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Abstract: In electric arc furnace (EAF) steelmaking, oxygen jets play a crucial role in controlling
stirring ability, chemical reactions, and energy consumption. During the EAF lifetime, refractory wear
leads to a decrease in the molten steel level and an increase in the nozzle-to-steel distance, thereby
negatively affecting the overall energy efficiency of the process. The objective of this study is to
optimize the energy efficiency of the EAF refining process by adjusting the nozzle flow conditions
and conducting an analysis of jet performance using computational fluid dynamics (CFD) simulation.
Three types of injection jets were considered: the conventional jet, the CH4 coherent jet, and the
CH4 + O2 coherent jet. The findings reveal that the shrouded flame of the coherent jet enhances jet
performance by maintaining the maximum velocity, extending the potential core length, and increas-
ing the penetration depth in the molten steel bath. To maintain the jet performance in response to an
increased nozzle-to-steel distance resulting from refractory wear, transitions from the conventional
jet to the CH4 coherent jet and the CH4 + O2 coherent jet are recommended once the nozzle-to-steel
distance increases from its initial level of 1000 mm to 1500 mm and 2000 mm, respectively.

Keywords: oxygen supersonic jet; energy efficiency; electric arc furnace; refining process

1. Introduction

In the recycled steel industry, electric arc furnaces (EAF) are operated using electrical
and chemical energy. In recent years, the steelmaking process has been continuously devel-
oped to increase energy efficiency and decrease power consumption. Various techniques
have been used to reduce specific electrical energy consumption, such as scrap preheat-
ing, direct input of hot metal, supersonic oxygen (O2) jet injection, and the slag foaming
technique. One of the methods used to substitute electrical energy and reduce production
costs is the use of chemical energy from a supersonic O2 jet [1–5]. However, the efficiency
of supersonic O2 jet drops due to the descending level of molten steel inside the EAF after
the refractory has significantly worn.

A supersonic jet is employed in the melting and refining process to increase energy
efficiency, oxidize the dissolved impurities in the molten steel in the EAF, and generate heat,
which contributes to the consequent electrical energy savings [6–9]. The chemical reactions
from injecting O2 and carbon into the molten bath increase the efficiency of the steelmaking
process and decrease melting time and electrode consumption. However, excessive O2
injection has negative effects, including yield loss of metal, increased FeO content, and
lower slag viscosity. This results in thermal energy loss and refractory wear [5,10]. There
are two types of supersonic jet: the conventional supersonic jet and the coherent supersonic
jet. The conventional supersonic jet is the injection of O2 gas into the molten steel bath [11].
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The core velocity of a supersonic jet continuously decreases along the distance from the
nozzle to the molten steel bath due to the entrainment between the main O2 jet and the
surrounding environment gas. This provides a lower impact on momentum and oxidation
rate [12]. The limitation of the conventional jet is the short potential core length.

One technique to enhance the efficiency of the conventional jet is to reduce the sur-
rounding resistance of the supersonic jet by the implementation of a coherent jet. In the
refining process, the coherent supersonic jet technique employs a shrouding nozzle to
deliver an O2 supersonic jet into the molten steel bath. The shrouded gas flow, which is a
mixture of fuel (CH4) and O2 surrounding the main O2 jet, produces a combustion flame.
This flame creates a low-density zone at the core of the jet. The potential core length of the
jet is significantly increased by a shrouding flame that maintains the supersonic jet. As a
result, the O2 jet is able to penetrate deeper into the molten steel bath, thereby enhancing
the efficiency of O2 delivery [1,13]. This technique outperforms conventional supersonic
jets in terms of both stirring ability and energy efficiency in the refining process [12].

Previous research [4,11–14] applied computational fluid dynamics (CFD) simulation
to physical water models and/or combustion experiments to study the characteristics of O2
supersonic jets. The O2 jet parameters are crucial in the steelmaking process because they
affect stirring, chemical reactions, energy consumption, and foaming slag formation [9,15].
A study by Liu et al. in 2020 [12] investigated the characteristics of the O2 lance structure on
supersonic jets using CFD simulation and combustion experiments. Their results indicated
that a different lance structure design is able to prolong the velocity potential core length,
which enhances the steelmaking process efficiency. In 2016, Liu et al. [16] reported that
increasing the flow rate of the shrouding nozzle results in the prolongation of the potential
core length of the jet. Similarly, Zhao et al. [17–19] examined the efficiency of a supersonic
coherent jet in which a supersonic shrouding nozzle surrounds the main jet. They found
that the use of a supersonic coherent jet significantly enhances the potential core length
of the main jet. Moreover, research articles authored by Zhao et al. [20] in 2017 and
Liu et al. [21] in 2018 examined coherent jets with various parameters for shrouding gas
without a combustion flame. Both articles found that the parameters of the shrouding gas
injection played a crucial role in protecting the main O2 jet from the ambient gas resulting in
reduced jet expansion and an increase in jet length. Gas temperature is another important
factor affecting the potential core length. In 2016, Liu et al. [7] investigated the potential
core length of the jet under different main O2 temperatures. In their study, increased
main O2 temperature led to a higher axial velocity but a lower potential core length.
Various research studies have been conducted to improve O2 injection and shrouding
flame techniques for reducing electrical consumption during the melting and refining
processes [8,12,13]. The utilization of coherent jet technology has shown promising results
in lowering electricity consumption in the steelmaking process. Additionally, coherent jet
technology offers various metallurgical and operational benefits, such as shorter processing
times, cost-effectiveness, higher efficiency, and improved product quality [22]. For instance,
Sung et al. [4] designed an injector system for the EAF, modifying the nozzle position to
reduce the distance between the nozzle outlet and the molten steel bath. This modification
led to a reduction in electrical energy usage of 5 kWh/ton. Similarly, Megahed et al. [23]
and Memoli et al. [24] adjusted the nozzle location and flow rate of O2 injection resulting in
decreased electrical consumption and refractory usage along with increased productivity.
These studies demonstrated the potential of optimizing jet injection techniques to enhance
energy efficiency and overall performance in the steelmaking process.

Based on the literature review, three jet injection techniques are commonly used in
EAF steelmaking: the conventional jet, the CH4 coherent jet, and the CH4 + O2 coherent jet
techniques. These coherent jet technique enhances the stirring capability of molten steel by
injecting gas shielding around the main jet. Table 1 presents a summary of research articles
pertaining to these techniques. Most of the research involved comparing the conventional
jet and the coherent jet and modifying the shape and injection parameters of the nozzle, as
well as alterations to the gas mixture ratio in the nozzle.
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Table 1. The O2 lance techniques were studied in previous research.

References Conventional Jet
(No Shrouding)

CH4
Coherent Jet

CH4 + O2
Coherent Jet Other

[1,7,11,12,16,22,25–30] • •
[2,6,14,23,24,31–36] •

[4] • •
[13,37–39] •

[17,18] • •
[19] •

[20,21,40,41] •
All the studies listed in Table 1 focused on comparing one or two types of injection jets.

As far as the current authors know, there have been no direct reports directly comparing the
performances of these three injection types under real steel plant conditions. Therefore, this
study employed CFD to predict the flow characteristics of three injection jet types installed
at a steelmaking plant. This study also examines and verifies the most applicable turbulence
models. Furthermore, optimization of flow parameters was performed considering the
different molten steel levels caused by EAF refractory wear.

2. Methodology

In this study, an 85-ton capacity EAF located at a steelmaking plant in Thailand, i.e.,
Millcon Steel PLC., was chosen as a case study. The furnace has a diameter of 6 m. In
the refining process, three O2 jets were used, as shown in Figure 1. The inclined jets were
installed in the EAF furnace wall at an angle of 42◦ from the horizontal and 670 mm above
the molten steel level inside the furnace, as illustrated in Figure 2a. The conventional jet
was used in the refining process of this steel mill, with a maximum flow rate of 1800 Nm3/h.
The O2 consumption in the refining process accounted for approximately 40 percent of the
total O2 consumption.
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Figure 2. Molten steel level of (a) new furnace and (b) after 600 heats.

The level of molten steel in the furnace decreased with EAF lifetime due to increasing
wear in the refractory wall. Figure 2a shows that the new furnace has a distance between
the nozzle exit and the molten steel of 1000 mm. Whereas, Figure 2b shows the refractory
wear at the lower shell after 600 heats. This resulted in an increase in the distance between
the nozzle exit and the molten steel to 2000 mm.

Based on the production data from approximately 3500 heat samples at this plant,
a longer EAF lifetime led to higher O2 and electrical consumption during the refining
process (Figure 3). For the initial 200 heats, the average O2 consumption and the average
electrical consumption were 380 kWh/ton of billet and 12 Nm3/ton of billet, respectively.
After 600 heats, the average O2 consumption and the average electrical consumption rose
significantly to 392 kWh/ton of billet and 13.6 Nm3/ton of billet, respectively.
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2.1. Numerical Method

In this study, the computer equipped with an Intel Core i9 (10th Gen) processor and
48 GB of memory was used for simulation. The computational time for each case was
approximately 100 h. CFD software, ANSYS Fluent 2020R2, was employed to predict the
characteristics of the O2 jet in the refining process, which has a high ambient temperature
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and is difficult to measure inside the furnace. The phenomena of the conventional jet and
the coherent jet were simulated.

The numerical simulation was calculated by integrating the Reynolds-averaged Navier–
Stokes equations. The average mass, momentum, and energy conservation equations of the
Navier–Stokes equations were as follows:

Mass conservation equation:
∂ρ

∂t
+

∂ρui

∂xi
= 0 (1)

Momentum conservation equation:
∂

∂t
ρui +

∂

∂xj
ρuiuj =

∂Pf
∂xi

+
∂

∂xj
(τij − ρu′iu

′
j ) (2)

Energy conservation equation:

∂

∂t
ρE+

∂

∂xi
[ui(ρE + ρ)] =

∂

∂xj

(
keff

∂T
∂xj

+ ui
(
τij
)

eff

)
+ Sh (3)

where ρ is the gas density, E is the total energy of the gas, ui and uj are the average
velocity components at the i and j directions, Pf is the pressure of the fluid, ui

′ and uj
′

are the fluctuating velocity components, keff is the effective thermal conductivity, T is the
temperature of the fluid, Sh is the internal source of energy, and τij is the viscous stress
tensor on the cell surface measured using the molecular viscosity.

In the simulation setup, the gas phases of O2 and CH4 were defined as ideal gases
because the O2 lance passed the primary nozzle; its high-pressure energy, temperature,
and density also changed. As a result, the ideal gas phase should be established for the
calculations in the following equation:

ρ =
PM
nRT

(4)

where, ρ, P, M, n, R, and T are density, total pressure, mass, mole number of the gas, ideal
gas state constant being 8.314, and temperature, respectively.

To study the flow field characteristic of the O2 supersonic jet, the RNG k-ε turbulence
model is derived from the instantaneous Navier–Stokes equations in the simulation process.
The analytical derivation results in a model with constants different from those in the
standard k-ε model and additional terms and functions in the transport equations for k
and ε.

∂

∂t
ρk+

∂(ρkui)

∂xi
=

∂

∂xj

(
(αkµeff)

∂k
∂xj

)
+ Gk + Gb − ρε+YM + Sk (5)

∂

∂t
ρε+

∂(ρεui)

∂xi
=

∂

∂xj

(
(αεµeff)

∂ε

∂xj

)
−Cε1

ε

k
(Gk + C3εGb)−C2ερ

ε2

k
− Rε + Sε (6)

where Cε1, and Cε2, are the constants for the model, and their values are 1.42 and 1.68.
Gk is the generation of turbulence kinetic energy due to mean velocity gradients, Gb
is the generation of turbulence kinetic energy due to buoyancy, Ym is the contribution
of the fluctuating dilatation in compressible turbulence to the overall dissipation rate,
αk and αε are the inverse effective Prandtl number for k and ε, respectively. RNG k-ε
turbulence model, Cµ = 0.0845 is used, and turbulent viscosity was computed by the
following equation:

µt = Cµρ

(
k2

ε

)
(7)
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A species transport model was applied to solve the conservation equations for all
chemical species. The local mass fraction of each species, Yj, is solved through the solution
to the convection–diffusion equation. The conservation equations are presented below:

5
(
ρ
⇀
uYi

)
= −5 ⇀

Ji + Ri (8)

⇀
Ji = −

(
ρDi,m +

ut

Sct

)
5 Yi −DT,i

5T
T

(9)

where Ri is the net rate of production of species i by chemical reactions.
⇀
Ji is the diffusion

flux term of species i, Di;m is the diffusion coefficient for species i in the mixture, and DT;i is
the thermal diffusion coefficient. Sct is the turbulent Schmidt number, which is 0.7.

To investigate the influence of the shrouding gas composition on the properties of
the supersonic jet. The Eddy Dissipation (ED) model and the Eddy Dissipation Concept
(EDC) model are often applied to turbulence/chemistry interactions. The EDC model
provides more accuracy than ED; however, the ED model requires less computational
time [6,25,31]. In this research, the eddy dissipation (ED) model is applied. Moreover, a
one-step combustion reaction between CH4 and O2 is examined. The net rate of production
of species i due to reaction r, Ri,r, is given in the two expressions below:

Ri = vi,rMw,iAρ
ε

k

(
YR

vi,rMw,R

)
(10)

Ri = vi,rMw,iABρ
ε

k

 ∑ PYP

∑N
j v

j,r
Mw,j

 (11)

where YP is the mass fraction of any product species (P), YR is the mass fraction of a
particular reactant (R), A is an empirical constant equal to 4.0, and B is an empirical
constant equal to 0.5.

2.2. CFD Model and Boundary Conditions

The dimensions of the supersonic jet nozzle, which consists of main O2 and straight
shrouding nozzles, are illustrated in Figure 4. The throat and exit diameters of the main O2
jet are 19 mm and 27 mm, respectively. The straight shrouding nozzles with a diameter
of 6 mm are arranged in two concentric rings with radii of 27 mm and 33 mm, supplying
methane (CH4) and oxygen (O2), respectively.

Metals 2023, 13, x FOR PEER REVIEW 6 of 18 
 

 

▽(ρu⃑Yi)= − ▽ Ji⃑ + Ri (8)

Ji⃑= − ρDi,m + utSct ▽Yi  −  DT,i ▽TT   (9)

where Ri is the net rate of production of species i by chemical reactions. Ji⃑ is the diffusion 
flux term of species i, Di;m is the diffusion coefficient for species i in the mixture, and DT;i 
is the thermal diffusion coefficient. Sct is the turbulent Schmidt number, which is 0.7. 

To investigate the influence of the shrouding gas composition on the properties of 
the supersonic jet. The Eddy Dissipation (ED) model and the Eddy Dissipation Concept 
(EDC) model are often applied to turbulence/chemistry interactions. The EDC model pro-
vides more accuracy than ED; however, the ED model requires less computational time 
[6,25,31]. In this research, the eddy dissipation (ED) model is applied. Moreover, a one-
step combustion reaction between CH4 and O2 is examined. The net rate of production of 
species i due to reaction r, Ri,r, is given in the two expressions below: Ri = vi,rMw,iAρ εk ( YRvi,rMw,R ) (10)

Ri = vi,rMw,iABρ εk ( ∑ PYP∑  Nj vj,rMw,j )  (11)

where YP is the mass fraction of any product species (P), YR is the mass fraction of a par-
ticular reactant (R), A is an empirical constant equal to 4.0, and B is an empirical constant 
equal to 0.5. 

2.2. CFD Model and Boundary Conditions 
The dimensions of the supersonic jet nozzle, which consists of main O2 and straight 

shrouding nozzles, are illustrated in Figure 4. The throat and exit diameters of the main 
O2 jet are 19 mm and 27 mm, respectively. The straight shrouding nozzles with a diameter 
of 6 mm are arranged in two concentric rings with radii of 27 mm and 33 mm, supplying 
methane (CH4) and oxygen (O2), respectively. 

 
Figure 4. Longitudinal cross-section and front view of the supersonic jet nozzle. 

The investigation included three types of jets, categorized as follows: First, Cases A1–
A3 represent conventional jets involving O2 injection through the central main O2 jet with-
out the presence of a shrouding nozzle injection flame (Figure 5a). Second, Cases B1–B3 
correspond to CH4 coherent jets, where the main O2 injection is shielded with a shrouded 
flame generated using CH4 combustion (Figure 5b). Last, Cases C1–C3 refer to CH4 + O2 
coherent jets, in which the main O2 injection is shielded with a shrouded flame formed by 
both CH4 and secondary O2 (Figure 5c). 

Figure 4. Longitudinal cross-section and front view of the supersonic jet nozzle.

The investigation included three types of jets, categorized as follows: First, Cases
A1–A3 represent conventional jets involving O2 injection through the central main O2 jet
without the presence of a shrouding nozzle injection flame (Figure 5a). Second, Cases
B1–B3 correspond to CH4 coherent jets, where the main O2 injection is shielded with a
shrouded flame generated using CH4 combustion (Figure 5b). Last, Cases C1–C3 refer to
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CH4 + O2 coherent jets, in which the main O2 injection is shielded with a shrouded flame
formed by both CH4 and secondary O2 (Figure 5c).
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The simulations were conducted in the 3D geometric domain. The boundary condi-
tions are illustrated in Figure 6. The domain and its boundaries include the main O2 jet
inlet, shrouding CH4 inlet, shrouding O2 inlet, outlet, and combustion zone. The domain
extends 3000 mm downstream in the axial direction and 850 mm in the radial direction.
The boundary is denoted by a black line representing a defined wall region. The boundary
conditions at the main O2 jet inlet and shrouding nozzle inlets are adopted as mass flow
inlets of each gas phase as a 100% mass fraction of O2 and CH4. The temperatures of all gas
phases at the inlets are set at 298 K. The boundary condition denoted by the red lines of the
combustion zone is defined as a pressure outlet condition with an ambient temperature
of 1700 K and 5% backflow turbulent intensity. The initial condition of the domain is also
filled with air at a temperature of 1700 K.

Figure 6. The schematic of the domain and boundary conditions.

Table 2 presents the mass flow rate parameters for nine scenarios (Cases A1 to C3)
of CFD simulation. In the initial phase of the refining process at the sample plant, the
O2 flow rate gradually increased from 0.476 kg/s (A1) to a maximum level of 0.715 kg/s
(A3) and remained constant for the rest of the 60% of the total refining time. Therefore,
the O2 jet flow rate in Case A3 is introduced for further studies of coherent jets in the last
six scenarios. The flow rate of each case in the simulation was set to a constant value. The
shrouding flow rates in Cases B1 to C3 were designed based on data from the combustion
injection during the scrap preheating process of the sample plant. The combustion reaction
stoichiometric ratio of CH4 and O2 shrouding in Cases C1 to C3 was set to 1. It is observed
that, for the present operation of the sample plant, the nozzle system contains both the
main O2 jet and the shrouding nozzle, but neither has been used concurrently in a coherent
jet. The designs of all the scenarios in Table 2 were conducted to introduce a technique to
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improve the stirring ability of the refining process by adjusting the flow conditions and
flow rate parameters.

Table 2. The parameters of mass flow rate for the CFD simulation.

Case Main O2 Jet
Flow Rate (kg/s)

CH4 Shrouding
Flow Rate (kg/s)

O2 Shrouding
Flow Rate (kg/s)

Conventional jet
A1 0.476
A2 0.635
A3 0.715

CH4
coherent jet

B1 0.715 0.0297
B2 0.715 0.0496
B3 0.715 0.0695

CH4 + O2
coherent jet

C1 0.715 0.0297 0.118
C2 0.715 0.0496 0.198
C3 0.715 0.0695 0.277

The simulations of the conventional and coherent supersonic jets were performed
under steady-state conditions. The momentum and energy equations of the supersonic jet
and shrouding nozzle were solved using a pressure-based solver. The wall was defined as
a stationary wall with non-slip conditions. The SIMPLE algorithm scheme was employed
in the pressure-velocity coupling. To improve the accuracy of the numerical simulations, a
second-order upwind scheme was used for spatial discretization. To obtain significant im-
pacts on the simulation result, a discrete ordinate (DO) model was considered for radiation
phenomena. The weighted sum of gray gas (WSGG) model was calculated for the radiative
heat transfer. The specific heat of a gas phase was defined as a piecewise polynomial. In
this study, the energy and species equations were solved, and the convergence was verified.
Convergence was obtained when the residuals were less than 10−6 for the energy and 10−4

for all the other variables. The second criterion was that the variations between consecutive
iterations of temperature and velocity at the outlet downstream were within 10 K and
2 m/s, respectively.

2.3. Mesh Independence

The mesh sensitivity of the numerical model was investigated to determine an opti-
mal number of elements for the simulation setup. In this research study, different mesh
configurations were used for distinct areas. In the nozzle zone, a tetrahedral mesh was
implemented. Meanwhile, a hexahedral mesh was applied in the combustion zone, as
shown in Figure 7. In the central core region of the combustion zone, the mesh was refined
with structured hexahedral elements, and the radius of the center core mesh refinement
was defined as 55 mm from the central axial position.
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The mesh independency of this study was considered using the axial velocity of the
coherent jet. Figure 8a,b present the axial velocity profiles of a CH4 + O2 coherent jet of
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six mesh levels and velocity magnitude at a position of 2000 mm and 2500 mm from the
nozzle exit. The number of elements used in this study includes 2.5 M, 2.8 M, 3.0 M, 3.6 M,
4.2 M, and 4.6 M. The simulation results provide a significant correlation with axial velocity
variations of less than 2.0%. The difference in axial velocity between 3.0 M and 3.6 M was
approximately 11% and 4% at positions 2000 mm and 2500 mm, respectively. Based on
this investigation, the accuracy of the combustion simulation and computational time was
optimized upon employing 3.6 million elements.
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3. Results and Discussion
3.1. Model Validation

For the CFD modeling, the supersonic state of the main O2 jet was considered, and
the flow turbulence was modeled using a Reynold-Averaged Navier–Stokes (RANS) two-
equation model. As there is no consensus on the most suitable models for this type of
problem, this study compared three k-ε models, i.e., standard k-ε, realizable k-ε, and
RNG k-ε [1,12–14,21,33], and two k-ω models, i.e., standard k-ω, and SST k-ω [17–20].
Figure 9 presents the validation of the turbulence model with the experimental results
from Liu et al. [13]. Turbulence models were investigated, and the results revealed that
certain turbulence models either underpredicted or overpredicted the turbulence mixing in
the supersonic jet. At the same time, the RNG k-εmodel demonstrated the most accurate
prediction for the velocity profile of the coherent jet.

Figure 9. Validation of turbulence model on coherent jet axial velocity profile at high ambient
temperature. Data from [13].

The numerical results obtained in the calculation have been validated with the ex-
perimental results from Liu et al. [12,13] to examine the accuracy of the numerical model.
Figure 10 shows the axial velocity of the conventional jet (Figure 10a) and the coherent jet
(Figure 10b) at high ambient temperature, with a comparison of the numerical simulation
result and the experimental result from a previous research study authored by Liu et al.
The boundary conditions and simulation parameters were set according to previous re-
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search studies. The mesh setup in the model validation is the same as the mesh sensitivity
study. The average difference in this validation is approximately 5% compared with these
experimental data, indicating that both the conventional and coherent jet modeling results
are accepted with the validation. Furthermore, Figure 10c shows the temperature distribu-
tion contour, and the results are consistent with the findings obtained from the previous
analyses [13].
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3.2. Velocity Distribution

During the refining process in the sample plant, the conventional jet is used to refine
the liquid iron to molten steel. In this study, two main types of O2 injection techniques,
i.e., conventional jet and coherent jet, were compared by measuring the velocity in the
X-direction. Figure 11 shows the axial velocity results of a supersonic jet at the centerline.
The improper velocity expansion of the supersonic jet causes the shock waves to generate
at the nozzle exit. After the oscillation of the supersonic O2 jet, the axial velocity stabilizes
at a distance of around 250 mm from the nozzle exit, and a potential core is generated [6].
The potential core length is defined as the maximum length of the jet core with a constant
axial velocity. Typically, the Mach number of a supersonic jet in the potential core ranges
from 2.0 to 2.3. In Case A1, the axial velocity is 480 m/s, and the potential core length is
300 mm. When the flow rate increased in Case A2 and Case A3, the axial velocity increased
to 500 m/s and 512 m/s, respectively. The potential core lengths of the conventional jet in
these cases are 400 and 480 mm, respectively. Case A3 was combined with various types
of shrouding nozzles for further study to investigate the coherent jet. It was found that
increasing the shrouding flow rate did not change the maximum velocity of the main O2 jet,
but it could maintain the axial velocity over a longer distance than the conventional jet. For
the CH4 coherent jet, the main O2 jet is combined with CH4 injection at flow rates of Cases
B1, B2, and B3. The increased CH4 flow rate results in the potential axial length of the main
O2 jet being 1054 mm, 1280 mm, and 1504 mm, respectively. The potential core lengths of
main O2 in Cases B1, B2, and B3 are increased by 2.19, 2.67, and 3.13 times, respectively,
compared to Case A3. For the CH4 + O2 coherent jet, the shrouding flame is generated
from various CH4 and O2 shrouding flow rates in Cases C1, C2, and C3. As a result, the
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injection of O2 mixed with CH4 from the shrouding nozzle promotes the efficiency of the
shield flame. The potential core lengths of the main O2 jet reach 1255 mm, 1470 mm, and
1670 mm, which increased by 2.61, 3.06, and 3.48 times longer than the conventional jet
(Case A3), respectively.

Metals 2023, 13, x FOR PEER REVIEW 11 of 18 
 

 

respectively, compared to Case A3. For the CH4 + O2 coherent jet, the shrouding flame is 
generated from various CH4 and O2 shrouding flow rates in Cases C1, C2, and C3. As a 
result, the injection of O2 mixed with CH4 from the shrouding nozzle promotes the effi-
ciency of the shield flame. The potential core lengths of the main O2 jet reach 1255 mm, 
1470 mm, and 1670 mm, which increased by 2.61, 3.06, and 3.48 times longer than the 
conventional jet (Case A3), respectively. 

 
Figure 11. Axial velocity distributions of the conventional jet (Case A), CH4 coherent jet (Case B), 
and CH4 + O2 coherent jet (Case C) at the centerline. 

Figure 12 presents the velocity in the longitudinal section plane of the supersonic jet. 
When comparing the injection of a coherent jet with an O2 shrouding nozzle (Case C) and 
without it (Case B), Case C provides a potential core length that is approximately 1.1 times 
longer than Case B. The combustion flame of the shrouding nozzle plays a significant role 
in establishing a low density surrounding hot gas around the main O2 jet, which reduces 
the momentum exchange at the boundary between the main O2 jet and the external envi-
ronment, resulting in a longer potential core length compared to the conventional jet. 

 
Figure 12. Supersonic jet velocity contour of Case 1–9 on longitudinal section with at high ambient 
temperature. 

Figure 13 shows the streamlines and velocity flow fields of both conventional jets and 
coherent jets in the 3D and 2D cross-sectional planes. The streamline in three types of 
injection is created around 500 samplings. The streamline particles enter the inlet and exit 
at the downstream outlet. The arrowheads and colors indicate the direction and magni-
tude of the flow velocity. In the conventional jet (Case A), the O2 jet passes from the nozzle 
exit to the ambient with a wide radial distribution and a decrease in axial velocity. On the 
other hand, for the coherent jets (Cases B and C), the shrouding flame acts as a shield for 
the potential core. The central axis exhibits a longer constant velocity, and the axial veloc-
ity dispersion is narrower compared with that of the conventional jet. 
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Figure 12 presents the velocity in the longitudinal section plane of the supersonic jet.
When comparing the injection of a coherent jet with an O2 shrouding nozzle (Case C) and
without it (Case B), Case C provides a potential core length that is approximately 1.1 times
longer than Case B. The combustion flame of the shrouding nozzle plays a significant
role in establishing a low density surrounding hot gas around the main O2 jet, which
reduces the momentum exchange at the boundary between the main O2 jet and the external
environment, resulting in a longer potential core length compared to the conventional jet.
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Figure 12. Supersonic jet velocity contour of Case 1–9 on longitudinal section with at high
ambient temperature.

Figure 13 shows the streamlines and velocity flow fields of both conventional jets and
coherent jets in the 3D and 2D cross-sectional planes. The streamline in three types of
injection is created around 500 samplings. The streamline particles enter the inlet and exit
at the downstream outlet. The arrowheads and colors indicate the direction and magnitude
of the flow velocity. In the conventional jet (Case A), the O2 jet passes from the nozzle exit
to the ambient with a wide radial distribution and a decrease in axial velocity. On the other
hand, for the coherent jets (Cases B and C), the shrouding flame acts as a shield for the
potential core. The central axis exhibits a longer constant velocity, and the axial velocity
dispersion is narrower compared with that of the conventional jet.
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(Case A3), CH4 coherent jet (Case B3), and CH4 + O2 coherent jet (Case C3).

3.3. Temperature Distribution

According to the EAF atmosphere in the refining process, a temperature of 1700 K
was set as an initial condition to study the potential of O2 jet injection in the high ambient
temperature condition. Figure 14 shows the axial static temperature profile of the main
O2 jet at the centerline with various flow rates of the shrouding nozzle. The temperature
core length is defined as the distance from the nozzle exit where the temperature remains
constant. For conventional jets, the main O2 jet has a high rate of heat exchange with
stationary gases at ambient temperature. This causes the main jet temperature to rapidly
increase to ambient temperature. In both cases of coherent jets, the shrouding combus-
tion flame generated using the gas flow from the shrouding nozzle prevents the thermal
exchange of the main O2 jet with ambient temperature, which maintains temperature
and prolongs the core jet. The temperature core lengths of the conventional jet in Cases
A1 to A3 are 300 mm, 400 mm, and 480 mm, respectively. However, when transitioning
to a CH4 coherent jet in Cases B1, B2, and B3, the temperature core lengths increase to
1054 mm, 1280 mm, and 1504 mm, respectively. A further enhancement is observed in the
CH4 + O2 coherent jet in Cases C1, C2, and C3, where the temperature core lengths prolong
to 1255 mm, 1470 mm, and 1670 mm, respectively. As the main O2 jet reaches the end of its
potential core, it mixes with the combustion flame and absorbs thermal energy, resulting
in a rapid increase in jet temperature to its maximum level and gradually transitioning
towards the ambient temperature.
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Figure 14. Axial static temperature of the conventional jet (Case A), CH4 coherent jet (Case B), and
CH4 + O2 coherent jet (Case C) at the centerline.

Figure 15 represents the static temperature distribution of the conventional jet (Case A)
and coherent jets (Case B and Case C) in the longitudinal section plane under various
conditions. In the presence of a high ambient temperature at 1700 K, illustrated by the
green area, the main O2 jet with a temperature of 298 K is indicated by the blue area.
The thermal energy of conventional jets quickly exchanges with the surrounding gas
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environment. As a result, the temperature core jet quickly reaches the ambient temperature.
In both cases of coherent jets, the combustion flame expands after passing through the
nozzle exits and prolonging in the axial directions. The combustion flame of the CH4 + O2
coherent jet in Case C form immediately at the nozzle exit, while that of the CH4 coherent
jet in Case B forms at an axial distance of around 100 to 400 mm from the nozzle exit. When
the combustion flame covers the main O2 jet, it acts as a barrier separating the main O2
jet from the ambient gas and generates a region of low-density hot gas surrounding the
main O2 jet. Consequently, the higher the shrouding gas flow rate, the lower the heat
exchange between the main O2 jet and the surroundings. In Case B, CH4 shrouding reacts
with the main O2 jet and the stationary surrounding air with an enlarged combustion area.
Meanwhile, in Case C, a combustion reaction occurs on both the inner and outer sides of
the CH4 shrouding with O2 and provides a jet with a narrower shape of the flame and
a longer distance of the main O2 jet compared with Case B. The simulation results are
consistent with the experiments of Sung et al. [4], explaining that in Case C, the diffusion of
the shrouding fuel gas to the surrounding air is less than that in Case B, resulting in better
efficiency. Therefore, the mixing design of fuel and O2 is an important factor in the design
of nozzles for proper combustion.
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3.4. Dynamic Pressure

Dynamic pressure plays a crucial role in determining the shape of the impact cavity
and is proportional to the kinetic energy resulting from the jet velocity. According to
literature reviews [12,21,32], an increase in the dynamic pressure of the jet leads to a
larger radius and greater depth of the impact cavity. Higher dynamic pressure results in
a greater amount of momentum being delivered to the molten bath, thereby enhancing
O2 penetration and accelerating dephosphorization and decarburization rates during the
refining process. In this research study, the dynamic pressure profiles in the radial direction
of an O2 jet at different axial positions: X = 1000 mm, 1500 mm, and 2000 mm, were
investigated, considering the distance between the nozzle exit and the molten steel level
according to the expected EAF lifetime. Similar to axial velocity results shown in Figure 10,
the dynamic pressure along the axial direction remains constant throughout the potential
core length distance. However, beyond the potential core region, the dynamic pressure
decreases in correlation with the axial velocity. Figure 16 shows the radial distributions
of dynamic pressures for conventional and coherent jets at high ambient temperatures of
each position.

The conventional jet, operating at its maximum flow rate (Case A3), generates dynamic
pressures of 9.8 kPa, 3.0 kPa, and 1.5 kPa at positions 1000 mm, 1500 mm, and 2000 mm, re-
spectively. In Cases B1–B3, where a CH4 coherent jet was injected into the shrouding nozzle
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at different flow rates, the resulting dynamic pressures are 330 kPa, 330 kPa, and 330 kPa at
position 1000 mm, and 30 kPa, 50 kPa, and 180 kPa at position 1500 mm, respectively. The
dynamic pressure gradually decreases as the position increases to 2000 mm, with values
of 4.6 kPa, 8.8 kPa, and 13 kPa, respectively. In the cases of CH4 + O2 coherent jet (Cases
C1–C3), the dynamic pressure is 340 kPa at 1000 mm, 40 kPa, 300 kPa, and 320 kPa at
1500 mm, and 7 kPa, 15.2 kPa, and 29.6 kPa at the 2000 mm, respectively. The results
indicate that the CH4 coherent jet (Case B) demonstrates superior performance compared
to the conventional jet (Case A3). Additionally, the CH4 + O2 coherent jet (Case C) exhibits
a larger impact cavity and experiences slower attenuation of dynamic pressure, making it
advantageous for longer distances.
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3.5. Species Mass Fraction

In the refining process, O2 was used to refine steel impurities. The combustion reaction
between CH4 and O2 was examined in this study. The mass fraction of combustion products
can be obtained from the simulation results. The primary reaction products within the
combustion zone are carbon dioxide (CO2) and water (H2O). Similar to axial velocity results
in Figure 11, the O2 mass fraction in the potential core length along the axial direction is 1.
Beyond the potential core region, the O2 mass fraction decreases, which is equivalent to
the mass fraction of O2 in the atmosphere. Figure 17 represents the radial profile of the O2
mass fraction at different axial locations. In Case B, the CH4 shrouding gas reacts with the
main O2 jet and surrounding ambient gases, resulting in the formation of a combustion
zone. At the axial position 1000 and 1500 mm, the combustion reaction leads to lower O2
concentrations around the main O2 jet. At the position of 2000 mm, the combustion reaction
is complete, and the O2 concentration surrounding the main jet returns to levels that are
higher than 0.21. In Case C, O2 enrichment is injected through the O2 shrouding nozzle to
displace the surrounding ambient gases. This results in a complete combustion reaction
within the shrouding flame, maintaining the main O2 jet concentration. When distance
increases, the attenuation of the O2 concentration in the main jet of Case C is slower than
that of Case B.
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3.6. Prediction of Jet Penetration at Impact Zone

Figure 18 presents the relationship between jet conditions, average velocity, and the
impacted-O2 molar flow rate (i.e., the O2 molar flow rate at the impaction zone between
the O2 jet and molten steel). The results were represented by the average value in the
circular cross-section planes with a radius of 100 mm at three different axial positions of
1000, 1500, and 2000 mm. In the refining process of the sample plant, the flow rate of
conventional jet Case A3 was the representative parameter that was most often employed.
At the nozzle-to-molten metal positions 1000 mm, 1500 mm, and 2000 mm, the average
velocities in Case A3 are 170 m/s, 130 m/s, and 96 m/s, respectively. Additionally, the
corresponding impacted-O2 molar flow rates at these positions are 24 mol/s, 14 mol/s, and
9 mol/s, respectively.
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Furthermore, the penetration depth of the inclined jet, determined by applying the
theoretical model equation described in Wu et al. research [30], is presented in Table 3. For
Case A3, the penetration depth at a nozzle-to-molten metal distance of 1000 mm is 389 mm.
As the distance increased to 1500 mm and 2000 mm due to refractory wear, the jet penetra-
tion depth decreased to 319 mm and 286 mm, respectively. The decrease in jet penetration
depth over the EAF lifetime has an impact on various process parameters, including longer
refining times and increased electrical consumption. These effects correspond with the
production report of the sample steel plant illustrated in Figure 3.
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Table 3. Prediction of penetration depth in the molten steel at different injection types.

Nozzle-to-Molten Steel
Distance

(mm)

Penetration Depth for Each Injection Condition

Conventional Jet CH4 Coherent Jet CH4 + O2 Coherent Jet
A1 A2 A3 B1 B2 B3 C1 C2 C3

1000 349 373 389 718 712 720 716 726 728
1500 295 310 319 416 488 517 458 648 666
2000 268 279 286 334 365 378 350 388 427

To ensure consistently efficient O2 injection in the refining process of the sample steel
plant, where the distance between the nozzle and molten steel bath increases from 1000 mm
to 2000 mm over the lifetime of EAF due to the refractory wear, it is necessary to maintain
the O2 molar flow rate and penetration depth at around 24 mol/s and 389 mm, respectively.
The corresponding jet conditions that meet the requirement are as follows: Case A3 at
1000 mm, Case B1 at 1500 mm, and Cases C2 at 2000 mm, respectively.

Based on the production report from the sample steel plant, it was observed that an
increase in refractory wear extended the steelmaking power-on time (Pon) by 6 min. This
extension resulted in an increase in electrical consumption in the EAF steelmaking process
of 2.97 USD per ton of billet (USD/t). However, if there is an improvement in the refining
process, as seen in the Case of C3, leading to an increase in methane and oxygen shrouding
consumption of 0.0496 kg/s and 0.198 kg/s, respectively, the cost will rise by 0.74 USD/t.
Nevertheless, if it is assumed that the increased Pon from furnace wear can be reduced
by 3 min, equal to a savings of 1.485 USD/t, the electricity cost, after accounting for the
additional methane and oxygen shrouding, can be lowered by 0.75 USD/t.

4. Conclusions

This study investigated and optimized the energy efficiency of the EAF refining
process. CFD simulation was employed to adjust the nozzle flow conditions and analyze
the jet performance. Three jet injection techniques, i.e., the conventional jet, the CH4
coherent jet, and the CH4 + O2 coherent jet, were analyzed and discussed. The mass
flow rate parameters, namely the main O2 jet flow rate, CH4 shrouding flow rate, and O2
shrouding flow rate, were also adjusted. The findings from this study can be summarized
as follows:

(1) The turbulence models were validated, and the results indicate that the RNG k-ε
model offers the most accurate prediction for the velocity profile of the coherent jet.

(2) The research demonstrates that energy efficiency was improved by optimizing the
flow conditions of the main O2 jet and shrouding nozzles.

(3) The utilization of a shrouding nozzle and the adjustment of its flow rate has a sig-
nificant impact on the potential core length of the jet. The combustion flame of the
shrouding nozzle effectively minimizes the interaction between the main O2 jet and
the surrounding environment. This phenomenon contributes to maintaining the axial
velocity and enhances the dynamic pressure of the main O2 jet.

(4) The potential core length of the main O2 jet in the coherent jet was approximately
2.5 times longer than that observed in the conventional jet. Furthermore, the CH4 + O2
coherent jet with an O2 shrouding nozzle (Case C) exhibited a potential core length
1.1 times longer than the case without an O2 shrouding (Case B).

(5) Based on the prediction calculations, it was determined that utilizing the appropri-
ate flow conditions in coherent jet injection during the refining process, particularly
at nozzle-to-steel distances greater than 1000 mm, can maintain the impacted-O2
molar flow rate for more than 23 mol/s and the penetration depth for more than
380 mm. This will lead to savings in steelmaking power-on-time and electrical
consumption costs.

A recommendation for maintaining the jet penetration in the sample steel plant
was given. The conventional jet (Case A3) is commonly utilized in the refining process.
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However, when the nozzle-to-steel distance increases from its initial level of 1000 mm to
1500 mm, it is advisable to transition to the CH4 coherent jet (Case B1). Similarly, when
the nozzle-to-steel distance reaches 2000 mm, transitioning to the CH4 + O2 coherent jet
(Case C2) is advised. This technique provides an alternative means of sustaining the ef-
ficiency of O2 jet injection by adapting to varying levels of molten steel within the EAF
furnace and enhancing the O2 efficiency of the refining process.
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