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Abstract: Stainless steel is one of the most commonly used structural materials in industry for
the transportation of liquids such as water, acids, and organic compounds. Corrosion is a major
concern in industry due to the use of strong mineral acids, feedstock contamination, flow, aqueous
environments, and high temperatures. Stainless steel is the most commonly used material in the
petrochemical industry because of its characteristics of self-protectiveness, offered by thin passive
oxides, and its metallurgical composition. However, chlorides and mineral acids attack the stainless
steel continuously, consequently breaking down the passivation film, causing a continuous challenge
from corrosion. The corrosion in stainless steel is influenced by many factors including flow rate,
temperature, pressure, ethanol concentration, and chloride ion content. This review describes the
impact of organic compounds and organic acids on the degradation behavior of stainless steel. The
review also summarizes the commonly used organic compounds and their applications. It has been
demonstrated that organic acid concentration, temperature, and halide impurities have significant
effects on susceptibility to pitting corrosion by damaging the passivation film. The phenomenon of
corrosion in stainless steel is quite different in immersion tests and electrochemical potentiodynamic
polarization. This review article discusses the importance of organic compounds and their corrosion
behavior on steel. The article also puts emphasis on the roles of corrosion inhibitors, monitoring
methods, corrosion management, and forms of corrosion.

Keywords: organic compounds; organic acids; stainless steel; corrosion behavior; pitting corrosion;
corrosion mitigation

1. Introduction

Organic compounds are a large class of hydrocarbons that may contain nitrogen,
oxygen, halogens, and phosphorous atoms, in the form of solid chemical compounds,
liquids, and gases. The most used foodstuffs in our daily life such as vinegar, starch, fats,
sugar, etc., are organic compounds. They are known to humans since prehistoric times but
practical studies began in the 18th century [1]. Organic compounds are insoluble in water
but in organic solvents and are combustible in nature. The properties of organic solvents
are determined by the active carbon atoms in the group. The presence of the covalent bond
makes the organic compounds (a) have low boiling and melting points, (b) less strong acids
and bases, (c) exhibit the phenomenon of isomerism, and (d) be volatile in nature [1,2]. The
importance of organic compounds can be described by the fact that they are present in all
organisms in the form of proteins, fats, and the basic structures of life. They are the basic
components of the cycles that drive the earth such as the carbon exchange between animals
and plants through cellular respiration and photosynthesis [3].

Organic compounds are the major source of energy in the form of fossil fuels. They
are combined with metals to form organometallic compounds which are very beneficial
for pharmaceuticals and the food industry in which they serve as stabilizers, analyzers,
promotors, and catalysts [4]. Some of the organic compounds are tabulated below (Table 1).
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Table 1. Organic compounds and their applications.

Organic
Compound Application Organic

Compound Application

Gammexene Insecticide/germicide Urotropin Urological disease treatment

Carbon-
tetrachloride Fire extinguishers Ether

Coolant, solvent, anesthesia,
and in alcohol production,

etc.

Benzene Sulphonic
acid

In the production of sulfa
drugs, colored solutes,

saccharin, etc.
Benzoic acid

In the food industry for
preservation and drug

production, etc.

Benzaldehyde In perfume manufacturing
and the color industry Phenol

Used in the production of
aspirin, predestine,

insecticides, carbolic soap,
etc.

Aniline In drug manufacturing and
colors etc. Nitro benzene In polishes and soap

production, etc.

Chloro benzene Used in phenol, aniline, etc.,
manufacturing. Toluene

In the explosive industry,
medicine production, dry

cleaning, solvents, etc.

Benzene Used as fuel in engines,
solvents in dry cleaning, etc. Glucose

In fruit/juices preservation,
production of wines and

medicines, etc.

Oxalic acid

Used in leather bleaching,
printing, and colorization of
clothes, making ink colors,

cleaning ink spots with 10%
solution, etc.

Urea

Used in the production of
medicines, urea plastic, and

formaldehyde.
Used in the form of fertilizer,

etc.

Ethyl acetate Used in artificial perfumes
and medicines, etc. Acetamide

In misting paper and pulp,
in softening cloth, and

leather.

Acetic anhydride

Used in the making of
medicine like aspirin, in the

production of
synthetic/artificial silk from

cellulose, in the color
industry, etc.

Glycerol

In wine and fruit
preservation, cosmetics, and
shoe polishes, medicines for
pain relievers, watches for

cleaning, in making
nitro-glycerine, etc.

Acetic acid

In making jelly and sauces;
in the laboratory, and food

industry in the form of
vinegar, etc.

Formic acid
In food preservation, used in

insecticide production, in
rubber, leather trade, etc.

Acetone

In making of chloroform,
chloretone, sulfone,

synthetic rubber, artificial
silk, clodian cellulose,

varnish, etc.

Acetaldehyde
Used in the production of

plastic, metal acetaldehyde
medicine, colors, etc.

Formaldehyde
Used in making waterproof

clothes, gelatin film,
insecticides, etc.

Acetyl chloride In the production of acetic
anhydride, acetamide, etc.

Ethyl alcohol

Used as insecticides for
cleaning wounds, in stoves

and spirit lamps,
making artificial

scents/colors in fruits and
perfumes, solvents in
methylated spirits, in

varnishes and polish, in
making wines and alcoholic

drinking stuff, etc.

Methane

Used in the production of
chloroform, formaldehyde,

methyl alcohol, making tires,
inks, and colors.

Used as fuel for energy
production, etc.
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Table 1. Cont.

Organic
Compound Application Organic

Compound Application

Methyl alcohol

In making polish, varnish,
artificial color,

methylated spirit, used as
fuel in engines by mixing

with petrol, etc.

Chloroform

Used as anesthesia in
surgical operations, solvents
for lac, fats, rubber, used as

insecticides, etc.

Ethyl bromine Used in surgical operations
as local anesthesia. Polystyrene Used in making accumulator

cells, caps of acid bottles, etc.

Polythene

Used in the production of
uncrackable bottles,

electrical resistance in cables
and wires, etc.

Acetylene

Used for artificial ripening,
Marcelin anesthesia, in

producing artificial rubber,
etc.

Ethylene
Used for anesthesia, fruit

ripening, and preservation,
in oxy-ethylene flame.

Butane Used as fuel in liquid state in
the form of LPG, etc.

Firmament
In the production of chewing
tablets and medicines for the

throat, etc.

Organic acids are organic compounds with weaker acidic properties than mineral
acids and their acidity is associated with one or more carboxylic groups (–COOH). The
lower reactivity and weak acidity make organic acids usable at higher temperatures and
for a longer time. The reactivity/strength of acids is characterized by the value of the
acid-dissociation constant (Ka). It measures the acid-ionization strength. The logarithmic
values of Ka are referred to as pKa. A higher value of pKa denotes a weak acid and a
lower value indicates a strong acid. The pKa value for formic acid is 3.75 and for HCl is
less than unity. The most commonly used organic acids in the oil and gas industry are
lactic acid, citric acid, acetic acid, and formic acid because of their ability to meet different
application specifications. They are widely distributed in nature and release hydrogen ions
when dissolved in water [5–7].

Organic acids have been produced from petrochemicals via fermentation or synthe-
sized through chemical processes. They are commonly derived from agricultural waste,
foods, and juices, and used in the process industry as catalysts or processing agents [8]. The
commonly used production method for organic acids is one step acid-based fermentation
process that induces corrosive contaminants such as sulfuric acid and chlorides [9]. The
traditional fermentation process for crop-based organic acids focuses on the mechanical
behavior, not the corrosion performance. The corrosion problems must be addressed in the
production process of organic acids. Efficient and fast techniques have also been developed
to extract organic acids from plant materials.

Organic acids exceptionally found applications in biochemical processes such as mod-
ulating transport across the cellular membrane, pH modification, signaling the messenger,
and protein modification. They are promising chemicals for producing bio-plastic, polyester,
and degradable polymers which have commercial applications in the processing of foods,
pharmaceuticals, and chemical industries. Organic acids have been used in the oil and gas
industry for well-stimulation treatments and to improve resistance against the corrosion
of different metals such as phosphonates and act as corrosion inhibitors in stainless steel.
The whole process of organic acid extraction and their application is summarized in Fig-
ure 1. The corrosion inhibition properties of organic acids are synergistically determined
by surface energy, surface roughness, and wettability/hydrophobicity [10]. The wettability
of the tail group commonly decreases in the order of CH2 > CH3 > CF2 > CF2H > CF3. The
stability of the hydrophobic surface on stainless steel is related to the chain length of the
tail group.
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Figure 1. Organic acid extraction and their applications.

Stainless steel is used in the petrochemical, chemical, nuclear, and food industries
for the transportation and storage of hydrocarbons [11–13]. The corrosion in pipelines
in the petrochemical industry is caused by the presence of chlorides and water content
in organic liquids [14–16]. Stainless steel is considered an excellent corrosion-resistant
material in the industry due to the presence of high chromium content [17]. Therefore,
many petrochemical industries experience greater uncertainty in selecting material for
equipment to manufacture chemical products in organic/mixed solvents compared with
the process that takes place in aqueous media [18]. The corrosion resistance of materials
in organic solutions comprising acid contamination and low water concentration is of
particular interest. Systematic studies of the corrosion performance of the different metals
and alloys used in the chemical industry have been performed by many researchers.

Many industrial and research standards have been published over the last twenty
years. The objective of the research was focused on critically reviewing the role of organic
solvents and acids on the corrosion resistance of stainless steel. The impact of organic
acid concentration, contact time, flow rate, oxygen level, and contaminants, including
water content and inorganic additives has been carefully analyzed. The evaluation of the
chemical and physiochemical mechanisms and mitigation for the occurrence and control of
corrosion in organic acids and related solvents is discussed. The impact of organic acids
and solvents on the corrosion behavior of ferrous and nonferrous materials is discussed.
Types of corrosion under organic solvents, corrosion mitigation techniques, and process
optimization are also briefly reviewed and discussed.

2. Corrosion Behavior of Stainless Steel in Organic Acids and Related Compounds

The advanced corrosion problems in metallic materials have been created due to the
development of petrochemical industries and new products caused by advancements in
chemical engineering and technology. Stainless steel is traditionally a widely used material
in the pipelines of the petrochemical industry [19]. The corrosion behavior of stainless steel
in an organic acid environment is influenced by many factors such as concentration, pH,
temperature, length of tail group, chloride ions, etc., as summarized in Figure 2. A sufficient
amount of nickel present in the steel improves the formability and ductility by retaining its
austenite structure at ambient temperature. The presence of molybdenum with chloride
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ions also improves the corrosion resistance whereas aluminum enhances the scaling at
higher temperatures. Other particular characteristics are improved by adding selenium,
sulfur, nitrogen, niobium, silicon, titanium, and copper [20–22]. The corrosion phenomenon
in steel is much less prevalent in the organic or mixed-solvent environment than in an
aqueous medium. Organic solvent means all liquid organic compounds, irrespective of
their practical use. Numerous research works have been carried out on the degradation
performance of stainless steel in organic media. Some researchers found that the passivation
film on stainless steel would be damaged in an anhydrous solution having a water content
of less than 70 mole%. Additionally, the dissolution kinetics are activated in pits with
the increase in water content in an organic acid/NaCl solution. The formation of the
passivation film is dependent on the activity of water and pitting potential is considered as
the function of water content in organic acid/HCl solution [23,24]. The higher viscosity
and concentration of organic acids deteriorate the passivation film and the diffusion rate
is dropped leading to localized corrosion in stainless steel [25]. The corrosion caused by
organic solvents leads to deterioration in the mechanical properties and discoloration of the
solvent [26]. The materials used in organic environments need immense corrosion resistance
because of the inflammable, poisonous, and explosive nature of organic solutions [27–29].
Temperature, pH, chloride inclusions, and even traces of water have obvious effects on
pitting and stress corrosion cracking (SCC) susceptibility [30]. Therefore, the pressure
and temperature in corrosion are selected in such a way that aggressive agents are in the
liquid state [31]. Researchers are focusing on the corrosion behavior of metals in organic
solution with minor impurities such as chlorides and water to estimate the reliability of
transportation pipelines [32].

The phenomenon of corrosion in organic solvents is the same as in aqueous corrosion—
metal ions are transferred to the oxide by heterogeneous chemical reactions.

Organic solvents can be categorized into the following three systems (R refers to a
saturated or unsaturated alkyl moiety):

(1) Protic-aprotic systems: carboxylic acids (RCOOH), alcohols (ROH), hydrocarbons
(R-H), amines (R-NH2), halogenated hydrocarbons (R-X), and esters (RCOOR).

(2) One-component/multi-component systems: examples are RCOOH, ROH, and R-X.
Organic solvents are contaminated by O2, H2O, halogenides, and inorganic acids.

(3) One-phase/multiphase systems: the one-phase system can be a liquid (in most
cases), vapor (i.e., RH, RX), or a solid (coatings, polymers). Multiphase systems may be
dioxane + H2O + HC1; RX + H2O, heptane + C2H5OH + HCl.

Purified aprotic solvents may only react with electronegative metals (Al and Mg).
Carboxylic acid and alcohols are the main representatives of the group. The number of
carbon atoms is more influential in the homologous series of monocarboxylic acid [33–39]. The
corrosion rates are decreased exponentially with the increased chain length of carboxylic
acid which is due to the fact that the increase in chain length and steric hindrance enhances
the viscosity while the diffusion coefficient is decreased. The number of carbon atoms has
the same influence on corrosion in an alcohol series as in carboxylic acid [40]. Ethanol
and methanol have higher corrosion reactivity than water. The concentration of Cl− and
water increases the corrosion in steel in the three-component system (water+formic acid
+ Cl−). The pitting susceptibility of stainless steel is increased when the water content is
< 5 vol.%, while pitting is reduced for water content of more than 10 vol.% [41,42]. The
long-term exposure of stainless steel to organic solvents makes it more susceptible to pitting
corrosion [43,44].
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Figure 2. Symmetric diagram indicating the factors influencing the corrosion resistance of stainless
steel in organic acids.

Recently, austenite steel (AISI 316L) has been operating in the petrochemical industry
at higher temperatures for the last twenty years because of its improved mechanical and
corrosion properties. Austenite steel is one of the most used steels (about 2/3) in the
stainless-steel group [45]. The undesirable intermetallic phases are observed in stainless
steel along with small quantities of carbides M23C6 (FCC, NaCl type, M = Mo, Fe, and
Cr) and M6C (FCC, diamond-type, M = Mo, Fe, and Cr) during service or heat treatment
at 550–900 ◦C. The most observed intermetallic phases in austenite steel are σ (sigma)
(TCC, D8b, Fe-Cr-Mo), χ (chi) (Cubic, α-Mn type, A12, Fe-Cr-Mo), and η, (Leaves phase)
(HCP, C14, Fe2M, M = Mo, Ti) [45]. The loss of corrosion resistance and ductility is
caused by the occurrence of these intermetallic phases leading to improvement in matrix
solid solution [46]. The investigative analysis of these phases is of great interest for the
development of new compositions for excellent usage of this steel [47].

Uniform corrosion in stainless steel takes place in organic acids and alcohol. Stainless
steel and aluminum experience the pitting type of corrosion in perchloroethylene, chloride-
contaminated alcohols, and other protic solvents [48]. Uniform erosion–corrosion takes
place in the stainless steel in the mixture of halogenated hydrocarbons. Crevice corrosion,
erosion, and t-stress corrosion are caused by the mixture of trioxane, formic acid, water, and
methanol in stainless steel and aluminum [49,50]. The corrosion failure of some organic
compounds on some metals is given in Table 2.
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Table 2. Corrosion failure in organic media.

Metal Corrosion Medium Type of Corrosion Temperature Prevention
Method

Carbon steel Dimethyl formamide Uniform 100 ◦C Anhydrous solvent
(< 0.1% H2O)

AISI316

Acetic acid (30%) + propyl
acetate (9%) + butyl acetate

(42%) + propionic acid
(18%)

Pitting Boiling Add titanium

Ti Methyl acetate+acetals +
HCl + H2O

Intergranular
stress corrosion Boiling Enamel coating

Al Ethyl dibromide High rate uniform 25 ◦C Use galvanized
steel

Wang and Zhu [51] studied corrosion inhibition in derivatives of lactones, quinoline,
triazole, and diazole with different concentrations of HCl solution in different types of
steel. Multilayer structure distribution was observed in the electrochemical behavior of
the passivation film of stainless steel under ultrasonic and static state cavitation in an HCl
solution. Organic acids are not aggressive against stainless steel at room temperature unless
used at higher temperatures or contaminated with chlorides [52,53].

Constantinescu and Heitz [54] investigated the corrosion rates of AISI 304 stainless
steel in oxygen-free butyric, propionic, formic, and acetic acids at different temperatures
and chloride content. They observed that the influence of water in stimulating the corrosion
reaction becomes more significant with less water, like organic solvents. The dependency of
corrosion on temperature is analogous to that in the aqueous solution. The role of chlorides,
acetic acid, water, and oxygen level in the pitting corrosion of carbon steel in simulated fuel-
grade ethanol (SFGE) was observed by Lou and Sing [55]. They concluded that interface
electrochemistry and surface film stability are strongly influenced by water content in SFGE.
The pit instigation and growth are promoted by higher acidity and dissolved chlorides.

Ferreira et al. [56] recorded the EIS of 316L in (1 wt.%) H2SO4 and (3.5 wt.%) NaCl to
prove that the passivation layer on the stainless-steel surface was decayed by acetic acid
that could be affected by the higher concentration of Cl− and H+. The presence of chloride
ions, methanol, H2O, and dissolved oxygen in acetic acid are major factors influencing
stress corrosion cracking.

Chloride is required for stress corrosion cracking (SCC) in ethanol but is not the
controlling factor for crack growth. D.G Li et al. [57] investigated the effects of pH, H2O,
and chloride ions in the slow strain rate test and found that low pH and chloride ions
promote the SCC. Gui et al. and Singh et al. [55,58] concluded that chloride, acetic acid,
and water content promote localized corrosion by influencing the passivation film. The
localized cells are created on the metal at the microenvironmental level by microcracks
which are produced as a result of plastic deformation. The electrochemical properties of
plastic deformation can be widely different from those of the undeformed.

Simulated fuel-grade ethanol with 5 vol.% water and 5.6 mg/L acetic acid has little
effect on stainless steel. Later, the same researcher concluded that 560 ppm acetic acid
inhibits the re-passivation of steel in the ethanolic environment. The existence of acetic acid
in ethanol influences the crack growth rate and pitting corrosion by producing bacteria.
The role of water, chloride ions, and oxygen has been suggested. However, the effects of
other impurities have not been considered [55]. It was investigated by Schmitt [59] that
an increase in chloride ion concentration inhibits CO2 corrosion by decreasing the CO2
solubility in a simulated solution. Moreover, chloride ions destroy the corrosion film and
change the film morphology.

Pitting corrosion dynamics are more sensitive to chloride ion concentrations than pH
and an increase in concentrations of chloride ions leads to an increase in pit propagation.
But it has no significant effects on localized corrosion rate at 80 ◦C. The stainless steel
experiences severe corrosion in the 100–110 ◦C temperature range and 0.5 MPa pressure.
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The effects of Cl− ions on the corrosion behavior of 316L steel at high temperatures were
investigated by Zhang et al [60] in H2S/CO2 aqueous media. The corrosion was controlled
by H2S and an increase in chloride ions weakened the CO2 corrosion. The corrosion
behavior of mild steel in various concentrations of acetic acid has a resemblance in weight
loss and electrochemical techniques at three different temperatures of 25, 35, and 45 ◦C.
The maximum corrosion rate was observed in 20% acetic acid. The anodic polarization
shifted to a higher current density with the increase in temperature at each concentration
and the passive region became less distinguishable.

Otero et al. [61] prepared 316L stainless steel by powder metallurgy and investigated
the corrosion behavior under an organic solution containing oxalic acid, lactic acid, formic
acid, and acetic acid. AISI 316L steels had the highest corrosion rates. Subsequently,
a kinetic study of the corrosion process observed the crevice corrosion mechanism. A
localized crevice attack was observed in the pore areas, close to the powder particle contact
zone. The corrosion rate in formic acid is time-dependent. The dissociation constant in
formic acid is constant and consequently is more corrosive. The corrosion rates are high
for a longer time, indicating that corrosion products also support the corrosion rate. The
improvement in hardness competes against the decrease in corrosion resistance due to the
formation of microcavities during the corrosion process which is balanced by the increase
in hardness.

2.1. Effects of Acetic Acid

Acetic acid is a monoprotic acid (CH3COOH) (pKa = 4.8) and the second simplest
carboxylic acid. It dissolves the carbonates by pairing them with another acid to be used as
an iron agent. The corrosion behavior of stainless steel in acetic acid resembles weight loss
and electrochemical processes. The maximum corrosion rate for stainless steel in 20% acetic
acid at different temperatures was observed. The increase in temperature increases the
corrosion current density, causing an enhancement in the corrosion rate. The passivation
range is extended by the addition of sodium acetate [62]. The corrosion rate increases
with the increase in temperature, flow speed, and concentrations but decreases with the
increase in pH. The increase in the concentration of acetic acid leads to the formation
of iron acetate which consequently reduces the reactivity of acetic acid. The primary
corrosion product forming the passive film is ferrous carbonate (FeCO3) at higher pH and
temperature conditions. Stainless steel has high corrosion resistance in aqueous acetic acid
and a passive film is formed on the surface which enhances the corrosion resistance. The
addition of molybdenum has beneficial effects on the passivation film. The presence of
aggressive ions influences the corrosion behavior of stainless steel. The chloride ions are
more aggressive than the bromides. The addition of H2S accelerates the corrosion rate in
stainless steel by promoting the hydrogen evaluation reaction. Severe corrosion cavities are
formed on the surface because cementite strips are formed on the grain boundaries. The
loose corrosion products are formed on the surface and the passivation film is damaged.
The addition of CO2 in acetic acid activates the polarization curves and the cathodic current
density is substantially increased to more active values. The dissociation of acetic acid takes
place in one step as below:

4CH3COOH 
 4CH3COO− + 4H+

The corrosion behavior of mild steel in citric acid, tartaric acid, lactic acid, malic acid,
and glycolic acid has been investigated by many researchers [63–66]. It was observed that
the corrosion rate increased in the order of glycolic acid < citric acid < lactic acid < tartaric
acid. The corrosion rate was increased with the increase in the acid concentration of the
citric, lactic, tartaric, and malic acid solutions while the glycolic acid concentration was kept
constant. The glycolic molecules were observed on the steel surface. The corrosion rate of
stainless steel (SS-304) remained constant under glycolic acid aqueous solution. The surface
unevenness increased with the increase in immersion time and the corrosion behavior was
not passive. The carboxylic anions were not observed on the surface.
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The corrosion behavior of X70 steel was investigated in glacial acetic acid and NaOH
solution under different pH conditions by Zhang et al. [67]. The corrosion rate was increased
with the increase in hydrogen at pH = 3. The corrosion products inhibited hydrogen
evaluation and the oxygen reduction process was promoted at pH ≥ 3. The corrosion rate
was less for a pH ≤ 4 than that of the solution with pH ranging from 5 to 7. The different
morphologies of the corrosion products were observed under different pH values. The
corrosion mechanism changed from uniform to localized corrosion with the increasing
corrosion rate, leading to an increase in pitting development.

2.2. Effects of Formic Acid

Formic acid (HCOOH) is considered as the most reactive organic acid after citric
acid and assures strong reactivity with formation materials. The corrosion behavior of
stainless steel in formic acid is a function of concentration and temperature. Formic acid
can aid corrosion inhibition by forming carbon monoxide (CO) on the metal surface which
intensifies the corrosion inhibition by different mechanisms. The 20% formic acid aqueous
solution yielded the maximum corrosion rate. Cathodic polarization curves remained
identical irrespective of formic acid concentration [68]. A high corrosion rate was observed
at the boiling point of 100% formic acid. The conductivity of formic acid is increased with
the temperature. The corrosion products on the surface are Fe2O3, FeO, and Cr2O3 [69].
The impact of acetic acid and formic acid on the corrosion performance of stainless steel
was investigated by Invernizzi et al. [70] at different temperatures. The corrosion rate
was higher in dissociated formic acid at the same concentration. The austenite phase was
present in all solutions causing uniform corrosion. The contamination of sulfates was
directly related to the corrosion rate. The corrosion rate increased linearly with the addition
of sulfuric acid concentrations. But the addition of a few tens of ppm of oxidants (Cu2+ or
Fe3+) improved the corrosion resistance remarkably and the corrosion rate was negligible.
The addition of H2O2 increases the corrosion potential up to the passivity of the steel. The
corrosion rate of 316L stainless steel is greater in an aqueous solution of formic acid and
acetic acid solution than in non-aqueous solution. The corrosion behavior is quite different
in aqueous and non-aqueous solutions.

Peracetic acid is strong oxidizing acid, used for sterilization and disinfection due
to its microbial activities. It is widely used in biocidal activities, particularly in viruses,
fungi, yeasts, and bacteria. It is very corrosive to metals and elements used in hospitals
and industries. The effects of temperature and the concentration of peracetic acid on
the degradation behavior of cold-rolled steel were investigated by Qing et al. [71]. The
maximum corrosion was observed at 20 ◦C. The concentration of peracetic acid significantly
influenced the corrosion rate. The dominant corrosion product was Fe3+. Pehkonen
et al. [72] analyzed the corrosion behavior of stainless steel in peracetic acid and ozone.
It was concluded that stainless steel experiences higher corrosion rates in peracetic acid
solution than ozone.

2.3. Effects of Citric Acid

Citric acid (C6H8O7) is a weak organic acid having three carboxylic groups (COOH)
and is commonly present in citrus fruits. The anionic derivative [C6H8O7]3− reacts with
different ions to form salts. The degradation behavior of stainless steel is strongly influenced
by the concentration and composition of organic matter. Citric acid is tricarboxylic acid
and is very aggressive for corrosion in stainless steel. The increase in the amount of
carboxylic groups leads to a high concentration of carboxylic ion concentration, thus,
higher corrosion rates. The chain length in an organic acid is a determinant of the current
density and produces mass transfer limitations. Higher current density is produced at lower
concentrations of citric acid and forms the physical barrier at a higher concentration which
reduces exposure to the corrosive environment. Citric acid is a nontoxic and renewable
organic acid used as a corrosion inhibitor for lead surfaces exposed to sulfuric acids. It
forms the passivation film on the anodic surface to inhibit corrosion effectively. The surface
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film is composed of an organic layer of Fe-citrate, FeOOH, Fe(OH)2, and FeO at pH = 9. The
overall composition of the passivation film is composed of Fe3O4/FeOOH. There is no clear
presence of iron citrate in the passivation film, so poor passivation behavior is correlated
with insufficient adsorption behavior of anions. The citric acid releases the hydrogen ions
in the following three steps during the corrosion process:

C6H8O7 
 C6H7O−7 + H+

C6H8O−7 
 C6H7O2−
7 + H+

C6H6O2−
7 
 C6H5O3−

7 + H+

Citric acid is widely used in removing rust and scaling on equipment for chemical
cleaning. It has been reported that sodium citrate acts as a corrosion inhibitor for carbon
steel in water cooling systems. The current density decreases with the increase in pH.
The corrosion analysis of 0.1 M citrate solution containing chlorides (pH = 8) exhibits
four anodic peaks and two of them are related to ferrous species which release citrate
ions causing pitting corrosion behavior. The citrate ions express poor corrosion inhibition
behavior due to their complex-forming nature. The active corrosion behavior was observed
in weak acidic solutions [73]. Severe damage occurs from locally initiated acid attacks
when steel is in contact with spent acid.

2.4. Effects of Oxalic Acid

Oxalic acid is a dicarboxylic acid that is a purifying agent in the pharmaceutical
industry and acts as a metabolic catalyst in the oxidation of phenol and coumaric acids.
The corrosion rate is increased at higher temperatures and concentrations. The addition of
anions such as [SO4]2− and Cl− reduces the oxide film thickness. The oxide film thickness
is decreased with the increasing content of Cl− ions [74]. The hydrogen ions are released in
oxalic acid in the following step:

C2O4H2 
 C2O4H− + H+

Higher current density is produced at lower concentrations of oxalic acid and a
physical barrier is formed at a higher concentration, which reduces exposure to the corrosive
environment. The chain length in an organic acid is a determinant of the current density
and produces mass transfer limitations. Oxalic acid has a higher current density than citric
acid at the same concentration [74].

The corrosion in steel under organic solvents is influenced by many factors and its
resistance can be improved by changing the composition of molybdenum, nickel, and
selenium which leads to the formation of the passivation layer on the surface causing the
reduction in degradability. The kinetics of degradability in stainless steel is a function of
water content and is initiated by a single pit. The tail group of the organic solvents decides
the type of corrosion in stainless steel. The concentration of chlorides, temperature, tail
group length, steel composition, and chemistry of the solution are factors to describe the
type and kinetics of the corrosion [75–77].

3. Influence of Alloying Elements on Corrosion Behavior of Steel in Organic Acids
and Compounds

Erosion–corrosion is a prominent failure at the pipe outlet of the distillate column-
free heater in the petrochemical industry [47]. The failure leads to leakage in the outlet
and inlet of the radiant tube heater and piping systems due to the effects of temperature,
pressure, flow, and corrosion. Erosion plays a key role in failure while pit corrosion
formation is caused by electrochemical corrosion [48]. The root causes of leakage are
the composition (chlorides and sulfur), fluid flow rate, temperature, and pressure of the
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corrosive environment [49]. The corrosion of nickel in organic solvent + H2SO4 exhibits
unexpected behavior. The weight loss curves of nickel in acetic acid, ethanol, and acetone
with a small amount of sulfuric acid were compared with weight loss curves in an aqueous
solution [78,79]. It can be summarized that: (1) corrosion rates are very low in acetone
solution; (2) corrosion rates are decreased in acetic acid by the addition of sulfuric acid;
(3) ethanolic solution exhibits larger corrosion rates than aqueous solution; (4) the influence
of temperature on corrosion is dependent on solvents [26,38]. Similar results were observed
for Cu in the same environment. The nickel content is detrimental to the corrosion resistance
of stainless steel in formic acid media which is a very aggressive corrosive agent. A similar
phenomenon exists also for urea production. The difficulties lie in the solubility of nickel at
high temperatures which can be addressed by ferric alloys [58]. An alloy with molybdenum
can improve corrosion resistance against strong organic acids. Adding chromium enhances
corrosion resistance at higher temperatures [80,81]. The corrosive attack is controlled by
pH and chloride concentration in organic acids containing halides and can be changed,
according to Jinyang Jiang and H. Sun [30,82].

It is believed that Mo and Cr contribute to the corrosion resistance of stainless steel in
aqueous media and Ni contributes slightly. The corrosion resistance is mainly contributed
by Cr and slightly by Fe and Mo in the nonaqueous solution of formic acid, changing the
composition by adding corrosion-resistant elements such as nickel, and zinc [70,83]. Formic
acid (HCOOH) is the most corrosive monocarboxylic acid at all concentrations and aeration
increases the corrosion rates. The presence of chloride ions initiates corrosion and makes
its general corrosion ability more severe [84].

The addition of chromium is effective for improvements in corrosion protection in
Cl− containing brines. The corrosion performance of the steel is strongly influenced by
the grain size. The corrosion rate of steel is increased with the increase in grain size in an
alkaline solution. Metal surfaces consist of boundaries, corners, edges, complex crystals,
and disturbed layers which in turn dictate the properties of the surface [85]. The surface
characteristics are determined by free energy because of the different arrangements of
crystal faces. The physical properties of the surface are extensively changed when the grain
size is reduced to 100 nm. The high grain density has a different corrosion behavior from
that of polycrystalline materials [86].

The corrosion investigations of metallic biomaterials are of significance because of their
critical applications. The increased corrosion rate leads to increased release of metallic ions.
Lower corrosion rates are desired because of the corrosion interface with the cell metabolism.
The corrosion behavior of titanium in uric acid was investigated by Liu et al. [87]. They
observed the pitting holes on the surface at higher concentrations and the amount of TiO2
was decreased. The titanium surface pretreated with uric acid becomes hydrophobic and
the corrosion susceptibility of titanium is increased. The uric acid concentration influences
the release of titanium ions and surface characteristics. The corrosion rate is increased by
destroying the titanium oxide barrier and accelerating titanium ion release.

The corrosion behavior of stainless steel in tartaric acid, citric acid, and oxalic acid was
investigated by Gouda et al. at different pH values. [88]. The corrosion potential decreased
and the corrosion rate increased at higher concentrations of organic acids and up to pH = 4
of the medium. When the pH of the corrosive medium is increased to 5 and 6, the corrosion
potential becomes nobler causing a decrease in corrosion rate. The steady-state corrosion
potential (E) and concentration (C) of the organic acid is related below:

E = a − b × logC

where a and b are the constant. The corrosion mechanism is anodically controlled by the
complexing of Sn2+ ions with organic acid anions. The aggressiveness of the organic acid
increase in the order of tartaric acids < citric < oxalic. The corrosion is inhibited at a pH of 5
and 6 because of passive film formation on the surface.

Pitting is a key phenomenon in electrochemical corrosion and erosion is a key failure
in nonferrous metals. Chloride and sulfur concentration, pH and pKa value of organic
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acid flow rate, and pressure with some nickel content are the main reasons for the failure.
Corrosion is controlled by halide ions.

4. Types of Corrosion

The corrosion type and mechanism are influenced by many factors such as metal
structure, surface morphology, inhibitor type, and passivation characteristics of the organic
acid and stainless steel. The parameters are summarized in the symmetric diagram in
Figure 3. The common organic acid corrosion types and their effects are summarized here.
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4.1. Pitting Corrosion

Pitting corrosion is caused by the de-passivation of the passive layer. Some researchers
claim that it is an intrinsic property of the acid used and the corrosive environment. Others
claim that acid molecules penetrate into the metal surface and release the proton which
in turn causes damage to the passivation layer. The oxygen pressure is decreased at
localized sites which results in the formation of crevices and inhibits the regeneration of
the passivation.

The corrosion of steel is directly related to organic acid concentrations. It has been
observed that corrosion potential is decreased with the increased concentration of organic
acids. The degradation of the metal matrix in pits is slowed down because of less diffusion
of metal cations. Ethanolic solutions present a similar phenomenon. With the increase
in the concentration of organic acids, breaking the potential is significantly decreased
which indicates that pitting resistance deteriorates with no change in the thickness of the
passivation film. The increase in organic acid concentration leads to the dispersion of
breaking potential.

The pit density is increased exponentially with the increase in the concentration in the
potentiodynamic polarization test but not in the immersion test. There are a finite number
of precursor sites and sufficient time is required to incubate stable pits at the lower voltage.
Thus, the reason for different pitting behaviors in immersion is because of the deprivation
of precursor sites and inadequate activation time.
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The pits on the surface of 316L steel were initiated in 1 M NaCl solution with 0 and
10 M ethanol at 1 mA·cm−2. The dissolution charge was contributed by a single pit on
the surface which rapidly developed and generated at higher current density. Several pits
contribute to form a dissolution charge. The single pits fail to generate sufficient current
density which causes the pits to grow pits in scale size. Multiple pits are generated at a
current density of 1 mA·cm−2 and a single pit is generated at the breaking potential.

The pitting in the ethanolic solution is simplified and development is suppressed.
The pits tend to be deeper. The growth of stable pits is an electrochemical process and
is controlled by the viscosity of the ethanolic solution and metal cations. The inhibition
of pitting development is ascribed to the drop-in ions diffusion rate. The deterioration of
passivation films does not affect the pit initiation and the theory of alcohol electro-oxidation
is not applicable to the ethanolic system [18,89,90]. The increase in concentration leads
to an increase in metal cations at the pit’s bottom and changes the solution’s pH. The
hydrolysis of metal cations is enhanced with an increase in organic acid concentration
which consequently results in a decrease in the pH of the solution. The pitting is initiated
when concentrations of cation Mn+ are far from saturation. The pH of the solution is
decreased with the increase in concentration. When the solution is saturated with metal
cations Mn+ and pits are developed; this results in the synergic effects of solubility reduction,
and hydrolysis enhancement [55,91,92].

The metastable pits are initiated with the inclusion of chloride ions and the puncture
behavior of chloride ions is not affected by the passivation film. The solution inflows during
void expansion and the pits initiation is influenced by the difference in hydrolysis. The
concentration of metal cations is lower with a higher content at the bottom of the pit than
in a non-acidic solution, resulting in dissatisfaction with the pH on the surface. This results
in more dissolution at the top and less dissolution at the bottom in alcoholic solutions,
causing the formation of a lacy cover and steeper pits.

The current density of the pit in metal cation dissolution could be approximated by:

idi f f , site =
3nFDCsite

2πr

where n is the average oxidation state of the metal cations, F is the Faraday constant, D is
the effective diffusivity of the metal cations, Csite is the concentration of metal cations at the
site, and r is the radius of the hemispherical pit.

4.2. General Corrosion

The commonly observed corrosion in stainless steel is uniform corrosion which is
characterized by a thinning of the component wall. General corrosion occurs when the
passivation film is damaged and a new passivation film is not attained either because of
shear stress effects or higher pit density distribution. The randomly alternating anodic and
cathodic spots cause uniform attacks and the entire metal surface would be damaged. The
uniform or general corrosion is caused by hydrogen embrittlement which results in load
redistribution causing local stress risers, and secondary bending stresses which accelerate
the crack growth [23,38,93]. Reasonable corrosion resistance is offered by stainless steel
in the presence of impurities such as HCl, sulfuric acid, and formic acid. An elevated
operational temperate can result in rapid general attacks on steel. Elevated temperature
and high acid concentration are of particular concern for corrosion protection. These
conditions would cause the corrosion rate in steel to reach 500 mpy. Moderate operating
conditions will prevent corrosion to a large extent because of the standard composition,
especially molybdenum content.

4.3. Stress Corrosion Cracking

Stress corrosion cracking is a major corrosion problem in stainless steel in chloride-
contaminated environments at higher temperatures. Stainless steel (316L) is more vulnera-
ble to corrosion in 70–90% acetic acid-containing chlorides at 90 ◦C. The susceptibility of
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316L stainless steel is higher in 400 ppm chlorides within a 30-day period. The vulnerabil-
ity of stainless steel to stress corrosion cracking is influenced by many factors including
local passivity breakdown, electrochemical potential, aqueous environment, halide salt
contamination, elevated temperature, and the menace of sustained stress corrosion in petro-
chemical plants. These alloys have the intrinsic property of developing a thin protective
film against corrosion [94]. Under typical conditions, EA plants operate at temperatures
above 100 ◦C and concentrations higher than 70% EA. Thus, feedstock contamination and
these parameters must be monitored during the processing to avoid SCC.

4.4. Other Types of Corrosion

Some other types of corrosion such as intergranular and crevice galvanic corrosion
are also encountered in food process plants. Although they are less common, their impact
cannot be eliminated in the production process. The crevice type of corrosion happens in
sealed locations where differential concentration is present. The crevice type of corrosion
in nuts, bolts, lap joints, and butt joints made up of 316L steel has been reported.

Galvanic corrosion is associated with welding active and noble metals. The massive
difference in potential leads to preferential corrosion in less noble metals. The crevice and
galvanic forms of corrosion can be controlled by proper material selection and design to
ensure metal coupling and minimize the crevices.

Intergranular corrosion is affiliated with heat-affected zones of weldments in stainless
steel. It happens due to the depletion of chromium and the formation of chromium carbide
precipitates along grain boundaries at elevated temperatures. Intergranular corrosion
occurs in aqueous media in which chromium carbides are activated at grain boundaries
and the rest of the material is under passivation.

4.5. Interaction of Corrosion Types

The different types of corrosion occur and interact in EA plants due to complex pro-
cesses. A typical example of corrosion interaction is pitting in the crevice. The feed streams
are stocked in crevices and create a microenvironment that has a different composition
than the bulk. The environment is suitable for pit initiation and proliferation through
autocatalytic pitting. Thus, the occurrence of pitting corrosion coupled with rapid general
corrosion has been reported [23,81,95].

Pitting acts as a stress raiser by localized loss in thickness. The continuous degenera-
tion of pits leads to crack initiation and propagation which causes fatigue and SCC. The
pit–crack transition phenomenon takes place and the crack grows subsequently. Pitting
corrosion behaves as the denominator in localized corrosion such as SCC, fatigue, and
hydrogen. Similarly, sensitized stainless steel is vulnerable to other types of corrosion such
as crevices, SCC, and pitting. Stabilizing steel with titanium or niobium or using 316L
stainless steel can prevent it from being sensitized and protect it from the intergranular
corrosion property by developing a thin protective film [57,95–97]. Therefore, the supreme
importance of this interaction between the different forms of corrosion in suitable and
susceptible organic environments should be given due consideration.

5. Mechanism of Corrosion

Green chemistry represents the holistic approach to managing chemical risk. It elim-
inates chemical pollution and waste management. Ensuring the natural resources and
minimizing the environmental effects and sustainability are the fundamental concepts
in green chemistry. Green corrosion inhibitors and biodegradable inhibitors do not have
toxic compounds. They potentially inhibit the corrosion of metals in alkaline and acidic
environments.

In the corrosion inhibition process, a protective layer is formed on the metal surface
by absorption of the molecules. The coordinate bonds are formed when these molecules
donate the electron to the vacant d-orbital. The metal ions are transferred from the anode
in the solution to the cathode during the corrosion process. The cathodic process requires
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hydrogen as an electron acceptor and oxygen as an oxidizing agent. Corrosion can be
minimized by stopping the anodic or cathodic reactions. The inhibitors are absorbed on
the surface, forming barriers to protect from corrosion. Then, they interact with cathodic,
anodic, or both sites and decrease the reduction, oxidation, or both corrosive reactions.

Cathodic reactions are given by the following equations:

2H+ + 2e− → H2

O2 + 4H+ + 4e− → 2H2O

The reductions are given as:

2H+ + 2e− → Hads → 2H2

The hydrogen ions in combination with oxygen ions are absorbed into the surface of
the metal and they act as catalysts in passive film formation. Then, hydrogen gas evolves
at the cathode surface. The inhibitor molecules neutralize the metal surface by absorption
onot the metal surface. The process is described by the following relation:

Inhibitor + nHads → Inhibitorads + H2

The most reliable and conventional ways to measure corrosion are electrochemical
measurements, the kinetics of corrosion, and weight loss measurements.

It is well established that the metal reactions in protic media follow electrochemical
reactions and the anodic reaction is the partial dissolution of the metal. Mixtures of aprotic
and protic solvents are used in many industrial applications. The behavior of the system is
determined by the nature of the protic component. The water content in the aprotic solvent
with aggressive components causes inhibition, stimulation, or no effects on corrosion rates.
The dissolution of the metal is an anodic partial reaction according to the following equation:

Me→Men+ + ne−

The cathodic partial reaction (reduction process) is presented as:

HA + e− → 1/2H2 + A−

Most of the processes involve a direct reaction metal with a non-dissociated proton donor.

6. Mitigation Methods for Organic Acid Corrosion

Steel has versatile applications in construction, structure, and chemical industries
owing to its excellent mechanical properties. However, it is susceptible to corrosion in
an acidic environment and one-third of the steel is lost due to corrosion, causing a 3%
loss in GDP. The corrosion is affected by temperature, pressure, surface impurities, and
solution activities. Several protection techniques such as coatings, inhibitors, and different
corrosion-resistant steels are used to mitigate the corrosion. Means of corrosion mitigation
and their relations with control are summarized in Figure 4.
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6.1. Corrosion Monitoring Methods

Corrosion measurements and monitoring during the process minimize fatal accidents
and reduce the chances of failure. They are useful in assessing the reliable life of equipment.
Corrosion in organic media is controlled by many parameters such as flow, low pH,
water content, and high temperature. It is difficult to predict the synergic effects of these
parameters. Therefore, corrosion and elements that instigate the corrosion process should
be monitored.

Monitoring techniques can be divided into indirect and direct techniques. The indirect
techniques measure parameters that affect the corrosion rate such as ion count or pH. Direct
measurement methods involve the monitoring of the parameters that directly influence
corrosion. It can be categorized into intrusive and nonintrusive techniques with reference
to monitoring from inside or outside the pipe, respectively, against corrosion [98,99].

Corrosion can be monitored continuously or periodically. Direct intrusive measure-
ment techniques use electrochemical techniques (harmonic distortion, electrochemical
impedance spectroscopy, electrochemical noise, potentiodynamic polarization), electrical
resistance probes, and mass loss coupons. These are more sensitive and reliable techniques
for measuring the corrosion rate.

Nonintrusive techniques use radiography, eddy current, magnetic flux leakage, ul-
trasonic acoustic emission, and electrical field mapping. The actual plant materials are
tested for monitoring in this technique. These are used at critical locations such as tees,
pipe bends, welds, and similar nonuniformities [100].

The indirect/continuous measurement techniques involve the monitoring of dissolved
oxygen, corrosion potentials, process parameters, pH, pressure, temperature, and evalua-
tion of corrosion products. The indirect/periodic techniques use the measurement of the
total acid number, ion count and analysis, and water chemistry. The corrosion measurement
and monitoring details are found in NACE standards.

The mass loss coupon technique is the most commonly used method in the petrochem-
ical industry because of its cost implication and reliability. The coupons are periodically
retracted for evaluation. It is compromised by localized corrosion at critical locations such
as welds and tees. The above methods are employed in combination. The measures over a
short period of time during operation permit the changing of the process parameters to
obstruct the rate of corrosion. The corrosion monitoring techniques require improvement
to obtain more sophisticated results. It has been a challenge to detect localized corrosion
but technological advancements have made it possible to measure the hydrogenation pen-
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etration, pitting corrosion, and localized corrosion. Indirect monitoring is important to
examine the daily operating parameters and corrosion condition trends.

6.2. Corrosion-Resistant Material Selection

Correct material selection is the primary approach for designing industrial equipment
with protection against corrosion in particularly aggressive environments. Appropriate
materials such as corrosion-resistant alloys are imperative in mitigating corrosion in petro-
chemical industries to enhance performance and life expectancy. The performance of the
equipment’s materials is affected by many factors such as operation, quality control, fabrica-
tion, materials’ specification, and transportation. The unique environmental conditions for
specific applications determine the extent and type of corrosion at all stages of component
life including maintenance, operation, commissioning, installation, storage, transportation,
fabrication, and procurement [101].

The corrosion can be controlled by modifying the microstructure, and surface structure
of the equipment. The microstructure can be changed by changing the composition by
adding corrosion-resistant elements such as nickel, zinc, and chromium. Stainless steel,
titanium alloys, and nickel-based alloys are excellent corrosion-resistant alloys to mitigate
the corrosion menace in petrochemical plants. These alloys have the intrinsic property of
developing a thin protective film against corrosion [98].

Hastelloy, Inconel, and Monel alloys are employed as corrosion-resistant alloys in
place of stainless steel. These materials offer excellent corrosion resistance properties
under specific conditions and processes and experience severe corrosion attacks when the
environment is slightly changed [80]. For instance, stainless steel 316L has outstanding
corrosion resistance in an up to 90% concentrated acetic acid environment; however, a slight
change in concentration enhances the corrosion rate by almost 400% [102]. Ferric alloys
are preferred in the pulp and paper industry because of their corrosion resistance over
stainless steel. In a similar way, Monel has excellent corrosion performance in unaerated
acidic environments but is severely attacked in the aerated environment. Inconel has
good corrosion resistance performance in strongly oxidizing conditions; however, it has
less corrosion resistance in dilute acid at higher temperatures. Therefore, materials for
equipment and components should be investigated for particular process conditions [103].

Stainless steel is considered to be an excellent corrosion-resistant material in ethyl
acetate plants under process conditions. However, high flow velocity, contamination,
strong catalysts, and elevated temperature cause various corrosion failures and problems.
Nitrogen, molybdenum, and chromium content are optimized for excellent crevice and
pitting corrosion resistance in steels [104,105]. The development of corrosion-resistant
coatings is another good technique to control the corrosion process and rate degradation.
The film thickness and elements in coating films are important parameters by which to
estimate the performance of the coatings [99,106].

6.3. Process Parameters and Optimization

The parameters such as oxygen, suspended solids, dissolved metal chlorides, flow rate,
corrosion potential, pH, pressure, temperature, and chemical residuals control corrosion.
Any change in the above-mentioned parameters will influence the corrosion potential and
the susceptibility of the plant can be assessed by using this information [107]. A significant
impact on corrosion is induced by flow rate, pressure, and temperature. For example, the
temperature in the reaction container is above 100 ◦C, and the pressure of 1 MPa under the
flow rate of 2.5 m/s. If these parameters are adjusted according to the required yields in the
plant, they will consequently affect the corrosion. A slight change in these parameters has
significant effects on the breakdown of the passivation film, activity, increased dissolved
ions, and increased chloride mobility [108–112].

The change in electrolyte activity can be indicated by the tendency in the concentration
of dissolved metals such as Fe and Cr, which reveals the corrosion rate and corrosivity.
The corrosion rate is significantly affected by pH, so controlling the pH monitors the
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corrosion rate [99,106]. The pH is influenced by chemical residuals, dissolved oxygen, and
other impurities. The feedstocks in the plant are agitated for mixing and heat transfer
and then transported through pipelines [113,114]. The shear stresses are induced by high
feedstock velocity which causes additional erosion–corrosion problems in the equipment
of the plant [115,116]. This becomes more severe when suspended particles are in the
stream [39,96]. It has been reported that the corrosion rate approached 2.6 mm/y for 304
stainless steel at a flow rate of 2.4 m/s under 0.3% H2SO4 catalyst at 103 ◦C. This is how
process parameters influence the corrosion process and corrosion can be managed in a
better way by optimization.

6.4. Corrosion Inhibitors

Inhibitors are the best remedies to control corrosion in steel in various sectors owing to
their economic efficiency, simple process, strong adaptability, and low cost. The characteris-
tics of excellent corrosion inhibitors are summarized in Figure 5. Organic inhibitors reduce
the dissolution of the steel in an acidic environment but are expensive, hazardous, and
need expertise to manufacture. The inhibitors should be eco-friendly and must show more
than 90% efficiency [117]. Most corrosion inhibitors are extracted from plants. The roots,
leaves, seeds, flowers, and stems contain organic compounds such as tannins, heteroatoms,
flavonoids, alkaloids, and nitrogen-based compounds. These organic inhibitors have ex-
cellent performance against corrosion and are safe and non-toxic. The green inhibitors
include herbs, leaves, natural honey, yeast, flour, oil, roots, drugs, and chitosan. Natural
and biodegradable biomaterials are effective inhibitors.

Corrosion is influenced by temperature, time, surface impurities, and other functions
of the solution. Several techniques have been used to avoid thermal and mechanical
degradation. Annealing, carburization, and design modifications have been used during
the manufacturing process for optimum performance [96]. The application of a coating
is one of the major techniques to reduce material degradation and consequently, the
environment is one of the major factors influencing corrosion behavior.

The combination of propargyl and octyl in an HCl solution is an efficient corrosion
inhibitor. Ethanol mixed with sulfuric acid is a better corrosion inhibitor than other organic
inhibitors. The composition of corrosion deposits and the medium in which the corro-
sion of steel takes place are the factors that determine the corrosion inhibitors and their
efficiency [118].

The corrosion inhibition of 304 stainless steel in 1M H2SO4 at 50 ◦C was studied using
propargyl triphenyl phosphonium bromide (PgTPhPBr) [119]. The Tafel curves indicated
that the cathodic region gave corrosion inhibition of 98% at 1 × 10−3 M. In the anodic
region, PgTPhPBr acted as a good passivator. The impedance spectra of corrosion potential
revealed that the charge transfer process controls the corrosion in inhibited and uninhibited
states. The effects of chloride ions on the corrosion behavior of three stainless sheets of
steel were investigated at 110 ◦C in an aqueous solution of H2S/CO2.

Stainless steel AISI 316L forms a high passivation film under higher temperature and
pressure which consequently acts as a corrosion inhibitor [120]. A thicker passivation film
could form on the surface at high temperatures and 316L steel would offer better resistance.
The corrosion resistance of 316L steel can be improved by adding copper because copper
can (1) stabilize the martensite restraints and austenite transformation, (2) replace the
nickel and reduce the production cost, (3) enhance the corrosion resistance of the stainless
steel [121]. It was investigated that Cu aggregates on the surface and forms oxides on the
surface to protect against continuous corrosion [94]. The investigation of the electrochemical
and passivation behavior of 304 steel in 0.1 M H3PO4 revealed that the current density and
passivation current decreased with the increase in copper content because copper changed
the stability of the passivation film [122]. The double-layer passivation structure could be
formed on the surface of the steel containing copper in 0.1H2SO4 solution [123].
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A corrosion inhibitor was extracted from Ziziphora leaves and mixed with HCl acid to
protect mild steel [97,117]. The corrosion rate was reduced to 93% after 2.5 h. The cysteine
amino acid was used as a corrosion inhibitor for mild steel and excellent results were
observed [118]. The pyrimidine derivatives were used with 15% hydrochloric acid and
applied on N80 steel and a 96.4% reduction in corrosion rate was found [124].

Nonpolar compounds containing heterocyclic rings, functional moieties, aliphatic
chains, aromatic rings, and polar compounds with nitrogen and oxygen are rich in plant
extracts. These organic compounds are efficiently absorbed on the metal surface to protect
from corrosion without spoiling the environment [125–127].

Corrosion can be prevented by cathodic protection, inhibitors, and coatings. There are
two types of corrosion inhibitors: organic and inorganic [128]. Inorganic inhibitors include
phosphate, dichromate, chromate, nitrate, and nitrite. On the other hand, organic inhibitors
contain two or more polar groups, having S, P, N, and O atoms, and π electrons. Organic
inhibitors are more effective than inorganic ones in preventing corrosion.

A cathodic corrosion protection system is used in the metallic substrate used in
structural foundations, cables, oil and gas pipelines, and utility pipelines [75,129]. They are
also used in aircraft, bridges, oil-drilling platforms, and condenser tubes in heat exchangers.
However, the cathodic protection system is not suitable in the marine environment.

The inhibition effects of water are very common in organic solvents acidified with HCl
for stainless steel. The presence of water causes the formation of a passivation layer which
is lost at a higher content, consequently leading to higher corrosion rates [130]. Coatings
are on the surface of the steel are advisable to avoid corrosion during production in an
organic corrosive environment. The widely used coatings are of blunt materials such as
graphite, alumina, epoxy, and polyaniline. However, there are still many difficulties in
administering coatings in large tanks. Thus, it is necessary to investigate the corrosion
behavior of stainless steel in organic solutions. Organic type, pH, water content, solution
viscosity, and contaminants are the main factors that influence the passivation film and the
corrosion behavior of the metals [131].

7. Future Aspects

The specific intention of this work was to analyze the existing experience of corrosion
on stainless steel under organic solvents, the means of controlling the corrosion rate and
how to improve the technical operation and metallurgical guidelines for the future.
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There is consensus on the many possible factors contributing to corrosion in organic
solvents that must be addressed to reduce the corrosion rate. The different natures of the
sources of organic solvents have different compositions which influence corrosion and
erosion in stainless steel.

The following factors must be addressed to mitigate and control corrosion in steel in
an organic environment.

The selection of materials is one of the key parameters in the piping and process
industries. The 316L stainless steel is an efficient alloy, having excellent corrosion resistance
with a good metallurgical composition. The metallurgical composition plays a key role in
improving the corrosion resistance.

The process parameters, for instance, flow rate, temperature, pH, concentration, and
water content must be optimized. Corrosion inhibitors can play an important role in
controlling the corrosion rate. Artificial intelligence and machine learning would be future tools
for selecting the appropriate material composition, process parameters, and corrosion inhibitors.

8. Conclusions

Corrosion of stainless steel by organic compounds, specifically organic acids, is of
great concern due to many factors such as flow, high temperature, chloride contamination,
water content in feed, and the presence of strong acids. The increasing demands for food
processing and preservation will lead to an increase in plant operation and consequently
an increase in corrosion problems. The commonly used organic compounds and their
impact on the corrosion behavior of stainless steel have been summarized. The influence
of commonly used organic acids on the corrosion behavior of 316L steel has also been
discussed.

A comprehensive understanding of the corrosion mechanisms, corrosion inhibitors,
their efficiency, mitigating measures, corrosion challenges, and prevention techniques is
necessary. Some conclusions can be drawn. (a) Stainless steel is the most widely used
steel in the petrochemical, food and pharmaceutical industries because of its self-protective
characteristics of forming a stable passive oxide layer on the surface. (b) Pitting corrosion
is the most significant form of corrosion in stainless steel, causing damage to the material.
Pitting corrosion is followed by uniform corrosion and SCC. (c) The presence of halides,
especially chlorides, surface stress raisers, impurities, water, and oxides breaks down the
passive film and acts as pit initiators. Pit initiation and growth are controlled by mechanical
and chemical mechanisms.
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