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Abstract: In this study, two typical commercially used CaO-SiO2-CaF2-based mold fluxes with
different basicities were adopted. Solid slag films of the two mold fluxes were obtained by immersing
an improved water-cooled copper probe in the molten fluxes for different probe immersion times
and molten slag temperatures. The film thickness, closed porosity, and roughness of the film surfaces
in contact with the copper probe were measured. The heat flux through the solidified films and the
comprehensive thermal conductivity of the films were both calculated. The results indicated that
compared with the heat flux through high-basicity films, the heat flux through low-basicity films
exhibited high fluctuation due to the evolution of fusion cracks within the glass layer. High-basicity
mold fluxes resulted in higher thickness, growth velocity, surface roughness, and devitrification
velocity of the films. With the growth and crystallization of the slag films, the comprehensive
thermal conductivity of the high-basicity films increased significantly. For the low-basicity films,
their comprehensive thermal conductivity first decreased and then increased after the solidification
time exceeded 30 s. The comprehensive thermal conductivity of the high- and low-basicity films
ranged from 0.63 to 0.91 and 0.62 to 0.81 W/(m·K), respectively. The results provide a novel method
for analyzing the potential effect of the structural factors of slag films on heat transfer control and
controlling the heat transfer behavior of slag films.

Keywords: mold fluxes; solid slag films; structure; heat flux; comprehensive thermal conductivity

1. Introduction

Mold fluxes are vital materials applied in the continuous casting of steels. They are
essential for improving the surface and subsurface quality of casting slabs and maintaining
smooth casting [1–4]. During steel casting, mold fluxes are continuously added and melted
in the molds to form a slag pool on liquid steel. The melted slag then flows into the gap
between the initial steel shell and mold wall to form solid and liquid slag films. The
solid slag film in contact with the mold wall controls the heat flux from the steel to the
mold [5–8]. As one of the essential metallurgical functions of mold fluxes, heat transfer
control capability is considered a crucial feature in the evaluation of slags. In particular,
during the continuous casting of peritectic grades, mild cooling of the initial steel shell is
required; this is especially important for a crack-free surface, because the peritectic reaction
and fast cooling can cause significant volume shrinkage on the weak initial steel shell,
increasing internal stress [9–13].

As the heat transfer control capability of a solid slag film is directly determined by its
structure, the structure of mold flux films, especially upon cooling, has been extensively
evaluated. Most existing studies have focused on the crystallization features of solid
films [14–18]. Recently, qualitative results related to the effects of typical film structures
on heat transfer have been reported [19–21]. However, the structure of a solid film is
significantly affected by the cooling conditions. Moreover, several factors can cause slag
films acquired in a laboratory to exhibit non-representative structures [22]. Some studies
have used improved water-cooled copper probes to obtain solid films with structures
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similar to those of films solidified in molds (with the same slag composition). Using this
improved technique, the steady-state thermal contact resistance between the solid films
and molds and the effective thermal conductivity of the solid films were calculated [23].
However, only the steady state (the film grows to a steady structure with a steady heat flux)
can be calculated using this method.

As the initial solidified steel shell is quite weak, the structural and heat transfer control
capabilities of initial solid slag films near the meniscus are essential [1–3]. Understanding
the evolution (especially at the initial solidification stage) of the structures and thermal con-
ductivity of slag films is a prerequisite for understanding and controlling the metallurgical
functions of solid slag films.

To address the limitations of previous studies [22,23], an improved water-cooled
copper probe was used in this study to obtain solidified slag films (with structures similar
to those of films solidified in molds) and heat flux data through these films. Solidified
slag films with different probe immersion times were obtained to analyze the evolution
of film structures during solidification. The microstructure of the solid slag films was
preserved by intensive cooling from the contacted water-cooled copper wall after the probe
withdrew liquid slags. In addition to the structure of the slag films, the heat flux through
the films during solidification was calculated using the temperature increase in the cooling
water passing through the probe. Based on the structural evolution behavior of the films
and corresponding heat flux through the films, the transient-state heat transfer behavior
of the slag films during solidification was calculated and discussed. In this study, the
typical substructure and thermal conductivity evolution of solidified films were calculated
and discussed.

Two typical CaO-SiO2-CaF2-based mold fluxes (high and low binary basicities) were
selected as the basis for this study. The structure and comprehensive thermal conductivity
evolution of the slag films during solidification were determined. Our research results
provide a novel method for analyzing the potential effect of structural factors of slag
films on heat transfer control and controlling the heat transfer behavior of slag films
upon solidification.

2. Experiments
2.1. Mold Flux Selection and Slag Film Solidification

Two commercially used mold fluxes were adopted in this study to reveal the potential
causes of the performances of mold fluxes with different basicities. The compositions of
the selected conventional CaO-SiO2-CaF2-based mold fluxes are presented in Table 1. Two
basicities were used in this study. Different fusion agents were added to adjust the physical
properties of the slags. Samples for experiments were prepared using analytical-grade
reagents CaCO3, SiO2, Al2O3, CaF2, Na2CO3, LiF, Li2CO3, and MgO. To prepare the slag
samples for film acquisition, the reagents were loaded into a high-purity graphite crucible
and melted in a resistance tube furnace at 1300 ◦C. The liquid slags were poured on a
water-cooled copper plate to obtain quenched glasses.

Table 1. Composition of mold fluxes (wt%).

No. CaO SiO2 F Na2O Al2O3 Li2O MgO Basicity

1 41 32 10 11 3 - 1 1.28
2 34 40 8 13 2 1.5 1 0.85

(All components were represented as oxides, except for F).

For each film acquisition experiment, 300 g of pre-melted slag lump was loaded into
a high-purity graphite crucible with an inner diameter of 60 mm. This crucible was then
placed into a vertical tube furnace with Si2Mo heating elements and heated to experimental
temperatures (1300, 1350, and 1400 ◦C) until the end of the film acquisition experiments. To
obtain the solid slag film, a water-cooled copper probe with a width of 20 mm, height of
15 mm, and 6.35 mm in thickness was immersed in the slag bath (immersion depth 13 mm;
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flow rate of cooling water 1.7 dm3/min), and the solidified slag film was recovered from
the probe after experiments. To investigate the structural evolution behavior of the solid
slag film, different probe immersion times (15, 30, 45, 60, and 90 s) were used. Because
the basicity of slags significantly affects the growth speed of films, the low-basicity film
had a low growth velocity (more time was needed for the film to reach a steady state
upon solidification); probe immersion times of 15, 30, 60, and 90 s were applied. For the
high-basicity film, probe immersion times of 15 s, 30 s, 45 s, and 60 s were used.

2.2. Measurements and Analysis

The heat flux through the slag film was calculated using the temperature increase
in the cooling water upon passing through the probe. Heat flux can be expressed using
Equation (1), where Q is the heat flux, MW/m2; W is the flow rate of cooling water, kg/s;
(Tout − Tin) is the temperature increase in cooling water, K; A is the area that the probe
contacted with slag films, m2; and Cp is the heat capacity of water. More detail on heat flux
calculation can be found in references [19–24].

Q =
(Tout − Tin)W·CP

1000A
(1)

Because the heat transfer velocity in solid slag films is significantly lower than that
in the copper wall and forced-convection liquid slag, the temperature difference between
the copper wall of the probe (contacted with solidified films) and the solidification front of
the slag films before reaching a steady state was assumed to be equal to the temperature
difference between the cooling water and liquid slag. Thus, a comprehensive thermal
conductivity of a film with a given solidification time can be expressed using Equation (2),
where Q is the heat flux through films, λ is the comprehensive thermal conductivity of slag
films (containing contact thermal resistance between slag film and copper wall), Lfilm is the
thickness of obtained slag film, and Tslag and Twater are the temperature of bulk slag and
cooling water, respectively.

λ = Q·L f ilm/
(

Tslag − Twater

)
(2)

Closed porosities of films were calculated using the difference between the apparent
densities (ρapp) of films and true densities (ρture) after being ground into fine powders. The
closed porosity can be calculated as (ρture − ρapp)/ρture. Density was measured using a
pycnometer (Ultrapyc 3000, Anton Paar, Graz, Austria). The structures of the solid films
on the wide surface of the probe were inspected. The thickness near the center of the
films was measured using a point micrometer and the roughness (Ra) of the surface in
contacted with the copper probe was measured using a profilometer (Mitutoyo SJ-210,
Kawasaki, Japan). The specific measurement positions of thickness and roughness can be
found in reference [24]. The surface and internal structures of the slag film were inspected
using scanning electron microscopy (SEM, Nova Nanosem 450, FEI Company, Hillsboro,
OR, USA) and optical microscopy. Samples for SEM inspection were first mounted in
resin and polished using Al2O3 suspensions; then, the cross sections of the films were
sputter coated using Pt. Crystals in films were identified using X-ray diffraction (XRD,
Cu Kα, Rigaku Miniflex 600, Tokyo, Japan) after grinding the samples into fine powder.
The X-ray diffraction results indicated that the primary crystal in the films was cuspidine
(3CaO·2SiO2·CaF2, PDF # 00-041-1474). For CaO-SiO2-CaF2-based mold fluxes, cuspidine
is a dominating crystal phase precipitates in slag films, numerous achievements have been
reported on the physical and chemical properties of cuspidine in slag films [25–27].

3. Result and Discussions
3.1. Heat Flux through Slag Film upon Solidification

The graphs of typical heat fluxes through the slag films are shown in Figure 1. The heat
flux data indicated that a higher slag bulk temperature resulted in a higher heat flux, which
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is in agreement with previous approaches [24]. However, compared with the high-basicity
films (R = 1.28), the low-basicity films (R = 0.85) resulted in heat fluxes with high fluctuation
during solidification. Heat flux fluctuation, especially at the initial solidification stage, can
deteriorate the cooling uniformity of the microzone on the initial steel shells and cause
surface cracks.
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Figure 1. Heat flux through slag films solidified in slag bulk with different temperatures, mold flux
with basicity 1.28 (a) and 0.85 (b).

To compare the heat flux fluctuations of the two slags, typical heat flux fluctuation
data were obtained, as shown in Figure 2. The mean heat flux value for every three seconds
during the film solidification and the corresponding standard deviation were plotted
(only the decreasing period of the heat flux curve in Figure 1 was considered). Results
indicate that the heat fluxes through the film with higher basicity were more stable upon
solidification, especially at the early solidification stage (t < 20 s), than through the film
with lower basicity. Heat flux fluctuation was caused by the structural evolution of the
films upon cooling, which is discussed later.
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3.2. Structure Evolution of Solid Films

The total thickness of the films, glassy layer thickness of the films, roughness of the film
surfaces in contact with the copper wall, and closed porosity of the films were measured.

3.2.1. Total Thickness of Films

Figure 3 shows the total thickness of the films during solidification. Higher slag
temperatures and lower basicities resulted in lower film thicknesses and growth velocities.
Notably, the thickness non-uniformity of the films became significant at a lower bulk slag
temperature (1300 ◦C). Moreover, the thickness of high-basicity films increased sharply
at this temperature, indicating that the internal structures or surface roughness of films
changed nonlinearly when slag temperature decreased from 1400 ◦C to 1300 ◦C. On the
contrary, the decrease in slag temperature had not caused a sharp increase in solidified film
thickness for the low-basicity slag. As the temperature fluctuation near meniscus can be
intensified in wide slab continuous casting, the sharp increase in film thicknesses at the
lower temperature can deteriorate the lubrication capacity of liquid slag films, and which
should be the reason that high-basicity mold fluxes usually causes industrial accidents such
as sticking or breakouts. The film thickness data indicated that the heat flux fluctuation
shown in Figure 1b was not primarily due to film thickness fluctuations but due to the
internal structural evolution (including surface roughness) of the films.
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3.2.2. Thickness of Glassy Layer of Films

Figure 4 shows the thickness of the film glassy layer after solidification. The reduction
velocity of the glassy layer of the high-basicity films was significantly higher than that of
the low-basicity films. Because high-basicity slag containing less silico-oxygen complex
networks and can provide better kinetic conditions for crystallization. For low-basicity
films, an increased bulk slag temperature prevents crystal precipitation. When the slag
temperature was 1400 ◦C, the glassy-layer thickness of the low-basicity film began to
decrease until the solidification time exceeded 60 s. When the slag temperatures were
1350 and 1300 ◦C, the glassy-layer thickness of low-basicity films decreased gradually
upon solidification. Figure 5 shows a typical total glassy cross section of a low-basicity
film. Closed pores were observed, indicating that pore formation was not directly related
to crystallization.
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solidification time, optical image.

3.2.3. Fusion Cracks within Glassy Layers

As shown in Figures 5 and 6, glass with closed pores and fusion cracks (labeled in
Figure 6 using red rectangles) are typical low-basicity films with relatively short solidi-
fication times. The irregular morphology of the cracks with fused pore chains indicated
that these cracks were not formed after the films left the slag bulk but during solidification.



Metals 2024, 14, 1 7 of 11

The formation mechanism of fusion cracks has been discussed in a previous study on
low-fluorine mold fluxes [28]. As previously discussed for low-fluorine films, the formation
and fusion of cracks within the glassy layer (near the film surface in contact with the copper
probes) can lead to high heat flux fluctuation, especially at the initial solidification stage.
This is the primary reason for the heat flux fluctuation shown in Figure 1b. However,
no obvious fusion cracks were found in the glassy layer of high-basicity films. This is
caused by the narrower solidification range that this high-basicity slag has. Industrial
applications indicate that compared with CaO-SiO2-CaF2-based high-basicity mold fluxes,
low-basicity mold fluxes that form glassy films are more likely to cause surface cracks.
The large thickness ratio of the glassy layer in the slag films tends to promote the heat
flux fluctuation caused by the evolution of fusion cracks. This is one of the reasons that
high-basicity mold fluxes with noticeable crystallization tendencies have good performance
in preventing slab cracks in continuous-casting peritectic grades.
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3.2.4. Roughness of Film Surfaces Contacted with Copper Wall

The measured roughness Ra of the film surfaces in contacted with the copper probe is
shown in Figure 7. Typical morphologies and profile curves of the film surfaces are shown
in Figure 8. These results indicate that for high-basicity films, higher slag temperatures
result in a higher roughness of the film surfaces in contacted with the copper wall. In
this study, low-basicity films presented relatively low surface roughness, and the effect
of temperature on the roughness was not noticeable (Figure 7b). Moreover, the surface
roughness of the films neither increased with film growth (nor with crystallization). This
indicated that the rough surface of the slag films in contacted with the copper wall was
formed during the initial stage of solidification and was not caused by crystallization within
the films. As the initial steel shells near the meniscus in molds is quite thin and weak, a
strong capacity of heat transfer control of initial solidified slag films is required for casting
crack-sensitive grades. As the surface roughness of high-basicity films is higher than the
low-basicity films have, high-basicity mold fluxes should present better performances on
heat flux control and prevention of longitudinal cracks on slabs. This agrees with the
commercial performance of high-basicity mold fluxes. Open pores were only detected on
surfaces of high-basicity films in this case. This contributed to the high surface roughness
and thermal contact resistance of the high-basicity films.
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3.2.5. Closed Porosity of Films

Closed pores within the solidified films were analyzed. These pores affected the
apparent density and heat transfer behavior of the slag films. In general, the present of
closed pore within solidified films can decrease the thermal conductivity of films. Thus,
the formation stage of pores upon solidification also should be taken into consideration.
Most of these pores were found within the glassy or previous glassy layer (devitrification
by precipitating crystals). The measured closed porosity data are presented in Figure 9. For
the high-basicity films, most of the pores were formed near the cold side for heat transfer
control at the initial solidification stage. This accounts for the decrease in porosity with
increasing film thickness. For the low-basicity films, most of the pores precipitated at the
center of the film (see Figure 6). This accounts for the increase in the closed porosity of the
low-basicity films at the initial solidification stage.
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3.3. Evolution of Heat Transfer Characteristics of Slag Films upon Solidification

The calculated comprehensive thermal conductivity (including the contact thermal
resistance between the slag film and copper wall) under different film solidification times
and bulk slag temperatures is shown in Figure 10.
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The results show that at the initial solidification stage (15 s), the high-basicity films have
relatively lower comprehensive thermal conductivities, which are mainly attributed to the high
surface roughness of the initial films (higher thermal contact resistance between the films and
the copper wall), than the low-basicity films have. The high-basicity films exhibit significantly
higher heat transfer control capabilities during the initial solidification stage. However, with the
rapid increase in film thickness and crystallization (see Figures 3 and 4), the thermal conductivity
of the high-basicity films increased significantly. This proves the conclusion of a previous study
that, for the same mold flux, crystallized films usually have higher thermal conductivities than
glassy films [29]. The thermal conductivity of the low-basicity films first decreased and then
increased with the precipitation of crystals within the film. In this case, the comprehensive
thermal conductivity of high-basicity films and low-basicity films ranges from 0.63 to 0.91, and
0.62 to 0.81 W/(m·K), respectively.

The structure and comprehensive thermal conductivity evolution of slag films upon
solidification have been detected, calculated, and discussed in this study. However, the
thermal conductivity value was contributed by all structural factors together. The contribu-
tion degree of a single structural factor on heat transfer control upon solidification will be
revealed in future work.
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4. Conclusions

Two CaO-SiO2-CaF2-based commercially used mold fluxes were selected as the basis
for this study. The structure and comprehensive thermal conductivity (including the contact
thermal resistance between the slag film and copper wall) evolution of the slag films were
determined. The results can be summarized as follows:

(1) Compared with the heat flux through the high-basicity slag films, which exhibited
high fluctuations through the low-basicity glassy films, especially at the initial solidification
stage. This was primarily due to the evolution of fusion cracks within the glass layer near
the cold surface of the low-basicity slag films. No obvious fusion cracks were found in the
glassy layer of high-basicity slag films.

(2) High-basicity mold fluxes resulted in higher thicknesses, growth velocities, and
devitrification velocities of the slag films. The roughness of the surfaces of the high-basicity
films in contact with the copper probe was significantly higher than that of the low-basicity
films. The rough surface in contact with the copper wall was formed during the early stage
of solidification and was not related to crystallization. For high-basicity slag films, higher
slag bulk temperature resulted higher surface roughness; the effect of temperature on the
roughness was not noticeable for low-basicity mold fluxes.

(3) With the growth and crystallization of the slag films, the comprehensive thermal
conductivity of the high-basicity films increased significantly. For the low-basicity films,
the thermal conductivities first decreased and then increased after the solidification time
exceeded 30 s. The comprehensive thermal conductivity of high-basicity films and low-
basicity films ranged from 0.63 to 0.91 and 0.62 to 0.81 W/(m·K), respectively.

The results of this work provide a novel method to reveal the effect of the structural
factors of slag films on heat transfer control and to control the heat transfer behavior of slag
films upon solidification.
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