noted that there is a low residual oxygen
concentration (<150 ppm) in the shielding gas chamber as upon initiation of powder flow,
the activation of the machine suction system ensues, thereby facilitating the potential influx
of external oxygen into the chamber interior. The permutation of the variables (nozzle
geometry, buildup in shielding gas chamber/no shielding gas chamber) thus results in a
total of 24 independent experiments (see left part in Figure 2). The additive structure had
the following dimensions (see in Figure 3):
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Figure 3. Schematic illustration of the additive buildups of the Ti6Al4V structures.

To finally assess the influence of the travel speed, the line energy El according to
the formula,

El =
P
v

(3)

is kept constant, where P is the laser power and v is the travel speed. This ensures that the
energy input is kept constant and thus a nearly equal build quality is achieved in terms
of sufficient metallurgical bonding between the substrate and the build-up as well as a
high-density buildup. In order to investigate the benefits of a heat sink with regard to
oxidation, an experiment is carried out on a copper block. Figure 4 shows a schematic
illustration of this experimental setup.
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Figure 4. Schematic drawing of the experimental setup to investigate the usefulness of a copper block
with regard to oxidation in the DMD process for Ti6Al4V.

To quantify the oxygen uptake, the hot carrier gas extraction (also inert gas fusion)
method is used, which is approved according to standard ASTM E1409:13 [23] for the deter-
mination of the oxygen content in the titanium microstructure. The measuring instrument
used was the LECO ONH836.

In order to ensure an accurate measurement of the hot carrier gas extraction method,
cubes approximately equal to the weight of the calibration samples are required. For Ti6Al4V
structures at a density of 100%, this corresponds to a cube with dimensions of 3 × 3 × 3 mm.
To achieve this height, 4 layers had to be built on top of each other. To ensure statistical
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significance, 4 cubes were cut out of each buildup with wire EDM. To prevent falsification of
the measurement results by the oxide layer on the sample cubes from the wire EDM cutting,
the cube surfaces were ground until no oxide layer was visible on the cube surface under
an optical microscope (Nikon C-PS (Nikon, Minato, Japan), magnification: 50×). For this,
a SiC abrasive paper with 600 grit was used to prevent contamination from the normally
used corundum grits. Afterwards, the cubes were cleaned with the device Bandelin Sonorex
Digitec in pure ethanol in an ultrasonic bath for one minute in order to remove grinding
residues. Then the cubes were air dried for at least 10 min. Figure 5 shows the procedure
for determining the oxygen content in the Ti6Al4V microstructure.
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3. Results and Discussion
3.1. DMD Buildups without Shielding Gas Chamber

Figure 6 shows the oxygen concentration measured in the cubes extracted from the
buildups produced with the three-jet nozzle for the different carrier gas (CG) to shield gas
(SG) volume flow ratios without the shielding gas chamber.
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Figure 6. Oxygen uptake into the titanium microstructure produced using a three-jet nozzle for
various carrier gas to shield gas flow ratios.

The bars in Figure 6 indicate the standard deviation of the measured oxygen concen-
tration for all 4 cubes per gas flow setting. This also applies to all subsequent figures.
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The oxygen concentration is lower than 2000 ppm for all samples built with a carrier
to shield gas volume flow ratio less or equal to 0.27. However, the samples built with a
higher ratio of 0.53 show a significantly higher oxygen intake, with more than 8500 ppm.

Figure 7 shows the oxygen concentration measured in the cubes extracted from the
buildups produced with the coaxial nozzle for the different carrier gas to shield gas volume
flow ratios without the shielding gas chamber.

Metals 2024, 14, x FOR PEER REVIEW 7 of 13 
 

 

The bars in Figure 6 indicate the standard deviation of the measured oxygen 

concentration for all 4 cubes per gas flow setting. This also applies to all subsequent figures. 

The oxygen concentration is lower than 2000 ppm for all samples built with a carrier 

to shield gas volume flow ratio less or equal to 0.27. However, the samples built with a 

higher ratio of 0.53 show a significantly higher oxygen intake, with more than 8500 ppm. 

Figure 7 shows the oxygen concentration measured in the cubes extracted from the 

buildups produced with the coaxial nozzle for the different carrier gas to shield gas 

volume flow ratios without the shielding gas chamber. 

 

Figure 7. Oxygen uptake into the titanium microstructure produced using a coaxial nozzle for 

various carrier gas to shielding gas flows. 

The oxygen concentration of the samples produced with the coaxial nozzle shows the 

same trend as the samples produced with the three-jet nozzle. The oxygen concentration 

is lower than 2000 ppm for all samples built with a carrier to shield gas volume flow ratio 

less or equal to 0.27. However, the samples built with a higher ratio of 0.53 show a 

significantly higher oxygen intake, with more than 4900 ppm. 

The specifications for the aerospace industry require an oxygen concentration lower 

than 2000 ppm, and the medical industry requires below 1300 ppm. The results show that 

the standard for aerospace can be met with both nozzle geometries for a carrier to shield 

gas volume flow ratio inferior to 0.3. For higher ratios, the oxygen concentration increases 

drastically for both geometries. The specifications for the medical industry are not met by 

the samples built without the chamber. 

The homogeneity of the oxygen uptake into the buildup decreases as the oxygen 

distribution of the shielding bell becomes inhomogeneous or is not given at all. Figure 8 

shows a parameter sweep for various shielding gas and carrier gas volume flows. 

1230 1320
1120

1320
1110

4920

0

1000

2000

3000

4000

5000

6000

0.07 0.13 0.13 0.27 0.27 0.53

O
xy

ge
n

 c
o

n
ce

n
tr

at
io

n
 [

p
p

m
]

Carrier to shield gas volume flow ratio [1]

CG: 2 l/min

SG: 30 l/min

CG: 2 l/min

SG: 15 l/min

CG: 4 l/min

SG: 30 l/min

CG: 4 l/min

SG: 15 l/min

CG: 8 l/min

SG: 30 l/min

CG: 8 l/min

SG: 15 l/min
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carrier gas to shielding gas flows.

The oxygen concentration of the samples produced with the coaxial nozzle shows the
same trend as the samples produced with the three-jet nozzle. The oxygen concentration is
lower than 2000 ppm for all samples built with a carrier to shield gas volume flow ratio less
or equal to 0.27. However, the samples built with a higher ratio of 0.53 show a significantly
higher oxygen intake, with more than 4900 ppm.

The specifications for the aerospace industry require an oxygen concentration lower
than 2000 ppm, and the medical industry requires below 1300 ppm. The results show that
the standard for aerospace can be met with both nozzle geometries for a carrier to shield
gas volume flow ratio inferior to 0.3. For higher ratios, the oxygen concentration increases
drastically for both geometries. The specifications for the medical industry are not met by
the samples built without the chamber.

The homogeneity of the oxygen uptake into the buildup decreases as the oxygen
distribution of the shielding bell becomes inhomogeneous or is not given at all. Figure 8
shows a parameter sweep for various shielding gas and carrier gas volume flows.
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Figure 8. Simulation of the oxygen concentration of the three-jet nozzle for different carrier gas and
shielding gas volume flows. The oxygen concentration increases drastically as the carrier gas to
shielding gas volume flow ratio increases. The figure is based on [20].

Figure 8 shows that the oxygen concentration in the powder focus (circle section at
the bottom of Figure 8) increases with an increasing carrier gas to shielding gas volume
flow ratio. For the simulation on the right in Figure 8, sufficient shielding gas shielding is
only provided exactly in the center. The shielding decreases drastically towards the outside.
This is primarily due to the following two effects:

• Due to the relatively stronger carrier gas flow with increasing carrier gas to shielding
gas flow ratio, the impulse that the carrier gas flow exerts on the shielding gas flow
increases. This leads to a higher degree of momentum transfer. The increase in mo-
mentum, however, can result in the induction of turbulence within the gas flow. This
turbulence manifests as chaotic and irregular movements of the gases within the weld-
ing environment. Turbulence in the gas flow dynamics can have deleterious effects,
particularly in the welding context. One significant consequence is the introduction of
oxygen into the shielding gas zone. The degree of oxidation because of these gas flow
dynamics is quantified in this work.

• Due to the higher carrier gas flow, the flow velocity of the carrier gas increases.
The higher velocity causes the static pressure within the gas to decrease, as Bernoulli
states that the total pressure is constant and results from the sum of the static pressure
and the dynamic pressure. As the flow velocity increases, the dynamic pressure
increases (proportional to the square of the velocity) and consequently the static
pressure within the gas decreases. This negative pressure sucks ambient gas into
the carrier gas flow, allowing oxygen to enter the shielding gas zone and increase
the oxidation.

3.2. DMD Buildups with Shielding Gas Chamber

The oxygen concentrations in the DMD buildups produced inside the shielding gas
chamber are shown for the three-jet nozzle in Figure 9a and for the coaxial nozzle in
Figure 9b.
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Figure 9. Influence of the shielding gas chamber on oxygen uptake into the titanium microstructure
for (a) three-jet nozzle and (b) coaxial nozzle for various carrier gas to shield gas volume flow ratios.

Figure 9 shows a significant reduction in oxygen uptake into the titanium structure
when the shielding gas chamber is used compared to the same process conditions without
a chamber. For all carrier to shield gas volume flow ratios, both aerospace and medical
standards are met, with all samples displaying an oxygen concentration below 1300 ppm.
The standard deviations observed are also minimized, showing a better homogeneity of
the oxygen intake in the buildups with the use of the chamber. However, a subtle oxidation
persists due to the residual oxygen content within the chamber being less than 150 ppm,
as elucidated in the experimental section.
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A shielding gas chamber allows for medical-standard parts to be produced by DMD
regardless of the optimization of the carrier to shield gas volume flow ratio.

3.3. DMD Buildups without Shielding Gas Chamber at Varied Travel Speed

In addition to the influence of the gas dynamics, which are determined by the carrier
gas to shield gas volume flow ratio, the influence of the travel speed was also investigated
by varying the travel speed. The objective of this investigation is to assess the feasibility of
constructing Ti6Al4V components that meet oxidation criteria through the DMD process
with an adequate level of reliability, even in the absence of a shielding gas chamber. To make
the process as comparable as possible to the temperature distribution, the line energy was
kept constant at approximately 92 J/mm with P = 1100 W and v = 720 mm/min = 12 mm/s.
Figure 10 shows the oxygen concentration in the DMD buildups produced with the coaxial
nozzle for different travel speeds.
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Figure 10. Oxygen uptake into the titanium microstructure using a coaxial nozzle for various travel
speeds at constant line energy and constant carrier to shield gas volume flow ratio (CG: 4 L/min,
SG: 15 L/min). The rightmost bar shows the benefit of using a heat sink at increased feed rates to
reduce oxidation.

Figure 10 shows that reducing the travel speed to 0.51 m/min (at constant line energy)
fulfills the oxygen limits for the aerospace and medical industries, such that they are met
even without the use of a shielding gas chamber. At lower travel speeds, the melt pool
and the hot, already solidified material remain longer in the area of the shielding gas bell.
For DMD typical cooling rates approaching up to 1000 K/s [24,25], the material can thus
cool down sufficiently so that the material oxidizes less.

Increasing the travel speed, on the other hand, leads to a sharp increase in oxygen
uptake into the titanium structure. Oxidation can be significantly reduced with a heat sink.
The thermal resistance of a series connection of two different materials can be described
according to Holman [26] by the following equation:

Rsc = Rth,1 + Rth,2 =
lCu

kCu A
+

lTi6Al4V
kTi6Al4V A

=
lCu + lTi6Al4V

ksc A
,

where kCu is the thermal conductivity of copper, kTi6Al4V is the thermal conductivity of
Ti6Al4V, lCu is the thickness of the copper block, and lTi6Al4V is the thickness of the titanium
substrate perpendicular to the heat flux over the cross-sectional area A. This results in a
thermal conductivity of the series connection of the two materials according to:

ksc =
kCukTi6Al4V(lCu + lTi6Al4V)

kCulTi6Al4V + kTi6Al4V lCu
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With a thermal conductivity of Ti6Al4V kTi6Al4V = 17.5 W/mK (at 800 ◦C, [27]), thick-
ness lTi6Al4V = 6 mm, thermal conductivity of copper kCu = 366 W/mK (at 800 ◦C, [28]),
and thickness lCu = 50 mm of the Ti6Al4V substrate, the resulting thermal conductivity
is ksc = 116.8 W/mK. This is greater than that of Ti6Al4V by a factor of 6.7. Thus, due to
the high thermal conductivity, the heat from the titanium substrate and the deposited
Ti6Al4V can be dissipated more quickly, thus the oxidation rate is reduced due to the lower
temperature of the material outside the shielding gas bell.

This study investigated the impact of gas flow settings and travel speed on the ox-
idation of Ti6Al4V. The results demonstrate that a carrier gas to shield gas volume flow
ratio of <0.3 is necessary to produce components with suitable oxygen concentrations in
the Ti6Al4V microstructure, employing both three-jet and coaxial nozzle configurations.
Additionally, it was observed that the parameter of line energy, as commonly cited in the
literature, is insufficient for describing the temperature field adequately.

Under constant line energy conditions, tests conducted at higher travel speeds exhib-
ited a significantly higher level of oxidation, while lower travel speeds resulted in reduced
oxidation. This occurred despite maintaining a carrier gas to shield volume flow ratio <0.3.
The study underscores that the requirements of medical technology, specifically the oxygen
limit below 1300 ppm, can be met at lower travel speeds.

The current quasi-static analysis, as performed in the work of Keller et al. [20], has
limitations. The ratio of 0.3 is a necessary condition for achieving a sufficiently low oxygen
concentration, but it must be overlaid with the travel speed. Higher travel speeds lead to
reduced heat dissipation, causing the temperature field with oxidation-critical temperatures
to extend over a larger range, resulting in higher oxidation. The benefit of using a heat sink
to reduce oxidation at higher travel speeds was demonstrated.

The paper suggests developing an oxidation model that overlays the temperature
field with spatial oxygen concentration to predict oxidation more accurately. The issue
with one of the latest oxidation models of Ti alloys from the work of Vaché et al. [29] lies
in considering purely parabolic oxidation kinetics, which are no longer valid at elevated
temperatures (above 600 ◦C). In the DMD process, a prerequisite is that the material be-
ing deposited is melted (temperatures greater than 1650 ◦C are necessary). Furthermore,
the aforementioned oxidation model describes oxidation under isothermal conditions and
durations of several hours. However, the DMD process involves complex thermal tempera-
ture fields and temperature gradients with oxidation-critical temperatures lasting only a
few seconds. As a result, the most recent oxidation model is not applicable to the DMD pro-
cess. Additionally, other methods for preventing oxidation through nitrogen, as described
in the work of Dupressoire et al. [30] using interfacial layers of oxynitrides and nitrides,
are not feasible in the DMD process since the gas flow species in the carrier and shielding
gas streams is argon. This necessitates conducting a temperature field simulation. This
could ultimately form the basis for defining a parameter that predicts whether the DMD
process is oxidation-critical or not, accounting for the dynamics of the process appropriately.
Furthermore, mechanical properties (such as hardness, microstructure, tensile strength,
and other mechanical characteristics) must be specified, which are caused by the varying
degrees of oxidation. Another future research idea is to improve the shielding during the
DMD process, as handling the shielding gas chamber is cumbersome. To this end, concepts
need to be considered that do align with the findings of an oxidation model.

4. Conclusions

Ti6Al4V samples complying with aerospace and medical standards concerning oxygen
intake have been produced by DMD. The geometry of the nozzle (coaxial or three-jet)
is secondary compared to the optimization of the shielding conditions. For both nozzle
geometries, the optimization of the carrier to shield gas volume flow ratio permits achieving
aerospace quality parts (<2000 ppm) without a shielding gas chamber, and medical quality
(<1300 ppm) when a shielding gas chamber is used. Yet, both quality standards can be met
without a shielding gas chamber by adjusting the travel speed.
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• For a carrier gas to shield a gas volume flow ratio <0.3, the aerospace industry limita-
tions regarding oxygen uptake (<2000 ppm) can be met for both nozzle types without
a shielding chamber.

• By reducing the travel speed, the limits for the medical industry can be achieved even
without the usage of a shielding gas chamber.

• An increased travel speed leads to the maximum permitted oxygen concentration of
2000 ppm being exceeded for the same specific energy. Oxidation can be reduced by
using a copper block that functions as a heat sink.

• With higher carrier to shield gas volume flow ratios, the homogeneity of the oxygen
uptake in the part decreases and vice versa. This phenomenon is explicable through
the interplay of turbulent flow characteristics within the shielding gas bell jar and the
Bernoulli effect. Elevated velocities of the carrier gas flow induce a negative pressure,
which causes an ingress of oxygen from the ambient surroundings, facilitating its
transport to the surface of the Ti6Al4V material.
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