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Abstract: In the present work, the results of acoustic nonlinear response of ultrasonic wave propa-
gation when monitoring the progress of damage induced by fatigue on notched C45 carbon steel
specimens have been reported. Two ultrasound probes were fixed to the specimens during the
tests. The input signal was sinusoidal type, while the corresponding ultrasound response signal
was acquired and recorded at each stage of the test by means of a digital oscilloscope. A nonlinear
frequency study was performed on the acquired data to evaluate the change in the second- and
third-order nonlinearity coefficients of β1 and β2, respectively, on the tested specimens. Ultrasonic
results were correlated to plastic strain at the notch tip in the initial phases of fatigue and stiffness
degradation. The results showed a significant increase in second-order nonlinearity β1 in the early
stages of fatigue life. Subsequently, starting from about 30–40% of the fatigue life, the nonlinearity
of β1 increases. Before final failure, from 80 to 85% of fatigue life, the second-order nonlinearity
further increases in the crack propagation stages. The nonlinear parameter of the third-order β2

was less sensitive to damage than the parameter β1, showing a rapid increase only starting from
approximately 80 to 85% of the fatigue life. The proposed method proved to be valid for detective
damage induced by fatigue and to predict the lifetime of metal materials.

Keywords: structural health monitoring (SHM); C45 steel; nonlinear ultrasonic; fatigue damage;
harmonics

1. Introduction

Fatigue damage is one of the main failure mechanisms in metal structures. Mechani-
cal components are often subject to variable loads over time, and the evaluation of their
structural integrity for the entire life in service is an important challenge to overcome [1–4].
Fatigue strength is influenced by the manufacturing process of the material [5]. In this
regard, the cold forming of metals can cause strong defects, such as distortion of the metal
lattice with consequent shearing and sliding of the grains, as well as grain elongation.
These defects affect conventional material properties, such as work hardening and resid-
ual stresses of the material. Both mechanical properties influence fatigue resistance [6].
Consequently, there is a growing demand for non-destructive testing, NDT, and structural
monitoring techniques to monitor damage in service and prevent catastrophic failures by
reducing maintenance costs [7–11]. The most ordinary checks performed in the industrial
field to verify the integrity of the structures are based on ultrasounds, eddy currents, pene-
trating liquids, and magnetic particles. If the ultrasound measurement in linear condition
constituted a standard and well-known experimental technique, the use of nonlinear ultra-
sound techniques is relatively uncommon, but it is significantly increasing due to its high
sensitivity to micro-fatigue cracks compared to conventional methods [12–17].

The nonlinear ultrasound technique is based on the nonlinear elastic interaction be-
tween the material and the propagation of the ultrasound wave that passes through it. In
the literature, this technique has been considered a potential non-destructive evaluation
method for the study of the degradation phenomena in structures and components subject

Metals 2024, 14, 11. https://doi.org/10.3390/met14010011 https://www.mdpi.com/journal/metals

https://doi.org/10.3390/met14010011
https://doi.org/10.3390/met14010011
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/metals
https://www.mdpi.com
https://orcid.org/0000-0003-1363-4291
https://orcid.org/0000-0003-0024-0496
https://doi.org/10.3390/met14010011
https://www.mdpi.com/journal/metals
https://www.mdpi.com/article/10.3390/met14010011?type=check_update&version=1


Metals 2024, 14, 11 2 of 17

to variable loads [18,19]. Moreover, studies on nonlinear techniques have shown that
the first fatigue damage in metals is closely related to the nonlinear effects of ultrasound
waves [20–23]. The ultrasound wave is substantially distorted during the propagation in
the material such that it generates components of harmonics with a frequency greater than
the fundamental, in which the amplitudes of the components of these harmonics depend on
the elastic nonlinearity of the material. In other words, the method based on higher-order
harmonic generation measures the amplitudes of the harmonic components after prop-
agation in a material to evaluate the level of nonlinearity of that material. Second-order
nonlinearity, which is the lowest of the higher-order nonlinearities, has been particularly
considered because it is easier to measure than higher-order harmonics. Generally, non-
linear ultrasonic measurements use the generation of harmonics for the evaluation of the
nonlinearity parameter of the material, most commonly using piezoelectric transducers for
the excitation of ultrasonic waves thanks to their efficiency in generating high-amplitude
wave packets [24–27]. However, as demonstrated in [28], the coupling of the transducers
strongly affects the measurements of the amplitudes, and it is difficult to apply similar
coupling conditions for different measurements. In this regard, several authors have pro-
posed methods to reduce this variability [29,30]. To avoid conditions of variability in the
coupling, it is preferable to have transducers permanently mounted on the structure for
in situ fatigue monitoring. This also allows us to obtain a reliable measure based on the
reference, thus avoiding the need for a calibration.

The second- and third-order nonlinear ultrasound parameters are related to the mi-
crostructure of the material and the internal micro-defects; therefore, they can be used to
evaluate the microstructural changes induced by degradation, such as fatigue phenomenon.
In a recent study [31], the authors showed a strong relationship between the variation of
the acoustic response and the propagation of ultrasonic waves for the in situ monitoring of
fatigue damage. From ultrasonic measurements carried out on a batch of specimens similar
to those tested in this study, it has been shown that the attenuation of the received signal
and of the fundamental frequency are more sensitive to damage than the time of flight
and the degradation of the stiffness of the material. In other studies, it has been shown
that microstructural changes due to the accumulation of damage introduce changes in the
response of the material and can lead to variation in the nonlinearity parameters [32–36].

In a typical Structural Health Monitoring (SHM) setup, piezoelectric sensors are used
to generate Lamb waves [24,26]. In this study, an original experimental setup was used
to carry out ultrasonic nonlinear measurements on metallic specimens during fatigue
tests. The novelty of the experimental setup is that conventional angled ultrasound probes,
commonly used in traditional non-destructive testing, have been used. The configuration
used allows us to obtain a wave that propagates in a predefined direction and, therefore,
covers a well-localized area within the material, with the aim of monitoring any damage
that occurs in the space between the two ultrasonic probes. This method is particularly
interesting, especially when dealing with structures that have potential critical points at
a local level such as notches, holes, etc., responsible, in most cases, for triggering the
fatigue failure process. Another peculiarity of the proposed configuration is that by using
transducers with rather high frequencies (2 MHz and 4 MHz), the recorded measurement
is much less influenced by the noise due to external sources and to the test machine,
producing a stable and accurate signal in every condition during the entire test.

The advantage of the proposed setup is that the ultrasonic measurement is much more
accurate and precise due to less dispersion than the guided Lamb waves, whose speed
depends on both the excitation frequency and the thickness of the plate where they propa-
gate [37] but requires the use of multiple transducers to monitor various critical points that
may be present in a structure. Guided Lamb waves are often used in non-destructive testing
controls because they can travel long distances with little energy loss [38–42]. The main
problem with such waves is that they are very dispersive (their phase and group velocities
depend on the frequency) and multimodal (different movement of particles) [43]. Further-
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more, the reflection mechanisms of Lamb waves are complex and difficult to understand,
which limits the performance of the detection [44].

In the present paper, the nonlinear ultrasonic parameters were experimentally eval-
uated at various stages over the fatigue test on carbon steel C45 specimens subjected to
different levels of load amplitude to monitor the evolution of fatigue damage. The fatigue
tests are interrupted at different numbers of cycles with adequate sampling intervals, de-
pending on the expected fatigue life, to perform the nonlinear ultrasonic measurements.
The results of the nonlinear ultrasound parameters were correlated with the degradation of
the stiffness and the plastic deformation of the material located at the tip of the notch by
means of a simple FEM model, justifying the experimental evidence from a quantitative
point of view. The applied experimental technique proved to be valid for studying the
evolution of fatigue damage with non-destructive analysis and for predicting the fatigue
life of metals effectively.

2. Review of Acoustic Nonlinearity Parameters

Ultrasonic nonlinear effects cause of the generation of higher harmonics in acoustic
waves propagating through a material. Variations in the velocity of the ultrasound wave
determine distortion of the traveling wave, which affects the structure of the wave fre-
quency; for example, for an initially pure sine wave consisting of a single frequency, the
peaks of the wave travel faster than valleys and the pulse becomes cumulatively more
like a sawtooth waveform. In particular, the wave distorts by introducing other frequency
components into the Fourier spectrum. Ultrasonic nonlinearity is characterized by the
nonlinearity parameters β1 and β2, by which the amount is quantified that an ultrasonic
wave is distorted as it travels through the specimen [45,46]. The wave is distorted due to
the presence of defects and can be viewed as a measure of material quality.

The phenomenon of the detection mechanism of ultrasonic nonlinearity can be de-
scribed by considering a wave of frequency f that travels through a metallic material.
Experimentally, it has been observed that part of the acoustic energy of frequency f (funda-
mental component) transfers to its higher harmonics (2f, 3f and so on) that are generated
during wave propagation. This effect is particularly useful as it allows for the detection
of the early signs of damage since the transfer of energy to higher harmonic components
occurs proportionally with the amount of damage.

Suppose that in a one-dimensional model, a single-frequency longitudinal wave
propagates without undergoing attenuation. For small deformation, the oscillatory motion
of the particles can be expressed by means of Equation (1) [45,46].

ρ
∂2u
∂t2 =

∂σ

∂x
(1)

where ρ is the density of the material, σ is the stress term and u represent the displacement
vector along the x direction.

The constitutive equation of the nonlinear medium for Hooke’s stress–strain behavior
of a uniaxial stress state, can be described with Young’s modulus E by Equation (2):

σ = E f (ε) (2)

By applying the power series development to Equation (2), the following equation is
obtained [46]:

σ = E f (ε) = E
(

ε +
1
2

β1ε2 +
1
3

β2ε3 + . . . +
1
n

βn−1εn
)
≈ E

(
ε +

1
2

β1ε2 +
1
3

β2ε3
)

(3)

where n (n = 1, 2, 3, . . .) is a factor representing the order of the nonlinear parameter of the material.
Subsequently substituting Equation (3) in Equation (1) it can be grouped as Equation (4):
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ρ
∂2u
∂t2 = E

∂ f (ε)
∂x

= E
∂

∂x

[
ε +

1
2

β1ε2 +
1
3

β2ε3
]

(4)

Positive strain is expressed by:

ε =
∂u
∂x

(5)

Substituting Equation (5) into Equation (4), we have:

ρ
∂2u
∂t2 = E

[
∂2u
∂x2 + β1

(
∂u
∂x

)
∂2u
∂x2 + β2

(
∂u
∂x

)2 ∂2u
∂x2

]
(6)

The relationship between the longitudinal wave velocity and Young’s modulus is
defined by [47]:

c =

√
E
ρ

(7)

therefore Equation (6) can be written as follows:

∂2u
∂t2 = c2

[
∂2u
∂x2 + β1

(
∂u
∂x

)
∂2u
∂x2 + β2

(
∂u
∂x

)2 ∂2u
∂x2

]
(8)

Assuming that the initial condition of Equation (6) [48,49] is given by:

u(0, t) = A0sin ωt (9)

Applying the approximate perturbation method to solve Equation (8), in which only
terms up to the second order have been considered [47], the solution can then be written as
follows:

u(x, t) = A0sin(ωt − kx) + 1
8
(

A2
0k2β1x

)
cos 2(ωt − kx)+

1
24
(

A3
0k3β2x

)
[cos 3(ωt − kx) + 3 cos(ωt − kx)]

(10)

where A0 is the fundamental harmonic (A0 = A1), K is the wave number and x is the
ultrasonic sound path. The second term has the frequency 2ω and represents the second
harmonic A2 of the waveform that is generated by nonlinearities inhomogeneities present
in the metallic medium. In the same way, the third term represents the third harmonic A3
propagation in the material. The amplitudes of second and third terms can be written as
follows [47,48]:

A2 =
1
8

A2
1k2β1x A3 =

1
24

A3
1k3β2x (11)

Estimating the amplitudes of the first three harmonics A1 (fundamental frequency),
A2 (second-order harmonic) and A3 (third-order harmonic), it is possible to calculate the
nonlinearity coefficients as follows:

β1 =

(
A2

A2
1

)
1

k2x
β2 =

(
A3

A3
1

)
24
k3x

(12)

On the other hand, when k and x are constant, the absolute parameters β1 and β2 can
be approximated as shown in Equation (13):

β1 ∝
A2

A2
1

β2 ∝
A3

A3
1

(13)

The nonlinear parameters β1 and β2 contain essential information on the propagation
of nonlinear wave.
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3. Materials and Methods

The specimens used for fatigue testing were manufactured in normalized carbon steel
(C45) with small notches in the centre of the gage length to localize the beginning of fatigue
damage (Figure 1a). A preliminary static test, according to the ASTM E8-04 standard, was
carried out on a smooth specimen on an MTS-810 (MTS Company, Swartz Creek, MI, USA)
in displacement control with a velocity of 1 mm/min (Figure 1b) [31] and provided the
tensile strength (UTS), the yield stress and Young’s module (Table 1).
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Figure 1. (a) Notched specimen geometry (dimensions in mm) for nonlinear measurements;
(b) stress/strain curve, adapted from [31].

Table 1. Experimentally determined mechanical properties.

Mechanical Properties

Ultimate Tensile Strength (UTS) 640 [MPa]
0.2% Yield Strength 350 [MPa]
Young’s Modulus 219,000 [MPa]

An in situ monitoring setup was used for nonlinear measurements while the specimen
was undergoing fatigue cycles. Two commercial ultrasound probes (General Electric
Company, Boston, MA, USA) were used in the transmission mode to monitor the progress
of the damage induced by fatigue on notched steel specimens in situ. The ultrasonic
probes, with the frequency of one double the other, respectively, 4 MHz and 2 MHz, were
stably fixed to the specimens for the entire duration of the fatigue tests by means of steel
brackets and bolts (Figure 2a,b) to avoid any possible variability due to the coupling with
the specimen during the test. A stationary sinusoidal input signal was supplied to the
transmitting probe by means of a function generator, while the received signal was acquired
by the second probe at each step of the test and recorded using a digital oscilloscope. The
recorded data were processed in a MATLAB software (R2016b version, MATLAB, produced
by MathWorks, Inc. in USA) environment with an analysis algorithm based on the Fast
Fourier Transform (FFT) to convert the nonlinear ultrasonic response in the time domain
to the frequency domain. The attenuation of the ultrasonic signal was measured and
compared with the beginning of the test signal, taken as a reference. Finally, a nonlinear
frequency study was performed on the acquired data to evaluate the change in the second-
and third-order nonlinearity parameters β1 and β2, respectively.

The experimental equipment used for nonlinear in situ ultrasonic measurements
consists of a function generator (HAMEG Instruments GmbH, Mainhausen, Germany), a
two-channel oscilloscope Agilent Keysight DSO-X-2012A (Keysight Technologies, Santa
Rosa, CA, USA) with a maximum sample rate of 2GS/s, two commercial piezoelectric
transducers (General Electric Company, Boston, MA, USA) with a 45◦ angled beam and
a central frequency of 2 MHz (model WK 45 PB 2) and 4 MHz (model MWB 45-4) used
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as a transmitter and receiver to excite and receive the longitudinal ultrasonic wave and a
servo-hydraulic testing machine MTS-810 (MTS Company, Swartz Creek, MI, USA) with a
load cell of 100 kN (Figure 2a). The receiver transducer had a central frequency that is two
times that of the transmitter, which is needed to measure the second and third harmonic
amplitude accurately.
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Figure 2. Experimental setup of fatigue test: (a) specimen loaded on the MTS testing machine;
(b) details on the steel brackets and bolts for stable fixing of the ultrasonic transducers on the
specimen surface.

The pair of the two transducers were positioned symmetrically with respect to the
notch section at a suitable distance between them of 41.6 mm, corresponding to an acoustic
path of the longitudinal wave of 58.8 mm, for a total of sixteen reflections determined
through the well-known Snell law (see Figure 3a), so that the angled ultrasound path beam
covers the entire area where the notch is present [31]. The transducers are coupled to the
specimen surface with lithium grease so that the coupling with the surface of the specimen
remains stable during the entire duration of the test.
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A continuous sine waveform with a frequency of 2 MHz and 20 Vpp (volt peak-to-peak)
was produced by using a function generator (Hameg Instruments HMF2550, manufactured
by HAMEG Instruments GmbH, Mainhausen, Germany) and sent to the transmitter while
the receiving transducers were connected to the digital oscilloscope. A schematic block
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diagram with the instruments used to measure the nonlinear ultrasound response in the
experiments in transmission mode is shown in Figure 3b.

The received signals are recorded with a sampling rate of 500 GS/s, averaging
1024 times, and then transferred to a computer for further signal processing into the fre-
quency domain using a MATLAB code based on Fast Fourier Transform (FFT). In this way,
the amplitudes of the fundamental harmonic of the 2nd and 3rd order harmonic were
determined, and the nonlinear coefficients were calculated according to Equation (13).

The specimens were subjected to tension–tension loading with a sinusoidal waveform,
stress ratio R = σmin/σmax = 0.1 and load frequency of 10 cycles per second. Four different
load conditions were considered. Table 2 shows each fatigue test to the applied load in
terms of maximum stress (σmax) and stress amplitude (σa) and the number of cycles to
failure (Nf).

Table 2. Scheduled experimental parameters for each fatigue test.

Specimen ID σmax [MPa] σa [MPa] Nf (Cycles)

P1 335.42 150.93 183,922

P2 348.85 156.98 104,206

P3 357.78 161 97,297

P4 375.67 169.05 77,581

4. Experimental Results and Discussion

A direct comparison of the ultrasound signal recorded before the test and at a fixed
number of cycles allows us to establish the existence of material behavior change originating
from fatigue damage. For example, the ultrasound signals at 0 and 88,500 cycles of the
P3 specimen, corresponding to about 91% of fatigue life, are reported in Figure 4, both
in the time and frequency domain. In the time domain, the peak–peak ultrasonic signals
(∆Vpp) reduced from 17.66 mV to 16.99 mV (Figure 4a), while the fundamental harmonic A1,
accompanied by the second and third harmonic A2, A3, respectively, is clearly traced in the
frequency domain (Figure 4b). Moreover, in the frequency domain, the second harmonic
has an opposite behavior with respect to A1 against fatigue damage, as A2 is increased in
comparison to the starting value.
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The change in ultrasound signal is also evident in the nucleation phase. Figure 5
reports the ultrasound signals in the frequency domain corresponding to 0%, 31%, 62%,
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and 91% of fatigue life, and it shows that the first harmonic initially decreases up to 31%
and then increases up to failure. On the other hand, the second harmonic increases, starting
from the beginning. Finally, at a fatigue life higher than 91%, in which a fatigue crack is
already nucleated and is propagating, the change in the two harmonics is swinging and
difficult to interpret.
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Figure 5. Variation of the first and the second harmonic in the FFT spectrum at different percentages
of damage: 31%, 62% and 91% for the specimen P3.

The behavior that has been described before for the P3 specimen is common to the other
specimens that have been tested at different stress amplitudes. The complete description of
the experimental results is presented in Tables 3–6. Each table refers to a single specimen
and reports the values of the three harmonics A1, A2, A3 and β1, β2 parameters for each
load cycle interval.

Table 3. Experimental nonlinear ultrasound parameters for specimen P1.

Number of
Cycles (N)

Fatigue Life
Ratio Ni/Nf (%) A1 [mV] A2 [mV] A3 [mV] β1 [mV−1] β2 [mV−2]

0 0 8.8326 0.114 8.48 × 10−3 1.460 × 10−3 1.231 × 10−5

38,000 20.7 8.847 0.116 8.38 × 10−3 1.482 × 10−3 1.211 × 10−5

57,000 31 8.834 0.1159 8.52 × 10−3 1.485 × 10−3 1.236 × 10−5

76,000 41.3 8.81 0.1168 8.21 × 10−3 1.505 × 10−3 1.201 × 10−5

94,000 51.1 8.806 0.1168 7.88 × 10−3 1.506 × 10−3 1.153 × 10−5

104,000 56.5 8.802 0.1173 8.20 × 10−3 1.514 × 10−3 1.202 × 10−5

132,500 72 8.801 0.1176 8.15 × 10−3 1.518 × 10−3 1.195 × 10−5

151,000 82.1 8.81 0.1171 8.44 × 10−3 1.509 × 10−3 1.235 × 10−5

160,600 87.3 8.821 0.1171 7.89 × 10−3 1.505 × 10−3 1.150 × 10−5

167,000 90.8 8.813 0.1184 8.38 × 10−3 1.524 × 10−3 1.224 × 10−5

175,000 95.1 8.7454 0.1184 8.09 × 10−3 1.549 × 10−3 1.210 × 10−5

179,500 97.6 8.5036 0.1185 7.68 × 10−3 1.639 × 10−3 1.249 × 10−5

181,500 98.7 8.43074 0.1164 7.79 × 10−3 1.638 × 10−3 1.300 × 10−5

182,000 98.9 8.0405 0.1114 7.10 × 10−3 1.723 × 10−3 1.366 × 10−5

183,500 99.8 7.1407 0.1024 5.21 × 10−3 2.008 × 10−3 1.431 × 10−5



Metals 2024, 14, 11 9 of 17

Table 4. Experimental nonlinear ultrasound parameters for specimen P2.

Number of
Cycles (N)

Fatigue Life
Ratio Ni/Nf (%) A1 [mV] A2 [mV] A3 [mV] β1 [mV−1] β2 [mV−2]

0 0 8.6261 0.1012 9.16 × 10−3 1.360 × 10−3 1.427 × 10−5

5000 4.8 8.5996 0.1075 8.70 × 10−3 1.454 × 10−3 1.368 × 10−5

10,000 9.6 8.6335 0.1088 8.73 × 10−3 1.460 × 10−3 1.356 × 10−5

20,000 19.2 8.6934 0.1103 9.29 × 10−3 1.460 × 10−3 1.413 × 10−5

30,000 28.8 8.7067 0.1109 9.57 × 10−3 1.463 × 10−3 1.450 × 10−5

40,000 38.4 8.7270 0.1125 9.21 × 10−3 1.477 × 10−3 1.386 × 10−5

50,000 48 8.7365 0.1130 9.37 × 10−3 1.481 × 10−3 1.406 × 10−5

60,000 57.6 8.7416 0.1132 9.36 × 10−3 1.481 × 10−3 1.401 × 10−5

70,000 67.2 8.7616 0.1135 9.29 × 10−3 1.479 × 10−3 1.381 × 10−5

80,000 76.8 8.7645 0.1152 9.38 × 10−3 1.499 × 10−3 1.393 × 10−5

90,000 86.4 8.6623 0.1134 9.04 × 10−3 1.511 × 10−3 1.391 × 10−5

92,000 88.3 8.4349 0.1130 8.19 × 10−3 1.588 × 10−3 1.364 × 10−5

94,000 90.2 7.9600 0.1140 6.54 × 10−3 1.799 × 10−3 1.297 × 10−5

102,000 98 7.0507 0.0983 6.77 × 10−3 1.978 × 10−3 1.931 × 10−5

Table 5. Experimental nonlinear ultrasound parameters for specimen P3.

Number of
Cycles (N)

Fatigue Life
Ratio Ni/Nf (%) A1 [mV] A2 [mV] A3 [mV] β1 [mV−1] β2 [mV−2]

0 0 8.831 0.1041 8.66 × 10−3 1.335 × 10−3 1.257 × 10−5

10,000 10.3 8.827 0.1143 8.38 × 10−3 1.467 × 10−3 1.218 × 10−5

20,000 20.5 8.842 0.1156 8.20 × 10−3 1.479 × 10−3 1.186 × 10−5

25,000 25.7 8.841 0.1159 8.48 × 10−3 1.483 × 10−3 1.227 × 10−5

30,000 30.8 8.847 0.116 8.38 × 10−3 1.482 × 10−3 1.211 × 10−5

40,000 41.1 8.834 0.1159 8.52 × 10−3 1.485 × 10−3 1.236 × 10−5

50,000 51.4 8.81 0.1168 8.21 × 10−3 1.505 × 10−3 1.201 × 10−5

55,000 56.5 8.806 0.1168 7.88 × 10−3 1.506 × 10−3 1.153 × 10−5

60,000 61.7 8.802 0.1173 8.20 × 10−3 1.514 × 10−3 1.202 × 10−5

65,000 66.8 8.801 0.1176 8.15 × 10−3 1.518 × 10−3 1.195 × 10−5

70,156 72.1 8.81 0.1171 8.44 × 10−3 1.509 × 10−3 1.235 × 10−5

75,000 77.1 8.821 0.1171 7.89 × 10−3 1.505 × 10−3 1.150 × 10−5

80,000 82.2 8.813 0.1184 8.38 × 10−3 1.524 × 10−3 1.224 × 10−5

85,000 87.4 8.726 0.1186 7.98 × 10−3 1.557 × 10−3 1.201 × 10−5

88,500 90.9 8.496 0.1188 7.55 × 10−3 1.646 × 10−3 1.231 × 10−5

92,511 95.1 8.414 0.1168 7.74 × 10−3 1.650 × 10−3 1.299 × 10−5

95,000 97.6 8.019 0.1117 6.98 × 10−3 1.737 × 10−3 1.353 × 10−5

96,000 98.7 7.801 0.1034 6.37 × 10−3 1.699 × 10−3 1.342 × 10−5

96,331 99 7.141 0.1024 5.21 × 10−3 2.008 × 10−3 1.431 × 10−5
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Table 6. Experimental nonlinear ultrasound parameters for specimen P4.

Number of
Cycles (N)

Fatigue Life
Ratio Ni/Nf (%) A1 [mV] A2 [mV] A3 [mV] β1 [mV−1] β2 [mV−2]

0 0 14.04 0.2879 6.53 × 10−3 1.460 × 10−3 2.360 × 10−6

10,000 12.9 13.86 0.3101 6.60 × 10−3 1.614 × 10−3 2.480 × 10−6

20,000 25.8 13.86 0.3096 6.40 × 10−3 1.612 × 10−3 2.402 × 10−6

30,000 38.7 13.85 0.31 6.00 × 10−3 1.616 × 10−3 2.259 × 10−6

40,000 51.5 13.84 0.3113 6.24 × 10−3 1.625 × 10−3 2.355 × 10−6

45,506 58.6 13.89 0.3107 6.03 × 10−3 1.610 × 10−3 2.249 × 10−6

50,000 64.4 13.91 0.3119 5.52 × 10−3 1.612 × 10−3 2.052 × 10−6

60,000 77.3 13.8 0.3132 6.67 × 10−3 1.645 × 10−3 2.537 × 10−6

65,000 83.8 13.2 0.3115 5.26 × 10−3 1.788 × 10−3 2.287 × 10−6

68,000 87.6 12.8 0.3141 5.21 × 10−3 1.917 × 10−3 2.482 × 10−6

70,000 90.2 12.52 0.3118 5.95 × 10−3 1.989 × 10−3 3.030 × 10−6

72,000 92.8 12.44 0.3103 5.72 × 10−3 2.005 × 10−3 2.972 × 10−6

74,000 95.4 12.18 0.3011 5.01 × 10−3 2.03 × 10−3 2.774 × 10−6

77,000 99.2 9.342 0.2401 8.02 × 10−3 2.751 × 10−3 9.834 × 10−6

The trend of the acoustic nonlinear parameters of the second and third order, nor-
malized with respect to its initial value, is shown in Figure 6a,b. The first-order nonlinear
parameter β1 is interesting in terms of its continuous increase in relation to fatigue life
(Figure 6a) in the nucleation phase, followed by a quick increase corresponding to the final
phase immediately before the failure. This behavior allows us to identify crack nucleation
with good accuracy. The behavior seems to be independent of the applied stress level.
When observing the trend of the graphs relating to the tested specimens P2, P3 and P4, an
increase in the nonlinearity parameter in the initial loading phases is observed in all cases.
This interesting behavior could be due to the initial plasticization in the tip of the notch due
to the different load levels applied, distorting the ultrasonic wave and causing an evident
increase in nonlinearity; in fact, from the trend of the curves, there is a greater increase in
nonlinearity in the initial loading phases for specimen P4 stressed with a greater load than
specimens P2 and P3 stressed at a lower load level, crediting this hypothesis. This observa-
tion is coherent with some indications reported in the literature on stainless steels [49], in
which the ultrasonic nonlinearity parameter of the second order increased with increasing
plastic strain suffering under plastically deformed steel due to a microstructural change
near the notch. The only difference was recorded in the initial trend of the P1 specimen,
which is not significant to the initial increase that characterizes the other specimens.

The third-order nonlinear parameter β2, also considered in this work, did not show
significant variation and was less sensitive to fatigue damage, in fact presenting stable
values of up to about 95% of the fatigue life approximately equal to 1.2 × 10−5 [mV−2] for
specimen P3. Subsequently, it shows a significant increase in the crack propagation phase.

The trend of the third-order nonlinear parameter β2, normalized with respect to its
initial value assumed at 0 cycles, relative to all the tested samples (Figure 6b), shows a
pattern of repeated behavior in the data, which is approximately constant up to about 80%
of the fatigue life for all the tested specimens. Subsequently, it exhibits a rapid increase in
the propagation stages of the fatigue crack before final failure. This behavior is different
from that detected in relation to the second-order nonlinearity parameter, which was far
more sensitive to fatigue damage, although, starting from 80 to 90% of the useful life in the
propagation phase, both parameters are in good agreement.
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In order to verify that the different applied stress levels were sufficient to determine the
plasticization of the material near the notch for all tested specimens and to obtain a quantitative
evaluation of the plastic zone, a finite numerical FEM model of the notch was built, assuming
the hypothesis of the plastic behavior of the material based on a kinematic hardening law,
the von Mises yield criterion and the constitutive law derived from the stress–strain curve
reported by the authors in a previous paper [50]. Exploiting the geometrical symmetry, the
FEM model consists of a mapped mesh of 4200 quadrilateral elements with a parabolic shape
function. The element length corresponding to the notch tip was 0.1 mm and was determined
on the basis of sensitivity analysis. The stress amplitude corresponding to the maximum
load levels applied to the tested specimens is reported in Figure 7, where the dimension of
the plastic zone is represented by the dark region near the notch tip, which was obtained
by superimposing a grey color on the elements of the FEM model that were related to the
plasticization phenomenon, as determined via von Mises equivalent stress. The dimension of
the plastic area is also reported in Table 7, where it was observed that as the level of stress
amplitude applied to the specimens increases, the corresponding percentage variation of the
second-order nonlinearity parameter β1 increases.
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Table 7. Percentage variation of ∆β1/β01 in the initial instant between 0 and 20% of fatigue life.

Specimen ID Stress Amplitude [MPa] Percentage Variation of (∆β1/β01) [%] Dimension of the Plastic Zone [mm2]

P1 150.93 1.4 1.091

P2 156.98 6.9 1.339

P3 161 9.9 1.504

P4 169.05 10.53 1.934

Another interesting parameter to be taken into consideration when monitoring the
evolution of the fatigue damage is the peak-to-peak voltage of the ultrasound signal in the
time domain ∆Vpp. Calculating this parameter at the same number of cycles of Tables 3–6,
it is possible to show the attenuation of ∆Vpp with the number of cycles (Figure 8a), which
is consistent with the behavior found by the authors in a previous work [31].
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percentage of fatigue life varies for the tested specimens.

To make a comparison between the data collected for the tested specimens, the received
signal was normalized with respect to the reference signal relating to the specimen not yet
subjected to fatigue cycles (∆Vpp/∆Vpp0); in the same way, the number of fatigue cycles was
normalized with respect to the fatigue life of the specimen (number of fatigue cycles/total
fatigue life). This linear parameter generally showed a slight increase in values followed
by a decrease, which became increasingly rapid in the crack propagation phase before
reaching failure (Figure 8a).

The final reduction in the ultrasonic signal, justified by the presence of a crack prop-
agation phase, is coherent with the decay of the measured stiffness during the tests. By
processing the fatigue data, the stiffness normalized with respect to its initial value was
plotted as a function of fatigue life (Figure 8b). The curves show a trend very similar to that
of ∆Vpp, presenting an almost constant first part and an initial slight decrease from 72% of
fatigue life for the P3 specimen and from 74% for the P1 specimen, and then rapidly reduced
to 87% of the useful life for P3 specimen and 95% for P1 until specimen failure. The P4
specimen shows an almost stable initial stiffness value and a marked reduction from about
80% of fatigue life. On the other hand, the P2 specimen exhibits a reduction in stiffness from
approximately 70% of fatigue life. For all specimens tested, the normalized ultrasound
signal and the normalized stiffness showed a trend that is similar to the increased fatigue
life percentage. For all tested specimens, the curves reported in the graphs of Figure 9 show
a fairly linear relationship between the two variables.
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An indicator of damage DI was defined to obtain a quantitative assessment of the
evolution fatigue damage, which is expressed by the following equation:

DI (N) =

∣∣∣∣∆Vpp(N)− ∆Vpp(0)
∆Vpp(0)

∣∣∣∣ (14)

where

- ∆Vpp (N) is the peak-peak voltage of the signal recorded at N cycles;
- ∆Vpp (0) is the amplitude of the signal measured before test, referred to the undamaged

specimen not yet subjected to load cycles.

The trend of the damage indicator is shown in Figure 10a for all tested specimens. The
graph shows a general increase in the damage indicator starting from about 25–40% of the
fatigue life for all tested specimens. In the initial stages of the test, a rapid increase in the
damage index was observed for the P4 and P2 specimens from 0% up to about 20% of the
fatigue life. Subsequently, an increase in the damage index is observed from approximately
20 to 25% of the fatigue life up to approximately 50–77% of the life. The results obtained for
the P1 and P3 specimens, on the other hand, show a slight increase in the damage index
in the initial stages of the test. Subsequently, an increase in the damage index is observed
from 30 to 40% of the fatigue life up to approximately 67–72% of the useful life.
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From the general trend of the curves, it was interesting to observe, in the opinion of
the authors, a pattern repeated in the data between 47 and 83% of the fatigue life, which
shows a rapid decrease in the damage indicator that occurs at lower fatigue life percentages
as the applied load level increases and, therefore, also damage propagation, highlighted by
the considerable increase in the damage index, occurs earlier as expected. The latter result
is shown in Figure 10b, which shows the correlation between the fatigue life percentage
in which the rapid decrease in the damage indicator DI occurs and the applied stress
amplitude. The phase of final reduction in the damage indicator and the beginning of its
rapid increase could coincide with the end of the nucleation phase and the beginning of
crack propagation. This behavior appears to be load-dependent and repetitive, suggesting
that it may represent an overall trend.

Figure 11 show two examples of fracture surface morphology with visible cracks
highlighted on side A and B for the P3 specimen (Figure 11a,b) and side A for the P4
specimen (Figure 11c,d) observed with the stereo microscope after the fatigue failure tests.
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5. Conclusions

In this paper, the change in the nonlinear acoustic properties of notched-normalized
carbon steel specimens subjected to fatigue loads was proposed to evaluate the degradation
and damage level of the material. The main results are summarized as follows:

(1) An increase in second-order nonlinearity was observed in the early stages of ap-
plication of the load cycles from 0% to about 10–20% of the fatigue life due to the
plasticization phenomena of the material at the notch tip. From approximately 30 to
40% of fatigue life, the second-order nonlinearity increases due to the progression of
fatigue damage.

(2) The degradation of the material is not always accompanied by an increase in nonlin-
earity. In fact, a decrease in the β1 values was observed before a rapid increase due to
the accumulation of fatigue damage. A rapid increase in the β1 parameter is observed
before the final failure, starting from 85% of fatigue life, which is associated with the
end of the nucleation and the beginning of the propagation.



Metals 2024, 14, 11 15 of 17

(3) The third-order nonlinear parameter β2 was instead less sensitive to fatigue damage,
presenting a quick increase only starting from approximately 80 to 85% of the fatigue
life in the crack propagation phase before final failure. The latter behavior agrees with
the observed stiffness decrease.

(4) A damage indicator DI based on ultrasonic measurements has been proposed to
follow the evolution of fatigue damage, which shows an interesting, repeated behavior
between 50 and 83% of the fatigue life for all tested specimens. An approximate linear
rapid decrease in this parameter has been observed, which occurs at lower fatigue life
percentages as the applied load increases. Subsequently, DI rapidly increases in the
crack propagation phase.
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