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Abstract: Cr-Mn-Si alloyed high-strength steel was subjected to deep cryogenic treatment after
quenching and tempering (Q-T), and the microstructure and property evolution of the alloy steel
after deep cryogenic treatment were studied. The tensile strength increased by about 30 MPa, the
yield strength decreased by about 10 MPa, and the grains of alloy steel were refined, indicating
that the strength and toughness of the alloy steel can be relatively improved via the deep cryogenic
treatment (−120 ◦C × 1 h); the secondary carbides precipitated inside the martensitic matrix were
uniformly distributed; and the average size was also significantly reduced, presenting a more uniform
microstructure than that of the Q-T samples. Furthermore, the dislocation density of alloy steel also
evolved during the deep cryogenic treatment, with the highest dislocation density after the 2 h
treatment, thus providing a dislocation-strengthening effect. Therefore, the overall properties of the
alloyed steel could be comprehensively improved by the deep cryogenic treatment after Q-T.

Keywords: Cr-Mn-Si-alloyed high-strength steel; deep cryogenic treatment; dislocation density;
microstructure property

1. Introduction

Cr-Mn-Si-alloyed steel is a series of low-alloy high-strength structural steels with
ultra-high strength, good plastic toughness, and fatigue resistance that are mainly used for
stressed parts manufacturing, such as aircraft beams, landing gear, wings, engine shafts,
high-strength bolts, and solid rocket motor cases [1–5]. The performance requirements
for the manufacturing materials are also increased due to the severe requirements of their
working environment on the quality of the mold. Improving the mechanical properties of
Cr-Mn-Si-alloyed high-strength steel by methods such as a heat treatment process have
been utilized. Duan et al. [6] studied the effect of Ni addition on 30CrMnSiNi2A steel using
the hot isostatic pressing technique, and the results showed that the matrix structure of C
and Ni atoms were solid-solution-strengthened with the increase in Ni addition, and that
the hardenability and tensile strength of 30CrMnSiNi2A steel were effectively improved.
Dwivedi et al. [7] studied the effect of laser impact strengthening on the fatigue life of HSLA
steel, and the results showed that laser impact strengthening significantly improved the
mechanical properties of the surface, but that the surface roughness was not significantly
reduced, which significantly reduced the strain mechanism, thus prolonging the fatigue life.
Yuan et al. [8] conducted an experimental study on the mechanical properties of three kinds
of 30CrMnSiNi2A steels with different carbon content at different tempering temperatures,
and analyzed their microstructure and fracture morphology. Zhou et al. [9] investigated the
effect of heat treatment on the microstructure and dynamic properties of 30CrMnSiNi2A
steel, and the results showed that the yield strength of the steel increased with strain rate
after different heat treatments, and that, by subjecting the steel material to the conventional
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quenching–tempering heat treatment process, the hardness, yield strength, tensile strength,
elongation, and impact toughness can be greatly improved, and better overall mechanical
properties can be obtained. However, for some high-strength special workpieces, it is
necessary to further refine the grain size to improve the mechanical properties of the steel
materials, so some new heat treatment processes should be added based on the quenching
and tempering process.

Deep cryogenic treatment is a kind of ultra-low-temperature treatment: a process of heat
treatment of materials under a low-temperature environment (usually below −100 ◦C) [10–13]
with liquid nitrogen as the refrigerant. Deep cryogenic treatment technology not only has
the characteristics of a low cost, low energy consumption, no damage to the workpiece, and
no pollution, but also plays a role in stabilizing the dimensions, improving the uniformity,
reducing the deformation, etc. [14], so it has attracted much attention and has a broad range of
market application. Hu et al. [15] studied the effect of the deep cryogenic treatment process on
the microstructure and properties of M2 HSS and found that the microstructure transformation
of residual austenite to martensite was promoted, resulting in irreversible changes in the
microstructure of the material to varying degrees; thus, the strength, hardness, and toughness
of the material were increased. Wang et al. [16] studied the effect of the number of deep
cryogenic treatments on the wear property and corrosion resistance of E690 steel, and the results
showed that the deep cryogenic treatment promoted the transformation of the microstructure
to martensite and bainite of the specimen, and that fine carbides precipitated and diffused in
the matrix, thus improving the wear resistance, corrosion resistance, and fatigue resistance
of E690 steel. Li et al. [17] studied the effect of deep cryogenic time on the properties of
GCr15-bearing steel and found that the residual austenite content decreased and the strength
and wear resistance of the steel increased significantly with the extension of deep cryogenic
time. Zhao et al. [18] tested Inconel 617 alloy by deep cryogenic treatment under different
treatment times and the number of times, and the results showed that the grain size of
Inconel 617 alloy was refined after deep cryogenic treatment, and that the fraction of small
angle grain boundaries of the alloy increased, which contributed to the improvement in
the tensile strength and plasticity of the alloy. Jurci et al. [19] studied the effect of deep
cryogenic treatment and tempering on the corrosion behavior of Vanadis6 HSS steel and
found that a subzero treatment of Vanadis6 steel significantly reduced the residual austenite
content, refined the martensite, enhanced the carbide density, and changed the precipitation
behavior, effectively suppressing the corrosion rate. Perez et al. [20] investigated the mechanical
properties of AISI H13 steel by low-temperature treatment. The results showed that a deep
cryogenic treatment of H13 steel induced higher thermal stresses and structural defects, and that
tempering resulted in a dispersed network of fine carbides, which significantly improved the
fracture toughness of the steel without altering other mechanical properties. The effect of the
quenching–tempering process + deep cryogenic treatment on the mechanical properties of
steel has also been studied. Dhokey et al. [21] investigated the effect of different tempering
temperatures (200 ◦C, 300 ◦C, 400 ◦C) on H13 tool steel after deep cryogenic treatment,
and the experimental results showed that a higher wear resistance was obtained after
tempering at 200 ◦C due to the higher nucleation rate of tertiary carbides. Otherwise, by
the continued processing of the deep cryogenic treatment on GCr15-bearing steel treated
by quenching–tempering heat treatment, the residual austenite content in the specimen
was significantly reduced compared with the conventional quenching–tempering heat
treatment [22] because of the phase transformation and microstructure decomposition of the
residual austenite martensitic during the deep cryogenic treatment, while the precipitation
of small and diffused carbides in the subsequent tempering process was promoted, and
the comprehensive mechanical properties of steel materials were further improved. The
research on the quenching and tempering process + deep cryogenic treatment have mainly
been focused on high-temperature alloys and amorphous alloys, but studies are relatively
rare regarding the low-temperature properties of Cr-Mn-Si-alloyed high-strength steel.

The effect of the quenching and tempering process (Q-T process) + deep cryogenic
process on the microstructure and properties of Cr-Mn-Si-alloyed high-strength steel is still
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unclear; therefore, this study will add the deep cryogenic process after the conventional heat
treatment process to deal with Cr-Mn-Si-alloyed high-strength steel, and will compare the
effect of the deep cryogenic process time on the microstructure and mechanical properties
of Cr-Mn-Si-alloyed high-strength steel, aiming to further improve the comprehensive
properties of Cr-Mn-Si-alloyed high-strength steel and provide a reference for optimizing
the deep cryogenic process.

2. Experimental Procedure
2.1. Initial Material

A Cr-Mn-Si-alloyed high-strength steel prepared by hot forging and annealing treat-
ment was selected in this study. The initial microstructure is shown in Figure 1, and the
grains were all non-directional equiaxed crystals with an average grain size of 16.6 µm. The
chemical composition of the Cr-Mn-Si-alloyed high-strength steel is listed in Table 1. The
total amount of alloying elements was not higher than 5%, and the added alloying elements
were mainly used to improve the hardenability of the steel, increase the tempering, and
improve the mechanical properties.
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Figure 1. The initial microstructure of Cr-Mn-Si-alloyed high-strength steel.

Table 1. Chemical composition of Cr-Mn-Si-alloyed high-strength steel (wt.%).

C Si Mn Cr Mo Ni Al S Cu Fe

0.285 0.992 1.120 1.090 0.006 2.040 0.011 0.033 0.218 Bal

2.2. Heat Treatment

The Q-T process was utilized for Cr-Mn-Si-alloyed high-strength steel to ensure the
high residual austenite content. Combining the process with phase transformation strength-
ening and fine grain strengthening, a match of high strength and good plasticity was
obtained and the comprehensive mechanical properties of the material could be effectively
improved. For Cr-Mn-Si-alloyed high-strength steel, the use of deep cryogenic treatment
technology after the Q-T process could further improve the ratio of various microstructure
and comprehensive mechanical properties. This paper attempted to find relatively better
process parameters of deep cryogenic process to improve its strength under the premise of
ensuring a smaller reduction in plasticity so that the comprehensive mechanical properties
can be further improved based on the Q-T process.

The experimental scheme of the Q-T + deep cryogenic process adopted in the paper is
as follows: the alloy steel samples were heated for austenitizing (900 ◦C) at first, followed by
oil-cooling after holding for a certain period of time, and then tempering at the most suitable
tempering temperature (250 ◦C) followed by air-cooling; then, the samples were put into a
deep cryogenic box with the temperature lowered to −120 ◦C at a rate of 5 ◦C/min. Different
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batches of samples were held at the temperature for 1 h, 2 h, and 3 h, respectively. Finally, the
samples within the deep cryogenic box returned to room temperature gradually when the
cooling system was turned off. The heat treatment process is shown in Table 2.

Table 2. Experimental parameters of subsequent heat treatments.

Experimental Parameter Values

Quenching temperature (◦C) 900
Quenching time (min) 20

Tempering temperature (◦C) 250
Tempering time (h) 2.5

Cryogenic temperature (◦C) −120
Cryogenic time (h) 1, 2, 3

2.3. Microstructural and Mechanical Property Analyses

Uniaxial tensile experiment was conducted with an MTS809 testing machine at room
temperature, and the strain rate was 1 mm/min. Three batches of tensile experiments were
carried out to reduce the test errors. The samples used in the tests were spark-cutting-machined,
as shown in Figure 2. Charpy impact experiments were conducted in SCHENCK−100 KN
charpy tester at room temperature, and the samples were machined into standard V-notch
with the dimension of 55 × 10 × 10 mm3 according to GB/T229-2007 [23].
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Figure 2. Diagrammatic sketch of a tensile sample at room temperature.

The microstructure and fracture morphology under different conditions were ob-
served and analyzed by an electron backscatter diffraction (EBSD) installed in JEOL 7800
F scanning electron microscopy (SEM, Japan Electron Optics Laboratory Co., Ltd., Tokyo,
Japan). The dislocation density was measured by X-ray diffractometry (XRD, Empyrean,
PANalytical B.V., Almelo, The Netherlands) using a D/max-2500 pc at 50 kV and 0.02◦ step
size. The 2θ angular interval was from 40◦ to 140◦ and step-scanned with 5 s, and the target
material was copper with wavelength of λ = 0.15418 nm.

3. Results
3.1. Mechanical Properties

Figure 3 shows the true stress–strain curve obtained from the tensile test for Cr-Mn-Si-
alloyed high-strength steel of different deep cryogenic times. It can be found that there was
no obvious yield point and yield plateau, while the yield strength decreased but the tensile
strength increased with the increase in deep cryogenic time, as shown in Figure 4. The yield
strength was 404 MPa, 392 MPa, 374 MPa, and 333 MPa at the deep cryogenic time of 0 h, 1 h,
2 h, and 3 h, respectively; the stress of the sample reached the peak tensile strength at the time
of necking. In contrast, the tensile strength was improved to a greater extent when the deep
cryogenic time was 1 h, while the yield strength only decreased by about 10 MPa. When the
deep cryogenic time was extended to 2 h and 3 h, the yield strength decreased significantly
and the tensile strength increased less. Therefore, it can be determined that 1 h was a more
suitable deep cryogenic treatment process parameter.
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3.2. Microstructure Analyses

Due to the influence of alloying elements, the start temperature of the martensite
transformation is about 314 ◦C and the end temperature is below room temperature.
According to Meng’s research [24], when the alloy steel is held in the austenite temperature
zone, the carbon element starts to dissolve when the heating temperature in the austenite
zone exceeds the A3 line. The austenite transforms into martensite due to rapid cooling of
quenching, and then part of the martensite reverses to austenite after the tempering process,
which enhances the toughness of the material. As shown in Figure 5a, the martensite
microstructure in the tempered samples shows a morphology of a dense parallel slat
pattern after rapid quenching, with the pristine austenite grain boundary (PAGB) acting
as the boundary, and martensite slats being distributed along all directions. Residual
austenite could also be found after different times of deep cryogenic treatment, as shown in
Figure 5b–d. Owing to incomplete martensitic phase transformation, the residual austenite
was scattered in the martensitic matrix. Moreover, in addition to slate-like martensite
and residual austenite, lamellar martensite grains could also be observed after the deep
cryogenic treatment of Cr-Mn-Si-alloyed high-strength steel.
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As shown in Figure 5, when Cr-Mn-Si-alloyed high-strength steel was treated at differ-
ent deep cryogenic time, the proportion of residual austenite reduced and the martensite
laths formed by the transformation of the original austenite grains became course as the
treatment time prolonged, while the lamellar martensite gradually increased when compar-
ing to slatty martensite. Moreover, the grains were relatively fine and the average size of
the secondary carbides precipitated inside the matrix were significantly reduced after the
deep cryogenic treatment, and were uniformly distributed in the martensitic matrix.

The impact fracture morphologies at four different deep cryogenic times are shown
in Figure 6. It can be seen that the fracture form of the quenched–tempered samples were
basically microporous aggregated, as shown in Figure 6a. A large amount of micropores
could be observed in the SEM images, which contributed to a better impact toughness.
However, when the tempered samples were deep-cooled for a certain period of time,
the cleavage steps appeared in the internal radiation stripe areas in the impact fracture
gradually, and the proportion of the cleavage steps increased with the extension of the deep
cryogenic time, as shown in Figure 6b–d. The cleavage steps were relatively few when
the deep cryogenic time was 1 h. When the deep cryogenic time increased to 2 h, a large
number of small and shallow dimples were distributed on the side of the cleavage steps,
and the sample showed a quasi-deconstruction fracture. When the deep cryogenic time
increased to 3 h, the impact fracture showed an obvious river pattern, in which each branch
of the river pattern consisted of a bunch of parallel-arranged cleavage steps with different
heights. A large number of tearing edges and many micropores were scattered inside the
branch and no dimples were basically observed, which was characterized by a classical
brittle fracture.
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4. Discussion
4.1. Effect of Deep Cryogenic Treatment Process on the Mechanical Properties and Microstructure
of Cr-Mn-Si-Alloyed High-Strength Steel

As shown in Figure 5, more fine secondary carbides were uniformly distributed within the
matrix and the average size of carbides was significantly reduced when the sample was Q-T and
deep-cryogenic-treated, which is ascribed to the martensitic phase transformation of residual
austenite in the low-temperature environment. The low-temperature martensitic transformation
process was often accompanied by plastic deformation, and the stress generated by plastic
deformation induced the dissolution of large-size carbide particles. Hence, the larger-sized
carbide of the specimen produced after the Q-T process was reduced, and there was a large
number of fine secondary carbide precipitation diffuse and uniformly distributed in the matrix.

Figure 7 shows the localized enlarged SEM images of the samples that were deep-
cryogenic-treated for 1 h and 3 h. It can be observed that the carbon particles and residual
austenite were distributed at the PAGB, and that the residual austenite was distributed in
the form of a thin film when deep-cryogenic-treated for 1 h. In the process of quenching,
the carbon element diffused from the martensite to the surrounding austenite, induced an
increase in the carbon content, and thereafter enhanced the stability of residual austenite
film, which was beneficial to the improvement in toughness for Cr-Mn-Si-alloyed high-
strength steel. As shown in Figure 8, the tempered sample was accompanied by martensite
lattice shrinkage and carbon precipitation during deep cryogenic treatment, which had
two effects on the properties of the sample microstructure: first, the strength of the sample
softened from the martensite decarburization; second, the carbon atoms precipitated in
martensite had a low diffusion drive in the deep cryogenic chamber at −120 ◦C, and
therefore precipitated in the form of carbides in the matrix and were unable to diffuse
into the untransformed austenite, which gave rise to an obvious improvement in strength
resulting from precipitation strengthening and fine crystal strengthening. The combination
of the above-mentioned softening and strengthening effect determined the mechanical
properties of the deep cryogenic sample.
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As previously mentioned, during the process of deep cryogenic treatment, residual austen-
ite in the material underwent continuous transformation into martensite, thereby enhancing its
strength. Additionally, secondary carbides precipitated due to the shrinkage of the martensite
lattice and elements in the matrix rearranged themselves (as shown in Figure 8a), forming a
diffuse distribution of second-phase particles within the matrix that produce strengthening
effects through interaction with stress fields and dislocations. Consequently, deep cryogenic
samples exhibited a higher tensile strength but lower yield strength than those treated solely
with Q-T methods. While residual austenite continuously transformed into martensite as the
deep cryogenic time increased, this transformation was limited by temperature; it ended when
the treatment time reached 2 h (as illustrated in Figure 8b). This explains why the grain size
remained constant at 2 h and 3 h of deep cryogenic treatment but differed from that after 1 h.

Figure 9 shows the inverse pole figure and the average grain size of Cr-Mn-Si-alloyed
high-strength steel at different deep cryogenic treatment times. It can be observed that the
average grain size of the sample was much smaller when the deep cryogenic time was 1 h
than that of 2 h and 3 h, which also explains the relatively better overall performance when
the deep cryogenic was 1 h.
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With the growth in deep cryogenic time, the size of martensite grains gradually
increased, as shown in Figure 9, decreasing the yield strength. Martensite transformation
of alloy steel started at the temperature of 314 ◦C (Ms), and ended at the transformation
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temperature of −30 ◦C; due to the temperature dropping below the phase transition
termination temperature, the greater the subcooling degree, the greater phase transition
drive force, prompting the residual austenite-to-martensite transformation. In the deep
cryogenic treatment, due to the martensite lattice contraction at very low temperatures,
quenched martensite decarburization occurred, and carbon atom bias polymerized in the
samples. The residual austenite absorbed the carbon atoms convergence due to lattice
mismatch, so its carbon content increased. As is known, the carbon content and alloying
content decide the formation of lath martensite in the great degree of subcooling, and thus
the new formation of the martensite in the lath martensite was relatively higher, as shown
in Figure 7. It is known that lath martensite is relatively hard and brittle, while its notch
sensitivity is also relatively low, so the yield strength decreased, tensile strength increased,
and impact toughness decreased with the growth in deep cryogenic time.

In crystallography, the grain boundaries with an orientation angle lower than 15◦ are
generally referred to as low-angle grain boundaries (LAGBs), and the grain boundaries
with an orientation angle greater than 15◦ are referred to as high-angle grain boundaries
(HAGBs). Figure 10 shows the orientation angle distribution of alloy steel at different
deep cryogenic treatment times, and it can be seen from the figure that the increased
deep cryogenic time makes the proportion of LAGBs decrease while the proportion of
HAGBs increases. The reason for this phenomenon is that, under the premise that the deep
cryogenic temperature is determined, as the treatment time increased, the transformation
of residual austenite into martensite and the shrinkage of the original martensite lattice
gradually occurred, forming new grain boundaries, and the newly formed grain boundaries
tend to form dislocation plugging, resulting in an increase in the momentum required for
free dislocation movement, thus making the tensile strength of the material increase. At the
same time, alloying elements have relatively more time to diffuse in the matrix with the
transformation of residual austenite into martensite. As shown in Figure 8, the aggregation
of alloying elements on the free dislocation pegging for dislocation transformation into
LAGBs and then the formation of stable HAGBs played a positive role in promoting the
process [25], which can improve the tensile strength of alloyed steel.
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4.2. Effect of Deep Cryogenic Treatment Process on Cr-Mn-Si High-Strength Dislocation Density

The XRD diffraction patterns of Cr-Mn-Si-alloyed high-strength steel at different
deep cryogenic treatment times are shown in Figure 11a. Martensitic diffraction peaks
were selected from the diffraction angle range of 40◦ to 140◦ with crystallographic lattice
coefficients of (110) (200) (211) (220) (310) after different treatment times for Cr-Mn-Si-
alloyed high-strength steel, which have the same diffraction peaks at the same diffraction
angle, which indicates that the different deep cryogenic treatment times do not affect the
lattice constants. The half-width height (FWHM) of each diffraction peak can be obtained
automatically by using MDI Jade to analyze the XRD data. However, the FWHM of the
same crystallographic index after different treatment times differed greatly, and the peak
widths of the diffraction peaks had different degrees of broadening, as shown in the local
magnification of Figure 11a.
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The XRD-WH method, proposed by Williamson and Hall in the 1950s, suggests that
diffraction peak width variations are caused by grain surface distortion, while lattice
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distortion can arise due to atomic solid solution, twinning, dislocations, etc. [26], and that
the diffraction peak width and strain can be shown by the following equation:

δ
cosθ
λ

= α+ 2ε
sinθ
λ

(1)

where α = 0.9/D, D is the grain size (m), θ is the diffraction angle (◦), λ is the wavelength
of the X-rays (m, 0.15418 nm), and ε is the strain. The relationship between dislocation
density and strain can be expressed by Equation (2):

ρ = 14.4
ε2

b2 (2)

where b is the Platz vector of dislocations, and since the crystal structure of martensite
is body-centered cubic (bcc), b = 0.248 nm [27]. It can be seen from the equation that the
dislocation density is positively correlated with the strain, and, to facilitate the calculation
of the material strain, Equation (1) can be expressed as shown in Equation (3):

∆K = α+ εK (3)

K is considered the fundamental unit of the diffraction vector, which is expressed as

K =
2sinθ
λ

(4)

K can then be considered as the diffraction peak width in K, which is expressed as

∆K = δ
cosθ
λ

(5)

According to Equation (3), there is a linear relationship between K and K. The slope is
the microstrain of the microstructure, which can be obtained by substituting the FWHM
value into the equation. The least squares method can be used for linear fitting, and then
can be substituted into Equation (2) to find the value of dislocation density, as shown in
Figure 12.
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From the analysis of XRD results, it can be seen that the dislocation density of Cr-Mn-
Si-alloyed high-strength steel was greatly affected by the deep cryogenic treatment, where
the dislocation density of the alloy steel increased significantly compared with that of the
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Q-T samples, having the highest dislocation density at 2 h of the deep cryogenic process
(rising by about 30%), but decreased by 25% when the time extended to 3 h. This proves
the argument that the transformation of residual austenite into martensite at a 2 h deep
cryogenic time was over. The possible reason for the longer deep cryogenic time taken to
reduce the dislocation density in the matrix could be due to the stabilization of the matrix
microstructure with the prolonged low-temperature time, and the release of residual stress
in the microstructure and the disappearance of part of the dislocation structure. On the one
hand, the higher dislocation density played a role in dislocation strengthening; on the other
hand, more vacancies and diffusion channels were provided for the diffusion of matrix
elements, which theoretically explains the phenomenon shown in Figure 8.

5. Conclusions

(1) For Cr-Mn-Si-alloyed high-strength steel, deep cryogenic treatment after Q-T treat-
ment improved the microstructure and mechanical property of the material. The
better deep cryogenic process parameter was −120 ◦C + 1 h after the Q-T process.

(2) The microstructure of Cr-Mn-Si-alloyed high-strength steel after deep cryogenic
treatment was tempered martensite and diffusely distributed carbides, which refined
the matrix microstructure and made the martensite slats more uniform. However,
with the extension of deep cryogenic time, lath martensite gradually appeared.

(3) The dislocation density of Cr-Mn-Si-alloyed high-strength steel was influenced by the
deep cryogenic treatment, and was highest at a deep cryogenic treatment time of 2 h.
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