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Abstract: CrC and NbC carbide coatings both have good mechanical properties, wear resistance,
and corrosion resistance. The present study seeks to combine the two coating systems in order
to further enhance their properties. NbCrCx and NbCrCxNy coatings (where x and y denote the
atomic percentages of carbon and nitrogen, respectively) were deposited on SKH51 substrates using
a radio-frequency unbalanced magnetron sputtering system. The mechanical, tribological, and
corrosive properties of the coatings were investigated and compared. Among the NbCrCx coatings,
the NbCrC61 coating showed high levels of hardness, excellent adhesion strength, and good wear
resistance. Among the NbCrCxNy coatings, the NbCrC55N5 coating showed high adhesion strength
and hardness and excellent tribological properties. However, for nitrogen contents greater than 16 at%,
the adhesion strength was dramatically reduced, resulting in poor tribological performance. Among
all of the coatings, the NbCrC49 coating showed the best corrosion resistance due to its enhanced
crystallinity, high adhesion strength, moderate surface roughness, and high sp3 C-C bonding ratio.

Keywords: NbCrC; NbCrCN; coating; tribology; corrosion

1. Introduction

Thin-film coatings provide an inexpensive yet effective means of protecting a wide
range of industrial components and processing tools. They have thus attracted signifi-
cant research attention in recent decades [1–6]. Transition metal carbide coatings are of
particular interest due to their many outstanding properties, such as hardness, high wear
resistance, good thermal stability, and superior chemical stability. For example, zirconium
carbide (ZrC) and titanium carbide (TiC) coatings increase the wear resistance and reduce
the friction coefficient of the underlying substrate [2], while TiC coatings also improve the
corrosion resistance [3]. Niobium carbide (NbC) coatings have many favorable properties,
including high levels of hardness [7], a high melting point, good corrosion resistance, excel-
lent chemical stability [8], and good wear resistance [9]. Chromium carbide (CrC) coatings
possess the similar advantages of high hardness [10], excellent tribological properties [11],
and good resistance to corrosion [12].

The term “multimetallic cocktails” was first coined by Ranganathan [13] in 2003 to
describe alloy systems consisting of two phases, three phases, or more, depending on the
particular composition and processing conditions. The properties of such systems are deter-
mined by the overall contribution of the constituent phases, including their distributions,
phase boundaries, and properties [14,15], and they are often very different from those of
the individual phases themselves. However, adding elements with different characteristics
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to the coating system invariably increases the corresponding characteristic in the final coat-
ing. For example, the addition of chromium, with its high corrosion resistance, increases
the corrosion resistance of the coating [16], while the addition of vanadium increases the
wear resistance [17]. As described above, NbC and CrC carbide coatings both have good
tribological and corrosion properties. Based on the cocktail effect, it seems reasonable to
assume that niobium chromium carbide (NbCrC) coatings may combine the advantages of
NbC and CrC, resulting in yet better tribological and corrosion properties. Previous stud-
ies [18,19] have shown that carbon nitride (CN) and binary nitride [20] coatings, formed
by introducing acetylene and nitrogen into the sputtering chamber during the deposition
process, also have excellent tribological properties, together with high levels of hardness,
high wear resistance, and a low friction coefficient. Thus, it is inferred that the mechanical
properties and tribological performance of NbCrC coatings may be further improved by
introducing nitrogen into the coating system to form niobium chromium carbide nitrogen
(NbCrCN) coatings.

The literature already contains several studies on NbCrC coatings produced via ther-
mal reactive deposition and diffusion [21,22], arc ion plating [23], or magnetron sputtering.
Magnetron sputtering and thermal reactive diffusion are both widely used for the de-
position of carbide coatings. Of the two techniques, magnetron sputtering has a lower
formation temperature and tends to produce coatings with superior mechanical proper-
ties, wear resistance, and corrosion resistance [24]. Meanwhile, direct current sputtering
systems have several disadvantages, including an inability to sputter insulators and the
tendency to accumulate charges on the target surface, thereby leading to a lower sputtering
yield [25]. By contrast, radio-frequency (RF) unbalanced magnetron sputtering provides
a high deposition rate, good layer uniformity, and good adhesion to the substrate [26,27].
Consequently, in the present study, NbCrC and NbCrCN series coatings were deposited on
SKH51 substrates using an RF unbalanced magnetron sputtering system. The coatings were
prepared with various acetylene and nitrogen flux rates, and the mechanical, tribological,
and corrosion performance of the resulting coatings were evaluated and compared. The
effects of the carbon and nitrogen contents on the coating properties were examined. Finally,
the NbCrC and NbCrCN series coatings with the optimal hardness, tribological properties,
and corrosion resistance were identified.

2. Materials and Methods
2.1. Deposition Setup

The coatings were deposited on SKH51 substrates with a composition of 84.2 at%
Fe, 4.3 at% C, 4.4 at% Cr, 3.0 at% Mo, 1.9 at% W, and 2.2 at% V using a radio-frequency
unbalanced magnetron sputtering system (Teer-450C, Teer Coating, Droitwich, UK) with
two niobium (Nb) targets and one chromium (Cr) target (see Figure 1). The targets were
placed at a distance of 10 cm from the substrate holder, and the holder was rotated at
a constant speed of 3 rpm throughout the deposition process. The SKH51 substrates
had the form of discs with a diameter of 24 mm, a thickness of 8 mm, and a surface
roughness of Ra = 0.025 ± 0.005 µm. Due to instrument size restrictions, the coatings
were also deposited on silicon wafers for X-ray diffraction spectrometry (XRD) and X-ray
photoelectron spectrometry (XPS) analyses.

Prior to the deposition process, the targets were cleaned for 20 min with argon ions
using a target current of 0.8 A, a negative bias of 280 V, and an argon atmosphere. The
substrates were then bombarded with argon ions to remove surface contaminants using
an Ar gas flow rate of 30 sccm for 10 min and a bias voltage of −280 V. To improve the
adhesion between the substrate and the coatings, a Cr interlayer was deposited on the
substrate surface using a Cr target current of 1.5 A, a sputtering time of 6 min, and a bias
voltage of 150 V. The main coatings were all deposited using a Nb target current of 2.5 A,
a Cr target current of 0.5 A, and a bias voltage of 35 V for 90 min. NbCrCx coatings were
prepared using three different acetylene fluxes of 10, 12, and 14 sccm. Among the NbCrC
series of coatings, the NbCrC60 coating (acetylene flux: 12 sccm) was found to have the
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best tribological properties. Thus, in depositing the NbCrCxNy coatings, the acetylene
and nitrogen flow rates were set in such a way that the total flux was equal to 12 sccm
and the sum of the atomic percentages of carbon and nitrogen in the NbCrCxNy coatings
was around 60 at%. The detailed deposition parameters for the NbCrCx and NbCrCxNy
coatings are listed in Table 1.
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Figure 1. Schematic illustration of the sputtering chamber and target.

Table 1. Deposited parameters for each coating.

Coating
Structure

Coating
Code C2H2 Flux (sccm) N2 Flux (sccm) Fixed Parameters

Interlayer Cr 0 0
Cr target current: 1.5 A

Bias voltage: 150 V
Time: 6 min

Main layer

NbCrC49 10 0
Nb target current: 2.5 A
Cr target current: 0.5 A

Bias voltage: 35 V
Time: 90 min

NbCrC61 12 0
NbCrC71 14 0

NbCrC34N26 6 6
NbCrC43N16 8 4
NbCrC55N5 10 2

Fixed parameters for the interlayer and the main layer: Ar gas: 20 sccm. Rotation speed: 3 cycle/min. Base
pressure: 2.68 × 10−3 Pa. Working pressure: 3.6 × 10−1 Pa.

2.2. Coating Characterization

The cross-sectional microstructures, surface morphologies, coating thicknesses, scratch
track characteristics, wear surface morphologies, and elemental compositions of the coat-
ings were observed using a scanning electron microscope (SEM, SU5000, Hitachi, Tokyo,
Japan) and energy dispersive X-ray spectroscopy (EDS). The crystalline structures of
the coatings were identified using an X-ray diffractometer (XRD, D8-Discover, Bruker,
Mannheim, Germany) with Cu-Ka radiation at 40 kV and 100 mA. The chemical bonding
states of the coatings were determined by an X-ray photoelectron spectroscope (XPS, PHI
5000 VersaProbe, ULVAC. Inc., Miyazaki, Japan) using Al Kα as the X-ray source with a
wavelength of 83.3 nm, an energy of 1486.6 eV, a scanning range of 0–1400 eV, and a step
size of 0.2 eV. The coatings were etched with Ar ions to remove any surface contaminants
prior to the XPS measurement process. The Raman spectra of the coatings were acquired
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over the spectral range of 1000–2000 cm−1 using an HR800 spectrometer (Cambridge, MA,
USA) with a 633 nm He-Ne laser source. The hardness and elastic modulus of the coatings
were measured under a maximum load of 10 mN using a nanoindenter (UNAT-M, BMT,
Dresden, Germany) with a diamond tip. The maximum indentation depth was controlled
to be less than one-tenth of the coating thickness in order to avoid the substrate effect [28].
The adhesion strengths of the coatings were evaluated using a scratch tester equipped with
a diamond indenter with a 0.3 mm diameter. In each test, the indenter was dragged across
the coating surface for a distance of 10 mm as the load was increased from 0 to 100 N at a
rate of 1 N/s. The coefficient of friction (C.O.F.) was recorded continuously throughout
each test. The adhesion strength of the coatings was defined as the critical load (Lc) at
which the coating first exhibited continuous removal from the scratch track as the indenter
moved across the coating surface. To ensure the reliability of the measurement results, the
critical load was taken as the average value of two measurements taken in different areas
of the coating.

2.3. Tribology Testing

The tribological properties of the coatings were measured under unlubricated condi-
tions using a ball-on-disk wear tester (KD-550U, Freeform, Kaohsiung, Taiwan) in air at
room temperature (298 K) and a relative humidity of 45–55%. The tests were performed
under normal loads of 5 and 8 N using a 6 mm diameter Si3N4 ball as the counterbody. The
sliding speed was set as 200 mm/s, and a total of 3000 revolutions were performed. For
each coating, the C.O.F. was recorded continuously throughout the test, and, on completion
of the test, the wear width and wear depth were measured using a white light interferome-
ter (Contour GT-K, Bruker, Billerica, MA, USA). The wear surface was measured at three
points around the wear track, separated by intervals of approximately 120◦. Three wear
depth measurements were acquired at each point, and the nine values were then averaged
to obtain the average wear depth for the coating. The wear rate (WR) was evaluated as
WR = 2πRA/(N×), where R is the wear track radius, A is the cross-sectional wear area,
N is the normal load, and m is the total sliding distance. Finally, the morphologies and
element compositions of the wear tracks and scars o the coating surface were analyzed
using SEM and EDS.

2.4. Corrosion Testing

The corrosion resistance of the coatings was tested using a commercial electrochemical
workstation (ECW-5000, Jiehan, Taichung, Taiwan) with a three-electrode system consisting
of a saturated calomel electrode as the reference electrode, the coated sample as the working
electrode, and a platinum sheet as the counter electrode. The tests were performed in a
corrosive environment consisting of 0.5 M H2SO4 solution. The coatings were scanned at a
rate of 1 mV/s over the range of −0.5 V to 1.0 V.

3. Results and Discussion
3.1. Composition, Microstructure, Morphology

Table 2 lists the elemental compositions of the various NbCrCx and NbCrCxNy coat-
ings. All of the coatings have low O content (4.3–7.7 at%) due to the presence of residual
oxygen or water in the sputtering chamber and environmental oxidation following the
removal of the coatings from the chamber. For the NbCrCx coatings, the C content increases
from 49.1 to 70.6 at% as the acetylene flux increases from 10 to 14 sccm. In contrast, the Nb
content decreases from 30.3 to 19.8 at% and the Cr content decreases from 12.9 to 5.3 at%.
In preparing the NbCrCxNy coatings, the Nb (24 at. %) to Cr (9.5 at. %) ratio was fixed at
around 5:2 for all of the coatings, and the acetylene flux was increased from 6 to 10 sccm,
while the N flux was decreased from 6 to 2 sccm to maintain a total flux of 12 sccm for
each coating. The results presented in Table 2 show that, as the C content increases from
34.1 to 55.3 at%, the N content decreases from 26.0 to 4.5 at%, and the C/N ratio increases
from 1.3 to 12.3.
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Table 2. Elemental composition (at. %) of each coating.

Coating
Code Nb Cr C N O

NbCrC49 30.3 ± 0.3 12.9 ± 0.3 49.1 ± 0.5 0 7.7 ± 0.3
NbCrC61 25.1 ± 0.2 8.0 ± 0.5 60.5 ± 0.2 0 6.4 ± 0.4
NbCrC71 19.8 ± 0.2 5.3 ± 0.1 70.6 ± 0.1 0 4.3 ± 0.1

NbCrC34N26 23.9 ± 0.2 9.9 ± 0.1 34.1 ± 0.1 26.0 ± 0.2 6.1 ± 0.1
NbCrC43N16 24.0 ± 0.1 9.7 ± 0.2 43.3 ± 0.1 16.1 ± 0.1 6.9 ± 0.1
NbCrC55N5 24.5 ± 0.1 9.4 ± 0.1 55.3 ± 0.1 4.5 ± 0.3 6.3 ± 0.2

The XRD patterns in Figure 2a show that the NbCrCx coatings contain NbC (cubic,
Joint Committee on Powder Diffraction Standards (JCPDS) No. 38-1364) and Cr23C6
(cubic, JCPDS No. 35-0783) phases, which indicates that the coating has the preferred
(111) orientation of NbC. Moreover, as the C content increases, the intensity of the peaks
decreases and the peaks become broader. In other words, the NbCrCx coatings consist
predominantly of crystalline phases; however, the crystallinity is degraded as the C content
increases, and the structures contain a greater quantity of amorphous phases. The results
are thus consistent with those of [29], which show that NbC coatings tend toward an
amorphous structure with increasing C content.
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Figure 2. XRD patterns of: (a) NbCrCx coatings, and (b) NbCrCxNy coatings.

Figure 2b shows the XRD patterns of the NbCrCxNy coatings. The peaks in the XRD
patterns indicate that the coatings contain NbC and NbN phases (cubic, JCPDS No. 38-1155)
and a CrN phase (cubic, JCPDS No. 11-0065). The NbC and NbN phases are solid solution
phases, in which the C and N atoms substitute one another in the crystalline lattice. The
XRD patterns show that, for the NbCrC34N26 coating, with the lowest C content and highest
N content of the three coatings, the diffraction peak of the solid solution phase is closer to
that of NbN. However, as the C content increases, the N atoms are partially replaced by
C atoms in the NbN phase; hence, the diffraction peak of the solid solution phase shifts
slightly to a lower angle and approaches that of NbC. The study reported in [30] also
indicated that a higher C content causes the diffraction peak of CrCN films to gradually
shift to a smaller angle. Zhang et al. [31] detected the presence of NbC and NbN solid
solution phases in NbCN coatings, and found that, as the C content of the coating increased,
a partial substitution of the N atoms in the crystalline lattice by C atoms occurred, which
resulted in a continuous shift of the XRD peak to lower 2θ values in the range of 41.21◦ to
40.84◦. For the present NbCrCxNy coatings, the XRD patterns show the presence of a CrN
phase but not a CrC phase. This finding is reasonable, since the Gibbs energy of formation
of CrN is lower than that of CrC, meaning that CrN is more likely to be generated [32].
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A Raman analysis was performed to examine the structural properties of the C-C bonds
in the two series of coatings. As shown in Figure 3, all of the coatings exhibit an asymmetric
Raman band between 1000 and 1700 cm−1. The band can be fitted to two peaks, namely,
the D peak and the G peak, located at 1380 and 1570 cm−1, respectively. It was shown
in [33] that a higher ID–IG ratio (i.e., a higher intensity ratio of the two peaks) indicates a
higher proportion of sp2 carbon bonds in the coating structure. Figure 3a shows that the
ID–IG ratio of the NbCrCx coatings increases significantly with an increasing C content. The
ID–IG ratios of the NbCrCxNy coatings also increase with an increasing C content (Figure 3b);
however, the effect is not as pronounced due to the relatively low C content (<55.3 at%) and
the presence of NbC, NbN, and CrN crystalline phases (Figure 2b). Figure 4 shows the XPS
results for the C1s spectra of all the coatings. For convenience, the corresponding bond ratios
are tabulated in Table 3. For the NbCrCx coatings, the sp2 C-C bond content increases from
37.3% to 55.1% as the C content increases from 49.1 at% to 70.6 at%. For the NbCrCxNy
coatings, the sp2 C-C bond content also increases (from 19.9% to 41.5%) as the C content
increases; however, the C=N bond content decreases from 63.5% to 29.6%.
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Table 3. Chemical bond ratios of C1s spectra for all coatings.

Coating Code sp2 C-C, % sp3 C-C, % C=N, %

NbCrC49 37.3 62.7 -
NbCrC61 41.5 58.5 -
NbCrC71 55.1 44.9 -

NbCrC34N26 19.9 16.6 63.5
NbCrC43N16 34.4 23.2 42.4
NbCrC55N5 41.5 28.9 29.6

Figure 5 shows cross-sectional SEM images of the NbCrCx and NbCrCxNy coatings.
The images presented in Figure 5a–c show that the NbCrC49, NbCrC61, and NbCrC71
coatings all have distinct columnar structures. This columnar morphology arises from
the anisotropic growth rate of different crystal planes, which leads to the preferential
overgrowth of certain grains [34]. The NbCrC34N26, NbCrC43N16, and NbCrC55N5 coatings
also have a columnar structure, as shown in Figure 5d–f. Hence, it is inferred that the N
content has no significant effect on the cross-sectional structure of the coatings.
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Figure 6 shows the surface morphologies and cluster sizes of the various coatings.
All of the coating surfaces have an earth-cracking-type feature. Moreover, the cluster
size reduces as C content increases. For example, the NbCrC49, NbCrC61, and NbCrC71
coatings have cluster sizes of 186.0, 175.2, and 172.2 nm, respectively, while the NbCrC34N26,
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NbCrC43N16, and NbCrC55N5 coatings have cluster sizes of 177.4, 167.9, and 162.5 nm. As
described in [35], grain clusters are essentially an assembly of twin-related grains that are
formed by a multiple-twinning process. As the C content increases, the amorphous carbon
phase also increases, and this inhibits grain growth and makes the crystals less likely to
bond together to form larger clusters.
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3.2. Grain Size, Thickness, Surface Roughness, Hardness, and Adhesive Strength

Table 4 shows the crystal grain size, thickness, surface roughness, hardness, Hertz
stress, and adhesive properties of the various coatings. The grain size (D) was calculated
using the Scherrer equation, i.e., D = Kλ/(β cos θ), for the most intense peak located at 2θ =
35◦, where K is a dimensionless shape factor with a value of 0.94, λ is the X-ray wavelength,
θ is the Bragg angle, and β is the line broadening at half the maximum intensity [36]. For the
NbCrCx coatings, the grain size is significantly reduced from 11.01 (NbCrC49) to 5.79 nm
(NbCrC71) as the C content increases. The result is thus consistent with the finding of [29]
that NbC coatings with a greater C content have a smaller grain size. For the NbCrCxNy
coatings, the crystal grain sizes of the NbCrC34N26, NbCrC43N16, and NbCrC55N5 coatings
are 11.78, 10.03, and 9.13 nm, respectively. Thus, the grain size is slightly reduced as the
C content increases and the N content decreases.
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Table 4. Grain size, thickness, surface roughness (Ra), hardness, Hertz stress, and adhesive strength
(Lc) of each coating.

Coating
Code

Grain Size
(nm)

Thickness
(µm)

Surface
Roughness

Ra (nm)

Hardness
(GPa)

Hertz Stress
(5 N)

(MPa)

Hertz Stress
(8 N)

(MPa)

Adhesive
Strength

Lc (N)

NbCrC49 11.01 1.75 ± 0.01 31.1 ± 2.9 18.8 ± 2.0 1540.7 1802.0 >100
NbCrC61 9.12 1.93 ± 0.02 21.8 ± 0.9 21.0 ± 1.5 1488.3 1740.8 >100
NbCrC71 5.79 1.86 ± 0.01 21.1 ± 1.6 17.7 ± 1.2 1375.1 1608.3 90.2 ± 1.2

NbCrC34N26 11.78 1.52 ± 0.01 44.8 ± 3.5 21.5 ± 1.6 1516.0 1773.1 18.0 ± 0.7
NbCrC43N16 10.03 1.57 ± 0.01 43.6 ± 3.2 24.4 ± 1.8 1527.5 1786.5 19.9 ± 0.4
NbCrC55N5 9.13 1.68 ± 0.01 29.9 ± 2.9 24.5 ± 1.7 1513.6 1770.3 >100

The NbCrC49, NbCrC61, and NbCrC71 coatings have thicknesses of 1.75, 1.93, and
1.86 µm, respectively. The reduction in the coating thickness for the sample with the highest
C content can most likely be attributed to a poisoning of the Nb and Cr targets under high
acetylene fluxes, which leads to a lower deposition rate [37,38]. The thicknesses of the
NbCrC55N5, NbCrC43N16, and NbCrC34N26 coatings are further reduced to 1.68, 1.57,
and 1.52 µm, respectively. The reduction in thickness can again be attributed to a target
poisoning effect. In particular, as the nitrogen concentration in the chamber increases, the
nitrogen atoms react with the niobium and chromium targets, resulting in the formation of
nitrides on their surfaces. The sputtering rate of nitrides is lower than that of pure metal
targets; hence, the coating thickness reduces [39].

As shown in Table 3, the percentage of sp2 C-C bonds in the NbCrCx coatings increases
from 37.3% to 55.1% as the C content increases. Meanwhile, the surface roughness (Ra)
decreases from 31.1 (NbCrC49) to 21.1 (NbCrC71) nm, as shown in Table 4. In other words, the
surface roughness of the NbCrCx coatings is reduced with an increasing proportion of sp2 C-C
bonds. Zhang et al. [40] similarly showed that the presence of an amorphous carbon phase in
NbCN coatings results in a smoother surface. For the NbCrCxNy coatings, the NbCrC55N5
coating has a surface roughness of 29.9 nm. However, as the N content increases beyond
16 at%, the surface roughness increases to 43.6 nm (NbCrC43N16) and 44.8 nm (NbCrC34N26).

The NbCrC49, NbCrC61, and NbCrC71 coatings have hardness values of 18.8, 21.0, and
17.7 GPa, respectively. As the C content increases, the proportion of soft sp2 C-C bonds also
increases; hence, the NbCrC71 coating, with the greatest number of sp2 C-C bonds (55.1%), has
the lowest hardness. The results are thus consistent with those of [41], which showed that the
hardness of diamond-like carbon (DLC) coatings decreases with an increasing proportion of
sp2 C-C bonds. Furthermore, the grain size of the NbCrC49 and NbCrC61 coatings decreases
from 11.01 nm to 9.12 nm as the C content increases, resulting in a fine-grain strengthening
effect. However, as the C content continues to increase, and the grain size is further reduced
to 5.79 nm (NbCrC71), the inverse Hall–Petch effect occurs, and the hardness decreases. It was
shown in [42] that NbC exhibits a maximum hardness for a grain size of approximately 8 nm.
This finding is in line with the present results, which show that, for the NbCrCx coatings, the
maximum hardness occurs in the coating with a grain size of 9.12 nm.

The NbCrCxNy coatings exhibit a higher hardness than the NbCrCx coatings, with
hardness values of 21.5 (NbCrC34N26), 24.4 (NbCrC43N16), and 24.5 (NbCrC55N5) GPa for
N contents of 26.0, 16.1, and 4.5 at%, respectively. Among the NbCrCxNy coatings, some are
harder than the single NbC coatings reported in [43]. For example, the single NbC coatings
have hardness values in the range of 15~22 GPa, whereas the present NbCrC43N16 and
NbCrC55N5 coatings have hardnesses of 24.4 GPa and 24.5 GPa, respectively. The hardness
of the NbCrCxNy coatings increases significantly compared to that of the NbCrC61 coating,
since the nitrogen atoms dissolve into the NbC lattice and form an interstitial solid solution,
which results in a solid-solution strengthening effect. The study reported in [40] similarly
showed that the addition of nitrogen to NbCN coatings leads to improved hardness as the
result of the formation of an interstitial solid solution. However, the study also showed
that excessive nitrogen content reduced the hardness. According to [44], at higher nitrogen
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pressures, the higher frequency of the collisions between the nitrogen species and the
growing coating may promote the formation of molecular nitrogen that becomes trapped in
the film and forms microscopic voids. These voids increase the porosity of the coating and
therefore decrease its hardness. The grain size of the present NbCrC55N5 and NbCrC43N16
coatings increases from 9.13 nm to 10.03 nm as the N content increases; however, the
hardness values show almost no change (i.e., 24.5 and 24.4 GPa, respectively). As the N
content is further increased, the grain size increases further to 11.78 nm; this is accompanied
by a significant Hall–Petch effect, which reduces the hardness (21.5 GPa). The greater N
content leads to the generation of more nitrides, which may also contribute to the decrease
in hardness. For example, it was shown in [40] that the hardness of NbCN coatings reduces
as the quantity of NbN phases increases. As discussed above, the presence of solid-solution
strengthening contributes to a higher hardness in the NbCrCxNy coatings compared to the
NbCrCx coatings. However, in the NbCrCxNy coatings, an excessive N content leads to the
formation of voids, a reduction in the fine grain size strengthening effect, and an increased
generation of nitrides. Consequently, the NbCrC34N26 coating has the lowest hardness
(21.5 GPa) among all the NbCrCxNy coatings.

As shown in Table 4, the NbCrC49 and NbCrC61 coatings have an excellent adhesive
strength with a critical load of more than 100 N. Accordingly, the SEM image presented in
Figure 7a shows that the NbCrC49 coating remains fully intact under the maximum normal
load of 100 N in the scratch test. For the NbCrC71 coating, with the highest C content
of 70.6 at%, the critical load is reduced slightly to Lc = 90.2 N. However, in general, all
of the NbCrCx coatings show a good adhesive performance due to their low roughness
(Ra < 31.1 nm) and low C.O.F. (<0.27) during the scratch test. Among the NbCrCxNy
coatings, the NbCrC55N5 coating also has excellent adhesive properties (Lc > 100 N) due
to its smooth surface (Ra = 29.9 nm) and low friction coefficient (0.25). However, the
NbCrC43N16 and NbCrC34N26 coatings both have extremely poor adhesion performance,
with critical strength values lower than 20 N. Figure 7b presents a typical SEM image of
the NbCrC34N26 scratch track, showing that the coating is already completely removed
from the substrate under a low applied load of just 18 N. The poor adhesive strength of the
two coatings can be attributed to their high surface roughness (more than Ra = 43.6 nm).
In particular, the high surface roughness results in high C.O.F values (0.415 and 0.359,
respectively) during the scratch test, which increases the magnitude of the lateral force
acting on the coating and reduces the adhesion strength as a result.
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3.3. Coefficient of Friction, Wear Depth, and Wear Rate
3.3.1. Coefficient of Friction

Table 5 shows the average friction coefficients, wear rates, wear depths, and wear
widths of the NbCrCx and NbCrCxNy coatings and the SKH51 substrate under normal
loads of 5 N and 8 N. The friction coefficients of the coatings are lower than those of the
substrate under both loads. The carbon content of the coatings reduces their coefficient
of friction, whereas the uncoated substrate suffers from severe adhesion wear, which
increases the friction coefficient. Compared with the uncoated substrate, the coated samples
experience less severe adhesion wear; hence, the friction coefficient is correspondingly
reduced. Overall, the results in Table 5 indicate that all of the coatings have a friction-
reducing effect.

Table 5. Average friction coefficient, wear rate, wear depth, and wear width of each coating at normal
load of 5 and 8 N.

Coating Code

Load: 5 N Load: 8 N

COF
Wear

Depth
(µm)

Wear
Width
(mm)

Wear Rate
10−6 mm3/Nm COF

Wear
Depth
(µm)

Wear
Width
(mm)

Wear Rate
10−6 mm3/Nm

NbCrC49 0.18 0.22 ± 0.03 0.09 ± 0.01 1.29 ± 0.13 0.17 0.29 ± 0.04 0.13 ± 0.01 1.63 ± 0.19
NbCrC61 0.16 0.16 ± 0.01 0.12 ± 0.01 1.20 ± 0.09 0.15 0.24 ± 0.01 0.16 ± 0.01 1.57 ± 0.09
NbCrC71 0.15 0.28 ± 0.03 0.12 ± 0.01 2.12 ± 0.19 0.15 0.42 ± 0.09 0.16 ± 0.01 2.70 ± 0.57

NbCrC34N26 0.34 0.87 ± 0.03 0.34 ± 0.03 20.1 ± 1.74 0.38 1.11 ± 0.09 0.48 ± 0.06 22.0 ± 2.96
NbCrC43N16 0.36 0.82 ± 0.06 0.36 ± 0.02 19.7 ± 1.69 0.43 1.10 ± 0.09 0.44 ± 0.03 20.3 ± 1.21
NbCrC55N5 0.13 0.13 ± 0.01 0.11 ± 0.01 0.96 ± 0.04 0.13 0.20 ± 0.02 0.14 ± 0.01 1.18 ± 0.09

SKH51 0.47 0.39 ± 0.04 0.31 ± 0.06 8.11 ± 1.05 0.50 0.43 ± 0.01 0.46 ± 0.02 8.33 ± 0.52

Figure 8a,b shows the friction coefficient curves of the coatings and uncoated substrate
under loads of 5 N and 8 N, respectively. All of the NbCrCx coatings, as well as the
NbCrC55N5 coating, show low and stable friction coefficient curves due to their good
adhesion strength (Lc > 90.2 N) and high sp2 carbon bond ratio (more than 37.3%, as
shown in Table 3). In general, sp2 carbon bonds comprise weak interplanar van der Waals
bonds, which are easily sheared between layers, resulting in a solid lubricant effect. In
addition, the study in [45] reported that carbon with an sp2 configuration forms a graphitic
structure with a low coefficient of friction. The friction coefficient curves of the coatings
show similar tendencies under the two loads; hence, it is inferred that they possess good
anti-friction properties under both loads. However, as the C content in the NbCrC55N5
coatings is reduced to below 43 at%, the coefficients of friction of the NbCrC43N16 and
NbCrC34N26 coatings increase to more than 0.34 under a load of 5 N. This can be attributed
to the low sp2 carbon bond ratios of the two coatings (<34.4%) and the significant reduction
in the adhesion strength (Lc < 19.9 N), which collectively cause the coatings to fracture and
peel away from the substrate during sliding. Moreover, as the coatings break down and
flake away from the substrate, they produce abrasive debris, which can lead to three-body
wear. This further increases both the magnitude of the C.O.F and the amplitude of the
oscillations of the friction coefficient curves. Under an 8 N load, the impact of a poor
adhesion strength on the friction coefficient curve is more apparent, as shown in Figure 8b,
in which the friction coefficient curves for the NbCrC34N26 and NbCrC43N16 coatings
and SKH51 substrate are not only higher, but also more unstable than those under a load
of 5 N. In summary, the NbCrC34N26 and NbCrC43N16 coatings, with low critical loads
(Lc < 19.9 N) and low sp2 carbon bond ratios (<34.4%), show a higher-amplitude friction
coefficient curve. By contrast, the other coatings, with high critical loads (Lc > 90.2 N) and
high sp2 carbon bond ratios (>37.3%), maintain a low and stable friction coefficient curve
throughout the entire wear test.
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3.3.2. Wear Depth and Wear rate

The average wear depths of the NbCrC49, NbCrC61, and NbCrC71 coatings under a
load of 5 N are 0.22, 0.16, and 0.28 µm, respectively (see Table 5); the corresponding wear
rates are 1.29 × 10−6, 1.20 × 10−6, and 2.12 × 10−6 mm3/Nm. The NbCrC61 coating has
the highest hardness (21.0 GPa) of the NbCrCx coatings and excellent adhesion strength
(Lc > 100 N). It therefore has the lowest wear rate and average wear depth of the three
coatings. By contrast, the NbCrC71 coating has the highest wear rate and wear depth
(0.28 µm) due to its low hardness (17.7 GPa) and adhesion strength (Lc = 90.2). Among
the NbCrCxNy coatings, the NbCrC55N5 coating has the lowest wear depth (0.13 µm)
and wear rate (0.96 × 10−6 mm3/Nm) due to its high hardness (24.5 GPa) and adhesion
strength (Lc > 100N). The NbCrC49, NbCrC61, NbCrC71, and NbCrC55N5 coatings all
have a wear depth and wear rate lower than those of the uncoated SKH51 substrate (i.e.,
0.39 and 8.11 × 10−6 mm3/Nm, respectively). However, as the N content increases, the
NbCrC43N16 and NbCrC34N26 coatings show significantly higher wear depths (0.82 and
0.87 µm, respectively) and wear rates (19.7 × 10−6 and 20.1 × 10−6 mm3/Nm, respectively)
due to their lower adhesion strengths (Lc = 19.9 and 18.0 N, respectively).

As shown in Table 4, all of the coatings exhibit a higher Hertz stress (i.e., maximum
contact stress under static conditions) under the 8 N load (greater than 1608 MPa) than
under the 5 N load (less than 1540 MPa). In other words, for all of the coatings, the wear
depth, wear width, and wear rate increase as the load increases to 8 N (Table 5). Among the
NbCrCx coatings, the NbCrC61 coating again possesses the lowest wear depth and wear
rate. Compared with the load of 5 N, the wear depths and wear rates increase only slightly
from 0.16 to 0.24 µm and 1.20 to 1.57 × 10−6 mm3/Nm, respectively. For the NbCrC55N5
coating, the wear depth and wear rate similarly increase slightly from 0.13 to 0.20 µm
and 0.96 to 1.18 × 10−6 mm3/Nm, respectively. The NbCrC55N5 coating possesses the
best wear resistance among all the coatings under both loads. Compared with the SKH51
substrate, the NbCrC55N5 coating reduces the wear depth and wear rate by three times
and eight times, respectively, under a load of 5 N, and two times and seven times under
a load of 8 N.

In conclusion, the coatings’ properties, including the adhesion strength, hardness, and
structural composition, all have an effect on the wear resistance. Poor adhesion strength
results in a high wear depth and wear rate, which may even exceed those of the uncoated
substrate. By contrast, the coatings with high adhesion strength and hardness and large
number of sp2 carbon bonds demonstrate significantly improved tribological properties.
Among all of the tested coatings, the NbCrC55N5 coating showed the highest hardness
(24.5 GPa), adhesive strength (Lc > 100 N), and sp2 carbon bond ratio (41.5%), and thus
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exhibits the best tribological performance, including the lowest friction coefficient, wear
depth, and wear rate under loads of both 5 N and 8 N.

3.4. Wear Surface and Mechanisms

Figure 9a,b shows the wear tracks on the NbCrC49 coating following sliding under 5 N
and 8 N loads, respectively. In Figure 9a, Region 1 of the wear track has a similar elemental
composition to the original coating, but also contains a very small quantity of Si (0.4 at%)
transferred from the counterbody. The wear track has a smooth appearance with only
mild and wide scratches. However, oxidized chips can be seen on either side of the wear
track. Compared to the main wear track region, the O and Si elements of these oxidized
clumps (Region 2) are increased from 7.6 to 21.9 at% and 0.4 to 0.7 at%, respectively. The
wear surface in Figure 9b is similar to that in Figure 9a; however, the O and Si elements in
Region 3 are both higher (i.e., 10.5 at% and 0.7 at%, respectively). The O and Si contents
of the oxidized chips (Region 4) are also higher than those under the lower load of 5 N
(46.8 at% and 1.0%). As discussed in Section 3.2, the NbCrC49 coating remained intact after
the wear test (i.e., Lc > 100 N, Table 4). Thus, it is inferred that, for both loads (5 N and
8 N), the NbCrC49 coating undergoes only minor abrasion and oxidative wear, with oxide
accumulation at the sides of the wear track during sliding against the Si3N4 ball.

Figure 9c,d shows the wear tracks on the NbCrC61 coating under loads of 5 N and
8 N, respectively. As shown in Figure 9c, the wear track has a smooth surface with only
some minor scratches in the central region following sliding under a 5 N load. Region 5 of
the wear track contains 24.5 at% Nb, 6.6 at% Cr, 61.9 at% C, and 6.5 at% O, and thus has
a composition similar to that of the original coating. Under the higher load of 8 N, the
wear track has a greater width and contains more scratches (Figure 9d). Moreover, the
oxygen content is increased to 10.5 at%. Regions 5 and 6 of the wear track have low Si
contents of 0.3 at% and 0.5 at%, respectively. Overall, the results indicate that the coating
remains intact during sliding under both loads, and only minimal material transfer from
the counterbody occurs. In other words, the NbCrC61 coating has excellent wear resistance
and experiences only minor abrasion wear during sliding.

Figure 9e,f shows the wear tracks on the NbCrC71 coating under 5 N and 8 N loads,
respectively. Figure 9e shows that the wear surface comprises a smooth area (Region 7)
and a dark area with scratches (Region 8). The EDS analysis results show that the smooth
region has a composition similar to that of the original coating. The element composition
of the dark area is also similar to that of the original coating; however, the oxygen content
is increased to 25.4 at%, which indicates the occurrence of slight oxidation. Under the
8 N load, the wear track also comprises two different areas, namely, a smooth region with
scratches (Region 9) and a rough dark region (Region 10). The element composition of
the smooth region is again similar to that of the original coating. However, the number of
scratches is increased compared to that under a lower load of 5 N. Moreover, in Region 10,
the O content is increased to 37.3 at% and the coating exhibits more severe damage. Thus,
overall, the wear mechanism of the NbCrC71 coating is inferred to be one of abrasive wear,
oxidative wear, and partial coating fracture.

Figure 10a,b shows the wear tracks on the NbCrC55N5 coatings under normal loads
of 5 N and 8 N, respectively. The wear track in Figure 10a has a smooth surface with only
two noticeable scratches in the central region. Region 1 of the wear track has an element
composition similar to that of the original coating and shows almost no signs of oxidation.
However, under the higher load of 8 N, the wear track displays multiple scratches, and the
EDS analysis results for Region 2 reveal evidence of mild oxidation (O content 11.8 at%).
The EDS analysis results further reveal that the Si contents of the wear track are around
0.5 and 0.7 at%, respectively, under loads of 5 N and 8 N. Overall, the results suggest that
the coating remains intact under both loads, and the wear mechanism is limited to minimal
abrasive wear.
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Figure 9. SEM images and EDS element composition results for wear tracks under 5 N and 8 N
loads on (a) NbCrC49-5N, (b) NbCrC49-8N, (c) NbCrC61-5N, (d) NbCrC61-8N, (e) NbCrC71-5N and
(f) NbCrC71-8N. (Note: dotted lines represented wear track boundaries).

Since the wear surfaces and mechanisms of the NbCrC43N16 and NbCrC34N26 coatings
are similar under both loading conditions, the following discussions consider only the
wear mechanism of the NbCrC34N26 coating. Figure 10c,d shows the wear tracks on the
NbCrC34N26 coating under loads of 5 N and 8 N, respectively. The wear tracks comprise
dark areas (Regions 3 and 5) and bright areas (Regions 4 and 6). For the wear track produced
under a load of 5 N, the dark region (Region 3) contains 51.6 at% O, while the bright region
(Region 4) contains 64.7 at% Fe. Similarly, for the wear track produced under a load of 8 N,
the dark region (Region 5) contains 42.6 at% O, while the bright region (Region 6) contains
58.9 at% Fe. The high Fe contents in Regions 4 and 6 indicate that most of the coating
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is destroyed during sliding, while the high O contents in Regions 3 and 5 suggest the
occurrence of severe oxidative wear. Furthermore, both wear surfaces exhibit a relatively
high Si content (4.7–6.8 at%), which indicates that material transfer occurred from the
counterbody to the coating during the wear test, prompting the severe adhesive wear of
the coatings.
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Figure 10. SEM images and EDS element composition results for wear tracks under 5 N and 8 N loads
on (a) NbCrC55N5-5N, (b) NbCrC55N5-8N, (c) NbCrC34N26-5N, and (d) NbCrC34N26-8N. (Note:
dotted lines represented wear track boundaries).

The SEM images show that the NbCrCxNy coatings are partially removed from the
substrate during sliding. However, the wear depth values in Table 5 suggest that the
coatings are not in fact completely worn through (i.e., the wear depths are lower than the
corresponding coating thicknesses shown in Table 4). However, the wear depth values are
average values obtained over nine separate measurements (see Section 2.3). Figure 11a
shows the wear scar morphology of the NbCrC34N26 coating after sliding under a 5 N load.
Figure 11b,c shows the cross-sectional profiles of the wear track corresponding to Line 1 in
Figure 11a, with two different methods used to calculate the wear depth. Specifically, ∆Z1
(−0.8548 µm) in Figure 11b represents the average wear depth calculated as the difference
in height between the average height at marker R (red area) and the average height at
marker M (green area). By contrast, ∆Z2 (−1.5113 µm) in Figure 11c shows the wear depth
at marker M) and is calculated as the difference between the average height at marker R
(red area) and the average height at marker M (green line). The value of ∆Z2 is close to the
thickness of the coating (1.52 µm, Table 4), which suggests that the NbCrC34N26 is partially
worn down to the substrate under a 5 N load. Overall, therefore, it can be inferred that
the presence of adhesive wear and severe oxidative wear degrades the wear resistance of
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the NbCrC34N26 coating and results in the highest wear depth (0.87 µm) and wear rate
(20.1 × 10−6 mm3/Nm) among all the NbCrCxNy coatings.
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In summary, the wear performance of the NbCrCx and NbCrCxNy coatings is deter-
mined primarily by their adhesive properties and hardness. In particular, the NbCrC61
coating, with the highest hardness and critical load, shows only minor abrasive wear and
mild oxidative wear and has the best wear resistance among all the NbCrCx coatings. For
the NbCrCxNy coatings, the wear performance is dominated by the adhesive strength.
Thus, the NbCrC55N5 coating, with the highest critical load (>100 N), shows the best wear
resistance, with only slight abrasive and oxidative wear. Conversely, the NbCrC43N16 and
NbCrC34N26 coatings, both with low critical loads, suffer extreme damage during sliding,
which results in severe adhesive and oxidative wear and poor wear resistance.

3.5. Electrochemical Properties

Figure 12 shows the potentiodynamic polarization curves of all the coatings and the
SKH51 substrate. The corrosion current density (Icorr), corrosion potential (Ecorr), and Tafel
slopes (βa and βc) of each coating (and substrate) were fitted via the Tafel interpolation
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method using CView software (version: 2.6b). Specifically, the intersection point of the
Tafel slopes of the cathode and anode polarization curves was determined and taken as
the current density, Icorr, and corrosion potential, Ecorr, respectively. In general, a higher
corrosion potential indicates a later onset of corrosion but does not necessarily mean a
slower corrosion rate, Icorr. The calculated Icorr, Ecorr, and Tafel slope values for each coating
are shown in Table 6, where a higher value of Icorr indicates a faster corrosion rate and
hence a poorer corrosion resistance.
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Table 6. Electrochemical parameters of each coating and the SKH51 substrate.

Coating Code Icorr, A/cm2 Ecorr, V βa, mv/dec βc, mv/dec

NbCrC49 1.40 × 10−6 −0.416 89.54 78.71
NbCrC61 7.86 × 10−6 −0.410 123.02 95.76
NbCrC71 2.90 × 10−5 −0.424 269.94 227.50

NbCrC34N26 5.36 × 10−3 −0.425 262.97 327.61
NbCrC43N16 4.94 × 10−3 −0.425 288.14 309.18
NbCrC55N5 7.65 × 10−5 −0.428 353.79 298.23

SKH51 2.16 × 10−2 −0.410 407.36 456.01

As shown in Figure 12, all of the coatings exhibit a lower Icorr value than the substrate
(2.16 × 10−2 A/cm2). It is speculated that the improved corrosion resistance stems from
the formation of a stable passive film on the coated surface. Notably, all of the curves
show a relatively stable or decreasing corrosion current density as the potential increases,
which indicates that they display good anti-corrosion performance. By contrast, the surface
of the SKH51substrate does not produce a stable passive film; hence, its anti-corrosion
performance is degraded. The Icorr values of the of NbCrC49, NbCrC61, and NbCrC71
coatings are 1.40 × 10−6, 7.86 × 10−6, and 2.90 × 10−5 A/cm2, respectively. In other words,
the corrosion resistance of the NbCrCx coatings is reduced as the C content increases, which
can be attributed to a reduction in the crystallinity of the NbC and CrC phases under
higher C concentrations (Figure 2a). It was shown in [10,14] that both NbC and CrC exhibit
good corrosion resistance, but this resistance decreases as their crystallinity is reduced.
The corrosion resistance of the NbCrCx coatings is also affected by the sp3 C-C bond ratio.
Specifically, as the C content increases, the ratio of sp3 C-C bonds decreases from 62.7% to
44.9% (Table 3), which leads to lower corrosion resistance [46].
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The NbCrC55N5, NbCrC43N16, and NbCrC34N26 coatings have Icorr values of 7.65 × 10−5,
4.94 × 10−3, and 5.36 × 10−3 A/cm2, respectively, which are all higher than those of the
NbCrCx series coatings. In other words, the incorporation of nitrogen into the NbCrC
coating reduces the corrosion resistance. Moreover, the degradation of the corrosion
resistance increases as the N content increases. The present results are thus consistent
with those of [47], which also showed that excessive nitrogen doping can reduce the
corrosion resistance of carbon materials (graphene). The poorer corrosion resistance of
the NbCrC43N16 and NbCrC34N26 coatings relative to that of the NbCrC55N5 coating
can also be attributed to their poor adhesion strength (Lc < 19.9 N), which causes the
coating to peel away from the substrate during the corrosion process, thereby allowing the
corrosive solution to come into direct contact with the substrate. In addition, both coatings
have a higher surface roughness (Ra = 43.6 and 44.8 nm) than the NbCrC55N5 coating
(Ra = 29.9 nm), which increases the surface area that is in contact with the corrosive solution.
Finally, higher N content deceases the percentage of sp3 C-C bonds in the NbCrCxNy
coatings, and this too contributes to a reduction in the corrosion resistance [48].

In summary, the NbCrC49 coating has the best corrosion resistance among all the
coatings due to its excellent crystallinity, moderate surface roughness, high sp3 C-C bonding
ratio, and high adhesion strength. The corrosion rate of the Icorr is around 15,000 times
lower than that of the substrate, thereby highlighting its excellent protection performance.

4. Conclusions

A radio-frequency unbalanced magnetron sputtering system was used to deposit
NbCrCx and NbCrCxNy coatings with different atomic percentages of carbon (x) and
nitrogen (y) on SHK51 substrates. The effects of the carbon and nitrogen contents on the
mechanical, tribological, and corrosive properties of the coatings were investigated and
compared. The results indicate that, among the NbCrCx coatings, the NbCrC61 coating
has a high sp3 C-C content and a fine grain structure, which collectively result in the
high hardness level of 21 GPa. Among the NbCrCxNy coatings, the NbCrC55N5 coating
exhibited highest hardness level (24.5 GPa) due to the solid-solution strengthening effect
induced by the addition of nitrogen. The NbCrC55N5 coating exhibited the highest adhesion
strength and hardness of all the tested coatings (both NbCrCx and NbCrCxNy). As a result,
it displayed the best tribological properties, including the lowest friction coefficient, wear
depth, and wear rate under loads of both 5 N and 8 N. Moreover, compared with the
uncoated SKH51 substrate, the NbCrC55N5 coating reduced the wear rate by 8 times and
7 times under loads of 5 N and 8 N, respectively. Among all of the coatings, the NbCrC49
coating exhibited the best corrosion resistance as a result of its excellent crystallinity,
moderate surface roughness, high sp3 C-C bonding ratio, and high adhesion strength.
The corrosion current rate of the sample was shown to be 1.40 × 10−6 A/cm2. Notably,
the corrosion rate of the NbCrC49 coating is around 15,000 times lower than that of the
substrate. Thus, the feasibility of using the NbCrC49 coating as a protective material for
substrates exposed to corrosive environments in real-world applications is confirmed.
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